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Abstract—Azimuth multichannel is a promising technique of realizing
high resolution and wide swath for synthetic aperture radar (SAR)
imaging, which consequently leads to extremely high data rate
on satellite downlink system and confronts serious ambiguity in
subsequent processing due to its strict limitation of pulse repetition
frequency (PRF). Ambiguity suppression performance of conventional
spectrum construction is disappointing when the samples are
approximately overlapped. To overcome these weaknesses, a novel
sparse sampling scheme for displaced phase center antennas based
on compressed sensing (CS) is proposed in this paper. The imaging
strategy sparsely sampled in both range and azimuth direction,
leading to a significant reduction of the system data amount beyond
the Nyquist theorem, and then operated the CS technique in two
dimensions to accomplish target reconstruction. Effectiveness of
the proposed approach was validated through simulation and real
data experiment. Simulation results and analysis indicated that the
new imaging strategy could provide several favorable capability than
conventional imaging algorithm such as less sampled data, better
ambiguity suppression, higher resolution, and lower integrated side-
lobe ratio (ISLR).
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1. INTRODUCTION

Synthetic Aperture Radar (SAR) is an active remote sensing system
which is widely utilized in many fields such as ocean surveillance,
disaster monitoring, etc.. In these applications, a wide ground coverage
and high azimuth resolution is always a primary preference for efficient
use of the resources. However, in conventional SAR systems, high
geometric resolution in azimuth and wide swath (HRWS) [1] coverage
imposes contradicting requirements on system design: a high azimuth
resolution requires a large Doppler bandwidth, which has to be sampled
with a sufficiently high pulse repetition frequency (PRF). In contrast,
the unambiguous swath width is directly related to the separation
of subsequently transmitted pulses, meaning that a required swath
width limits the PRF value [2]. Some classical operation modes have
therefore been developed with different emphases on the trade-off.
An effective solution for wide-swath imaging is ScanSAR [3, 4], which
increases the unambiguous swath width at the cost of an impaired
resolution, whereas spotlight mode [5, 6] can provide high resolution
but with a limited coverage. To alleviate this conflict, an innovative
idea called displaced phase center antenna (DPCA) [7] technique has
been suggested in recent years. In DPCA, the system receives multiple
pulses for every transmitted signal with multiple subapertures in along-
track direction. This means that additional samples are gathered, thus
increasing the effective sampling rates on receivers according to the
number of subapertures. Consequently, either the resolution can be
improved while the swath width remains constant, or the PRF can
be reduced without rising azimuth ambiguities in this case. However,
for DPCA system, traditional reconstruction method demands that
the along-track displacement of receiving apertures to transmitting
antenna and the system’s operating PRF should fulfill strict conditions
to provide a uniform effective azimuth phase. Any deviation of
PRF could produce nonuniform sampling, leading to serious azimuth
ambiguity if a matched filter is used directly, so further processing of
the received signals is required before conventional monostatic SAR
algorithms are applied. In [7, 8], a Doppler spectrum reconstruction
method was proposed to suppressed the ambiguous energy caused
by nonuniform sampling. The true spectrum is computed using the
inverse of the joint frequency information matrices acquired from a
combination of all of the channels. However, such a reconstruction is
not robust when the samples are approximately overlapped. Another
defection in DPCA system is that a sufficient sampling rate for range
signal and a dense azimuth sampling are needed. The multichannel
receivers will lead to huge data volume and bring a challenge not only to
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the analog-to-digital (A/D) converter, but also to the on-board storage
and downlink subsystem of satellite.

