
Progress In Electromagnetics Research, Vol. 141, 249–266, 2013

A NOVEL SYNTHESIS PROCEDURE FOR ULTRA
WIDEBAND (UWB) BANDPASS FILTERS

Sohail Khalid1, Wong P. Wen1, *, and Lee Y. Cheong2

1Department of Electrical and Electronic Engineering, Universiti
Technologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750,
Malaysia
2Department of Fundamental and Applied Science, Universiti
Technologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750,
Malaysia

Abstract—In this paper, a novel synthesis procedure is presented to
achieve optimum solution for UWB filter parameters. It is found that
the narrowband approximation is not valid for any arbitrary powered
rational type filtering function. For wider bandwidths, the frequency
dependent terms have significant effects on the frequency response.
Hence, extracted filtering function cannot be mapped to generalize
Chebyshev polynomials. This paper will provide an exact synthesis
procedure for step impedance resonators (SIR’s) type UWB bandpass
filters. To validate the synthesis procedure prototypes are designed
and fabricated. Simulated and measured results show good agreement
with proposed theory.

1. INTRODUCTION

Ultra wideband (UWB) technology plays a vital role in the
development of short range high-data-rate communication systems and
wireless personal area networks. Since the release of unlicensed UWB
communication spectrum from 3.1 to 10.6 GHz, many filter topologies
have been proposed to achieve UWB spectrum mask [1–9]. Over the
years, theory of classical narrowband microwave bandpass filter has
been well established [10, 11]. However, these classical theories are not
valid for filters having fractional bandwidth greater than 50%. One
such example is reported in [12] and [13], where based on synthesis
a new formula is presented to design relatively wider passband using
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parallel-coupled transmission-line resonator, but due to the frequency
dependent terms involved in even-odd mode impedance equations, the
maximum fractional bandwidth achieved is 50%. Since the filtering
function obtained from parallel coupled lines has frequency dependent
term in denominator so the approximation θ = π/2 is valid only in
the vicinity of the center frequency. Hence, for ultra wide bandwidth
this frequency dependent term will distort the frequency response.
To overcome these constraints, synthesis method is proposed in [9]
using isolated cascaded high-pass and low-pass sections. The developed
synthesis method is based on an iterative algorithm for Butterworth
and Chebyshev type response. However, there are some limitations like
equal ripple response for Chebyshev case is not achieved, the fractional
bandwidth of 109.4% for UWB spectrum remained unattainable and
the return loss level is not flexible. Moreover, the fabricated prototype
size is increased due to cascaded network and hence not suitable
for hand handle UWB devices. In [5], a direct synthesis procedure
is reported for UWB filters using composite series and shunt stubs.
Generalize Chebyshev type filtering function is used to synthesize the
parameter values. However, this type of filtering function is not valid
for any arbitrary powered rational filtering function. Moreover, the
filtering function follows a specific periodic pattern which cannot be
mapped on all types of filtering functions. Hence, there is a need of a
synthesis procedure that is free of these restrictions. Now in order to
synthesize the filtering function, following goals have to be considered
for Chebyshev type frequency response.

(i) For a given topology, obtain the maximum number of transmission
poles in the passband for optimum selectivity.

(ii) Exhibit the desired passband bandwidth.
(iii) Attain equal ripple behavior at the passband for optimum loss

performance.
(iv) Obtain the desired return loss determined by a prescribed ripple

level factor ε.

This paper is organized in the following manner. Initially, even-
odd mode analysis to find the overall transfer function has been
presented followed by the extraction of the quasi-generalize filtering
function using the transfer function. Afterwards, our proposed
synthesis procedure is discussed that has been used on extracted
filtering function to get exact solutions for the filter parameters. This
section also discusses the proposed method in the light of above
mentioned goals. Later, the fabricated prototypes are presented that
validates our proposed theory. Finally the last section concludes the
paper. The actual scope of this work is to produce a novel synthesis
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procedure in order to give a better understanding of the designed filter
theory.