The recently introduced theory of compressed sensing (CS) [9, 10]
is a new concept allowing the recovery of sparse signal that have
been sampled below the traditional Nyquist sampling rate. In CS
framework, it uses a low-dimensional nonadaptive, linear projection to
acquire an efficient representation of a sparse signal with just a few
measurements. Due to its compressed sampling ability, compressed
sensing has found many attractions in radar remote sensing and
branched out to many new fronts. R. Baraniuk et al. proposed the
radar imaging system based on CS for the first time [11] and a high
resolution imaging method is presented in [12] for SAR sparse targets
reconstruction based on CS theory. Through using an overcomplete
dictionary constructed by training samples, paper [13] introduced
a new approach for SAR target classification based on Bayesian
compressed sensing (BCS) and a novel sparse sampling scheme for
high resolution wide swath spaceborne SAR based on CS theory was
proposed in [14]. In the above researches, it has been shown that a
successful recovery of a compressible signal depends on the presence
of sparse dictionary and these works have made a great contribution
to the future research of radar signal processing. However, as many
of these approaches [15, 16] take traditional focusing with matched
filtering in range direction and perform only azimuth focusing via
CS, these methods cannot provide practical approaches to reduce the
sampling rate of the receiver A/D converter.

This paper introduces a two-dimensional imaging algorithm for
spaceborne DPCA SAR system based on compressed sensing through
2-D random sparse sampling. In the imaging scheme, a small
proportion echoes are collected at a sub-Nyquist rate in azimuth
direction among the multichannel receivers and each channel randomly
samples fewer data in range direction, which can essentially mitigate
the burden of the satellite data downlink system. Through sequently
constructions of the measurement matrices in range and azimuth
direction, the algorithm can accomplish an accurate recovery of the
target scene with high resolution in a wide imaging swath utilized
the CS technique. Unlike traditional matched filtering, it will be
demonstrated that the proposed algorithm can reconstruct the targets
with favorable azimuth ambiguity suppression performance and acquire
a better imaging resolution under the circumstance of nonuniform
sampling without any other further processing. In contrast to other
compressive radar related algorithm that only considered using CS
as part of one dimensional analog to information conversion, the
developed method performs CS technique in both range and azimuth
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dimensions. What’s more important, the new CS imaging scheme
can overcome the odd point barrier and remain a constant recovery
whereas the traditional spectrum reconstruction method will lose its
effectiveness when the multichannel sampling overlapped. The review
paper is organized as follows. Section 2 gives a basic introduction of CS
principle. In Section 3, we briefly reviewed the azimuth DPCA SAR
systems. A two-dimensional sparse sampling scheme for DPCA system
based on compressed sensing is analyzed and derived in Section 4.
In Section 5, simulation and experiment results are presented to
demonstrate the validity of the proposed method. Finally, discussions
and conclusions are presented in Section 6.

2. COMPRESSED SENSING THEORY

Before going into further explanations about the scope of this paper,
it is necessary to provide some background knowledge of compressed
sensing. According the Shannon-Nyquist sampling theorem, a signal
should be sampled with a frequency at least twice of its bandwidth to
recovered the original signal exactly. However, the recently introduced
compressed sensing theory states that it is available to reconstruct the
sparse or compressible signals from only a small set of nonadaptive,
linear measurements. It is said that according to CS, if properly chosen,
the number of measurements can be much smaller than that of Nyquist
rate samples [10] and the signal can be recovered with high probability
when the measurement matrix satisfies certain condition. CS technique
offers a framework of simultaneous sensing and compression of finite-
dimensional vectors that relies on linear dimensionality reduction.

Suppose a finite length discrete-time signal vector x ∈ CI is K-
sparse (if at most K of its coefficients are nonzero in a basis or more
generally a frame Ψ ∈ CI×I), then the sparse signal can be expressed
as:

x = Ψα (1)

where ||α||0 = K ¿ I, ||α||0 denotes l0 norm and returns the
number of nonzero elements of α. That is to say, vector x is a sparse
representation of coefficient signal α in Ψ domain. Consider a M × I
random measurement matrix Φ = [φ1, φ2, . . . , φI ] with M < I and φj ,
j = 1, . . . , I is a M×1 column vector,assuming M linear measurements
of original signal are observed, then the measured signal y ∈ CM can
be acquired through the following linear projections:

y = Φx = ΦΨα = Θα (2)

where Θ = ΦΨ is a M × I matrix. The matrix operation of
measurement to signal x can be diagrammatized as in Figure 1.
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Figure 1. Matrix notation of measurement to signal x.