2. PROPOSED SYNTHESIS PROCEDURE FOR SIR’S
TYPE UWB FILTERS

Shown in Fig. 1 is a quasi-generalize configuration of UWB filter
with its equivalent circuit model [1]. The UWB filter consists of low
impedance line kθo attached to high impedance quarter wavelength
θo parallel coupled lines. Where, k is an integer and is related to
filter order by N = k + 3. Here, zo is the characteristic impedance
of the middle line whereas, zeven and zodd are the even and odd-mode
characteristic impedances of parallel coupled line section. zue is the
impedance of unit element. The parallel coupled line is realized by two
θo open circuited stubs separated by unit element.

Figure 1. A SIR’s with parallel coupled line UWB filter and its
equivalent circuit.

Due to the symmetry of design, even-odd mode analysis has been
adopted to find the transfer function S21. Now the aim is to extract
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filtering function F (θ) from transfer function using Equation (1).

|S21(θ)|2 =
1

1 + F 2(θ)
(1)

and due to unitary condition, the reflection coefficient S11(θ) is related
by the equation

|S11(θ)|2 = 1− |S21(θ)|2. (2)

Quasi-generalize filtering function is given in Appendix A. Integer value
k will produce the required filter order. The filtering function is of the
form:

F (θ) =
Numinator(θ)

Denominator(θ)
(3)

The analysis of filtering function shows that it is no more
a standard first order Chebyshev polynomial due to a frequency
dependent term in the denominator, hence cannot be solved using
Chebyshev polynomial of first kind. For narrowband filters, this
frequency dependent term can be neglected because the bandwidth
is in close vicinity of center frequency and hence can not distort
the filtering response. Whereas, for fractional bandwidth wider then
20%, this frequency dependence will cause significant effect on filtering
response. In the forthcoming sections extracted filtering function will
be synthesized to achieve ideal parameter values for k = 1 and 2.

2.1. Synthesis of Fourth Order UWB Filter

For forth order UWB filter k = 1, the filtering function in (A1) leads
to Equation (4). Here the unknown coefficients are redefined for the
given case.

F (θ) =
A cos4(θ) + B cos2(θ) + C

sin(θ)
, (4)

where,

A =

[
(zue + zodd)2 − 1

]
(zo + zue + zodd)2

2 zue
2zo

, (5)

B =
{ [

2− (zcl + zodd)2
]
zo

2 +
(
1− 2zue

2
)
(zue + zodd)2

+2
(
1− zue

2
)
(zue + zodd)zo

}
×

{
2 zue

2zo

}−1
, (6)

C =
zue

4 − zo
2

2zue
2zo

. (7)

It is required that zo, zue, zodd > 0. The filtering function has frequency
dependent term in the denominator which will distort the equal ripple
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characteristic and bandwidth of filter. This effect can be nullified by
restructuring the filtering function as shown in the following section.

2.1.1. Restructure the Filtering Function

Filtering function is redefine to achieve mentioned goals, the ripple
factor is extracted by normalizing the filtering function in the following
form:

F (θ) ≡ ε
F̃ (θ)

F̃ (θN )
, (8)

where θN is the normalizing electrical length, and the normalization
factor is taken as

F̃ (θ) =
cos4 (θ) + α cos2 (θ) + ζ

sin (θ)
, (9)

where

A =
ε

F̃ (θN )
, (10)

α =
B

A
, (11)

ζ =
C

A
. (12)

The ripple factor ε is related to the return loss by

ε =
√

10LR/10 − 1. (13)

From (9), the values of the parameters A, B and C can be obtained
by requiring the transfer function

|S21(θ)|2 =
1

1 + ε2
∣∣∣∣

F̃ (θ)
F̃ (θN )

∣∣∣∣
2 , (14)

This is related to using the first derivatives to find the relative
maxima and minima of the transfer function. In order to generate the
filter coefficients for equal ripple response, let the denominator of (2)
equal to Q,

Q = 1 + F 2(θ). (15)

By Chain rule and using (8), the derivative of reflection coefficient (2)
is

d

dθ
|S11(θ)|2 =

1
Q2

× 2ε2F̃ (θ)
F̃ 2(θN )

× dT̃ (θ)
dθ

. (16)
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The vanishing of Q−1 corresponds to the reflection poles at θ = 0 and
π, and the vanishing of T̃ (θ) corresponds to the reflection zeros which
are located at

θ(±,±)
zero = arccos

(
±1

2

√
−2α± 2

√
α2 − 4ζ

)
, (17)

where the ± sign notation stated above is understood. In order to
ensure the existence of four zeros in the transfer function, it is required
that

α < 0 and ζ > 0, (18)
and satisfy the inequalities

α2 − 4 ζ > 0, (19)
α + ζ + 1 > 0. (20)

Since θ ∈ (0, π), we identify the location of the reflection zeros, in the
order from left to right: θ(+,+), θ(+,−), θ(−,−), θ(−,+). The ripple peak
frequencies are found by solving

dF̃ (θ)
dθ

=
[3 cos4 θ + (α− 4) cos2 θ − (2α + ζ)] cos θ

sin2 θ
. (21)

Equation (21) has a simple root which is located at θ
(c)
peak = π

2

(corresponding to center peak). By the standard quadratic formula,

θ
(±,±)
peak = arccos

(
±

√
4− α

6
±

√(4− α

6

)2
+

2α + ζ

3

)
. (22)

It can be shown that cos(θ(±,+)
peak ) > 1 for all α and ζ in the domain

defined by (18)–(20). Thus, the ripple peaks corresponding to these
solutions do not exist and are omitted. The remaining roots, θ

(+,−)
peak and

θ
(−,−)
peak correspond to the first and third ripple peak in the passband,

respectively.
The equal-ripple can be forced in place by matching the filtering

function at cut-off frequency with the first and second peak, i.e.,

F̃ (θL) = −F̃
(
θ
(+,−)
peak

)
= F̃

(π

2

)
. (23)

where θL is the angular of the lower cut-off frequency. From these
simultaneous Equation (23), we obtain

α =
3
4

[
cos

(
∆BW

2

)
+

1
3

]2

− 4
3
, (24)

ζ =
1
4

sin2

(
∆BW

2

)[
1− cos

(
∆BW

2

)]
, (25)



Progress In Electromagnetics Research, Vol. 141, 2013 255

where ∆BW is the bandwidth in degrees which is related to filter
frequency by θ = π

2 · f
fc

, here fc is the center frequency. α and ζ can be
found using (24) and (25), which are used to find unknown coefficients
given in Equations (27)–(28). Finally, characteristic Impedance can be
evaluated using (5)–(7).

Figure 2 shows the ideal frequency response of 7.5GHz bandwidth
using the synthesized parameter values given in Table 1 with return
loss of 15 dB.

Figure 2. Ideal frequency response using synthesized parameter
values.

2.2. Synthesis of Fifth Order UWB Filter

In order to achieve better selectivity, more number of transmission
poles will be needed in the given passband. For fifth order k = 2,
filtering function (A1) reduce to (26). Parameter values will be
redefined again for fifth order as shown in Equation (26).

F (θ) =
A cos5(θ) + B cos3(θ) + C cos(θ)

sin(θ)
, (26)

where A 6= 0 and the filter coefficients A, B and C are given by

A =

(
q2 − 1

)
(q + zo)2

zok2
, (27)

B =
z2
o

(
2− q2

)
+ zoq

(
3− 2k2 − q2

)
+ q2

(
1− 2k2

)

zok2
, (28)
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C =
k4 − z2

o + zoq
(
k2 − 1

)

zok2
, (29)

where zo > 0 is the normalized characteristic impedance of middle-
section transmission line, q > 0 and k > 0 are the coupling coefficients.
Due to the fact that

q =
zeven + zodd

2
and k =

zeven − zodd

2
, (30)

where zeven > zodd > 0 are the normalized even and odd-
mode characteristic impedance of coupled-line pair, so the coupling
coefficients are bounded by q > k.

For achieving Chebyshev equiripple response filtering function is
normalized using ripple factor ε such as.

A =
ε

F̃ (θ)
, (31)

Then the filtering function reads

F̃ (θ) =
cos5(θ) + β cos3(θ) + γ cos(θ)

sin(θ)
, (32)

where

β =
B

A
, (33)

γ =
C

A
. (34)

Now the same procedure is adopted as described in previous
section to find transmission poles in passband. It is obvious from (32)
that one of the zeros of the filtering function is located at θ

(3)
zero = π/2

and the others are

θ
(1)
zero± = arccos


±

√
−1

2
β +

√
1
4
β2 − γ


 , (35)

θ
(2)
zero± = arccos


±

√
−1

2
β −

√
1
4
β2 − γ


 . (36)

In order to obtain maximal number of reflection zeros, all zeros
must be real and different. Therefore, β is required to be negative,
whereas γ is positive and satisfies the inequalities

β2 − 4γ > 0 (37)

and
0 < −β ±

√
β2 − 4γ < 2. (38)
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This implies that
β + γ + 1 > 0. (39)

In order to find ripple peaks, the first derivative of filtering function
is set to zero. Thus the passband peak frequencies correspond to the
vanishing of

dF̃ (θ)
dθ

=
4 cos6 θ + (2β − 5) cos4 θ − 3β cos2 θ − γ

sin2 θ
, (40)

and this leads to solving the equation

cos6 θ +
(

1
2
β − 5

4

)
cos4 θ − 3

4
β cos2 θ − 1

4
γ = 0. (41)

The solutions of (41) are given by the standard cubic formula

cos θ
(1)
peak± = ±

√(
5
12
− 1

6
β

)
− 1

2
(τ++ τ−)− i

√
3

2
(τ+− τ−), (42)

cos θ
(2)
peak± = ±

√(
5
12
− 1

6
β

)
− 1

2
(τ++ τ−) + i

√
3

2
(τ+− τ−), (43)

cos θ
(3)
peak± = ±

√(
5
12
− 1

6
β

)
+ τ+ + τ−, (44)

where

τ± =

(
− b

2
±

√( b

2

)2
+

(a

3

)3
)1/3

, (45)

where

a = − 1
12

(β + 2)2 − 3
16

, (46)

b =
1

108
(β + 2)3 − 1

4
(β + γ)− 7

32
. (47)

From the given domain in Equations (37)–(39), it is found that the
real values of θ

(3)
peak+ and θ

(3)
peak− do not exist, hence can be neglected.

Now, let (β̃) and (γ̃) be the point for which the peak’s level is equalized
inside the passband. Due to the symmetry of the response, it is
sufficient to consider the first and second peaks where the reflection
coefficients have the same value,

∣∣S11

(
θ
(1)
peak+

) ∣∣2 =
∣∣S11

(
θ
(2)
peak+

) ∣∣2. (48)
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Since the filtering function oscillates with frequency, (48) reduced to
the filtering functions which are related by

F̃
(
θ
(1)
peak+

)
= −F̃

(
θ
(2)
peak+

)
. (49)

This equation contains two unknown parameters, for the determination
of which we need another simultaneous equation which can be obtained
by equating the response at low cut-off frequency, θL, and the value at
peak frequency, i.e.,

F̃ (θL) = −F̃
(
θ
(1)
peak+

)
. (50)

Unlike the fourth order, solution of these equations is extremely
difficult to obtain by using substitution method. So in order to solve
these tedious Equations (49) and (50) Newton-Raphson’s method [14]
is used, which involves of simultaneous zeroing

F1(β, γ) = F̃
(
θ
(1)
peak+

)
+ F̃

(
θ
(2)
peak+

)
, (51)

F2(β, γ) = F̃
(
θ
(1)
peak+

)
+ F̃ (θL). (52)

We compute the sequence defined as
Γn+1 = Γn − J−1Φ, (53)

where

Φ =
(

F1(βn, γn)
F2(βn, γn)

)
, (54)

Γn =
(

βn

γn

)
, (55)

and J is the Jacobian matrix

J =




∂F1
∂β

∂F1
∂γ

∂F2
∂β

∂F2
∂γ


 , (56)

evaluated at βn and γn. To finding the elements of J matrix, we take
the partial derivative of Equation (40) with respect to β and γ.

∂ cos θ
(3)
peak±

∂β
=

(
3− 2 cos2 θ

(3)
peak±

)
cos θ

(3)
peak±

24 cos4 θ
(3)
peak± + 4(2β − 5) cos2 θ

(3)
peak± − 6β

, (57)

∂ cos θ
(3)
peak±

∂γ
=

{[
24 cos4 θ

(3)
peak± + 4(2β − 5) cos2 θ

(3)
peak±

−6β
]
cos θ

(3)
peak±

}−1

, (58)
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Using (40), (57) and (58) with the first and second frequency peaks in
place, the elements of matrix J are given by

∂F1

∂β
=

2∑

i=1

{
− 1

sin θ
(i)
peak+

∂F̃
(
θ
(i)
peak+

)

∂θ
(i)
peak+

·
∂ cos θ

(i)
peak+

∂β
+

cos3 θ
(i)
peak+

sin θ
(i)
peak+

}
, (59)

∂F1

∂γ
=

2∑

i=1

{
− 1

sin θ
(i)
peak+

∂F̃
(
θ
(i)
peak+

)

∂θ
(i)
peak+

·
∂ cos θ

(i)
peak+

∂γ
+

cos θ
(i)
peak+

sin θ
(i)
peak+

}
,(60)

∂F2

∂β
= − 1

sin θ
(1)
peak+

∂F̃
(
θ
(1)
peak+

)

∂θ
(1)
peak+

·
∂ cos θ

(1)
peak+

∂β
(61)

∂F2

∂γ
= − 1

sin θ
(1)
peak+

∂F̃
(
θ
(1)
peak+

)

∂θ
(1)
peak+

·
∂ cos θ

(1)
peak+

∂γ
. (62)

By using appropriate initial guess for βn and γn, the solution
of Equation (52) is achieved. The normalizing factor F̃ (θ) can be
evaluated straightforwardly using (32) and θ = θL. Now by choosing
desired ripple level ε, the filtering coefficients can be evaluated by
using (31), (33) and (34). The characteristic impedances can then
be evaluated using (27)–(29). Presented synthesis procedure gave full
control of ripple level and bandwidth. Fig. 3 shows the synthesized

Figure 3. Ideal frequency response using synthesized parameter
values.
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Table 1. Synthesized values of filter parameters shown in Fig. 1 for
various bandwidths and ripple levels (fc = 6.85GHz).

Bandwidth
(GHz)

Ripple
Level (dB)

Order
N

zeven (Ω) zodd (Ω) z0 (Ω)

7.5 10 4 174.75 31.292 74.186
5.0 10 4 215.63 79.176 67.125
2.5 10 4 349.66 223.19 57.663
7.5 20 4 124.24 13.293 55.668
5.0 20 4 143.28 38.99 49.186
2.5 20 4 214.92 120.47 40.344
7.5 30 4 108.24 5.4943 51.137
5.0 30 4 116.85 20.206 45.245
2.5 30 4 158.27 73.078 35.16
7.5 10 5 171.93 37.589 53.073
5.0 10 5 212.8 88.024 33.441
2.5 10 5 351.71 233.73 15.729
7.5 20 5 122.55 17.95 42.79
5.0 20 5 141.43 46.891 26.187
2.5 20 5 217.91 131.02 11.775
7.5 30 5 107.11 8.7357 43.08
5.0 30 5 115 27.859 26.497
2.5 30 5 161.53 84.605 11.235
3.7 15 4 201.58 91.516 50.604
4.3 15 5 182.48 80.237 23.718

frequency response of 7.5 GHz bandwidth with return loss of 15 dB
using parameter values given in Table 1.

This synthesis procedure can be used for all types of filtering
functions extracted from the planer filter topology. Here it is worth
mentioning that the most critical part is to find the solutions after
setting the goals. For small N , these equations are solved using
standard substitution method. Whereas, for high N where the
complexity of equations is increased, approximation methods are used
with appropriate initial guess.

As for designers starting from a given specifications, it is often
a long journey to reach final design of a typical filter. Therefore, the
synthesis procedure is of critical importance in filter design because this
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approach provides a number of benefits, e.g., a remarkable reduction in
computational time and flexibility to design high-order filter structures
with many unknown dimensions. The exact dimensions obtained
from synthesis will be a good initial guess for more accurate EM-
based simulation, tuning and optimization. Moreover, the synthesis
approach of filter design provides a deep physical insight into the
operating principle for the developed microwave circuits, which is
of core importance for understanding which ultimately results in
even finer designs and ideas. Table 1 shows some synthesized filter
parameter values for forth and fifth order UWB filter.

3. FABRICATED PROTOTYPES

In order to validate the proposed synthesis, full-wave EM simulation
is done on Advanced Design System (ADS) [15] using microstrip
line with RT/duroid 5880 (εr = 2.2, tan δ = 0.0009 and height
h = 787 µm). Tapered line is used at I/O ports to match with 50 Ohm
SMA connectors and also to ease constraint on even and odd mode
impedance of parallel coupled lines which are used to achieve tight
coupling for wider frequency response. It is worth mentioning here
that for fourth order, simulator tuning and optimization have not been
used. The filter parameters are achieved using impedance values in
Table 1. Fabricated prototypes are shown in Fig. 4 for fourth and
fifth order UWB bandpass filters. The resulting simulated frequency
response shown in Fig. 5 is no more equalized due to the effect of the
parasitic elements, substrate dielectric and conductive losses, which
are not considered in the theory. Moreover, the investigated band
is extremely wide, it is typical to anticipate that the effect of the

(a) (b)

Figure 4. Fabricated prototypes. (a) 4th order UWB filter (0.28 ×
0.36)λg. (b) 5th order UWB filter (0.56× 0.46)λg.
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non-ideal elements used in the simulation would be significant. For
fourth order, 3.7 GHz of bandwidth has been selected for fabrication.
Using synthesized impedance values given in Table 1, parameter values
labeled in Fig. 1 are determined as: l1 = 8532.87µm, w1 = 212.47µm,
l2 = 7959.24µm, w2 = 2364.04µm and s = 296.738µm. Similarly, for
fifth order, 4.3 GHz of bandwidth is selected for prototype fabrication.
The parameter values labeled in Fig. 1 are determined as l1 =

Figure 5. Simulated and measured frequency response for fourth
order UWB filter.

Figure 6. Simulated and measured frequency response for fifth order
UWB filter.
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7918.35µm, w1 = 333.775µm, l2 = 16080.5µm, w2 = 5675.3µm and
s = 219.186µm. Simulated and measured results are shown in Figs. 5
and 6 for the fourth and fifth order UWB filters, respectively. Post
fabrication tuning is done to get better results. Measured frequency
response is well correlated with theory with some discrepancies in ripple
level. Possible reasons for this are fabrication errors and isolation
problem (due to the close vicinity of I/O ports). In addition, due to
fabrication limitations fractional bandwidth for fourth and fifth order
is reduced to 54.01% and 62.773% respectively. To achieve fractional
bandwidth of 109.489%, coupled line spacing should be very small in
order to get tight coupling between parallel coupled lines.

4. CONCLUSION

An optimum design procedure has been presented in this paper using
SIR’s. The proposed synthesis procedure is implemented on filtering
function extracted from the equivalent circuit of quasi-generalized
UWB filter prototype. Maximum transmission poles in the passband
have been shown by setting nominator of filtering function equals to
zero. Ripple peaks are realized by taking derivative of the filtering
function. Ideal values for filter parameters are extracted for both
the fourth and fifth orders. This proposed synthesis procedure can
be used for all types of filtering functions. In order to validate the
design procedure, UWB bandpass filter is fabricated with four and five
transmission poles. Simulated and measured results are well correlated.

APPENDIX A. QUASI-GENERALIZE FILTERING
FUNCTION

F (θ) =
{[ (

A cos(θ)8 + B cos(θ)6 + C cos(θ)4 + D cos(θ)2 + E
)

(
cos(kθ)2

)
+

(
F cos(θ)4 + G cos(θ)2 + H

)
sin(θ) sin(kθ)(

I cos(θ)2 + J
)
cos(θ) cos(kθ) +

(
F ′ cos(θ)4 + G′ cos(θ)2

+H ′)2
] 1

2
}
×

{
sin(θ)2

}−1
(A1)

where A, B, C, D, E, F , G, H, I, J , F ′, G′ and H ′ are the filtering
coefficients given as:

A =
{
− (

zue
4 + 6

[
zo

2 + zodd
2
]
zue

2 +
[
12 zo

2zodd + 4 zodd
3
]
zue + zo

4

+4zue
3zodd + zodd

4 + 6 zo
2zodd

2
)(

[zue + zodd]
2 − 1

)2
}
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×
{

4 zue
4zo

2
}−1

,

B =
{

2 (2 zue
6 + 8 zodd zue

5 +
(
12 zodd

2 − 1 + 9zo
2
)
zue

4 + (−4 zodd

+8 zodd
3 + 24 zo

2zodd

)
zue

3 +
(
2 zodd

4 +
(
24 zo

2 − 6
)
zodd

2 + zo
4

−9zo
2
)
zue

2+2
((

6z2
o−2

)
z2
odd+z4

o−9z2
o

)
zoddzue+

(
3zo

2 − 1
)

z4
odd +

(
z4
o − 9z2

o

)
z2
odd − 2z4

o

) (
(zue + zodd)

2 − 1
)}

×
{

4 zue
4zo

2
}−1

,

C =
{
− 6zue

8−24zue
7zodd−

(
18zo

2+36zodd
2−6

)
zue

6−(
24zodd

3

−20zodd + 60 zo
2zodd

)
zue

5 − (
6 zodd

4 − [
26− 78 zo

2
]
zodd

2 + zo
4

+1− 38 zo
2
)
zue

4 − 4
([

12 zo
2 − 4

]
zodd

2 + zo
4 + 1− 24 zo

2
)
zue

3

zodd +
([−12 zo

2 + 4
]
zodd

4 +
[−6 zo

4 + 96 zo
2 − 6

]
zodd

2 + 6zo
4

−18zo
2
)
zue

2−4zodd

([
1−12zo

2+zo
4
]
zodd

2−3zo
4+9zo

2
)
zue

+
(−1 + 12 zo

2 − zo
4
)
zodd

4 +
(
6zo

4 − 18 zo
2
)
zodd

2 − 6 zo
4
}

×
{

4 zue
4zo

2
}−1

,

D =
{

4 zue
8 + 8 zue

7zodd +
(
6zo

2 − 2 + 4 zodd
2
)
zue

6 +
(
12zo

2 − 4
)

zoddzue
5 +

([
6 zo

2 − 2
]
zodd

2 − 16 zo
2
)
zue

4 − 24zue
3zo

2zodd

−2zo
2
(
zo

2 + 6 zodd
2 − 3

)
zue

2 − 4zo
2zodd

(
zo

2 − 3
)
zue

+
(−2zo

4 + 6 zo
2
)
zodd

2 + 4zo
4
}
×

{
4 zue

4zo
2
}−1

,

E =
{
− zue

8 − zo
4 + 2 zue

4zo
2
}
×

{
4 zue

4zo
2
}−1

,

F =
{(

zue
2+2zuezodd+zodd

2+zo
2
)
(zue+zodd)

(
[zue+zodd]

2 − 1
) }

×
{

4 zue
4zo

2
}−1

,

G =
{

(zue + zodd)
(−2 zue

4 − 4zue
3zodd +

[
1− zo

2 − 2zodd
2
]
zue

2

+
[
2− 2zo

2
]
zodd zue +

[
1− zo

2
]
zodd

2 + 2zo
2
) }
×

{
zue

4zo

}−1
,

H =
{(

zue
4 − zo

2
)
(zue + zodd)

}
×

{
zue

4zo

}−1
,
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I =
{ (

[zue + zodd]
2 − 1

)
(zue + zodd)

}
×

{
zue

4zo

}−1
,

J =
{(

1− zue
2
)
(zue + zodd)

}
×

{
zue

4zo

}−1
,

F ′ =
{

4 zo (zue + zodd) F
}

,

G′ =
{

4 zo (zue + zodd) G
}

,

H ′ =
{

4 zo (zue + zodd) H
}

,

Here zo, zue, zodd > 0.
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