Since M < I, recovery of signal x from measurement y seems
underdetermined and has infinitely many solutions. Nevertheless,
according to CS theory, it can recover the sparse signal with high
probability when the measurement matrix Θ satisfies the restricted
isometry property (RIP) [17] which requires that:

(1− δk)||s||22 ≤ ||Θs||22 ≤ (1 + δk)||s||22 (3)

where δk ∈ (0, 1), s is a column vector with a length of I. RIP condition
can be essentially stated that all subsets of K columns taken from Θ
are nearly orthogonal. A related condition, known as incoherence,
requires that the rows of Φ cannot sparsely represent the columns of
Ψ and vice versa. In fact, one can show that RIP can be achieved with
high probability by simply selecting Φ as a random matrix [18].

A intuitive approach of recovering signal x from y can be
concluded as solving the following l0 minimization problem:

α̂ = arg min ||α||0 s.t. y = ΦΨα = Θα (4)

unfortunately, although there are simple recovery conditions available,
the above criterion is not reasonable in practice due to its NP-hard [19]
limitation and sensitiveness to noise. In order to avoid these severe
drawbacks, an alternative is to translate the l0 minimization problem
into something more tractable.According to the context of CS, it has
been shown that the minimization of the l0 problem is equivalent to the
l1 norm convex problem when the measurement matrix satisfies RIP
condition and the recovery of sparse coefficients α can be achieved by
seaching for the signal with a l1 minimization criterion expressed as:

α̂ = arg min ||α||1 s.t. y = Θα (5)

Some related researches also demonstrated that when Φ is chosen as
Gaussian random matrix, the measurement matrix will have a small
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restricted isometry constants δk and RIP holds with “a overwhelming
probability” as long as M = O(K log(I/K)) [20]. And then the
original signal can be accurately recovered from the small set of M
measurements through solving a l1 norm minimization problem.

Computation of (5) is a convex optimization problem and can
be solved using linear programming methods such as Basis Puisuit
(BP) [21] technique. While Convex optimization techniques are
powerful methods for computing sparse representations, there is a
variety of greedy/iterative methods [22, 23] for solving such problems
such as orthogonal matching pursuit (OMP) [24] and Iterative Hard
Thresholding (IHT) [25] algorithm, etc.. As the greedy pursuit method
are much faster and more efficient than other related algorithms, in this
paper we mainly focus on OMP algorithm with the application to the
recovery of sparse scene.

Figure 2 serves as an illustration of power of compressed sensing,
which presents an example for the recovery of 3-sparse signal x ∈ C128

from only 32 samples (denoted by the red circles in Figure 2(c))
using OMP algorithm. From the experiment result we can see that
l1 minimization performs an accurate recovery and the reconstructed
spectrum is nearly identical to the spectrum truth. This illustration
vividly shows us that the CS sampling scheme has the the potential to
reduce the sampling data amount and OMP algorithm is qualified to
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Figure 2. (a) 3-sparse Fourier spectrum. (b) 128 Nyquist sampling
of time domain signal. (c) 32 compressed random samplings of the
time domain signal with length 128. (d) Spectrum reconstruction via
l1 minimization.
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guarantee an accurate recovery for sparse signal under the compressive
sampling situation.

3. AZIMUTH MULTICHANNEL SAR IMAGING MODEL

Azimuth multichannel technique is an innovative approach to achieve
high resolution and wide swath SAR imaging. Figure 3 shows one
example for displaced phase center antenna imaging scenario, where
a single centered subantenna transmits waveform to illuminate a
wide swath and N subapertures along-track simultaneously record
the scattered signal from the illuminated footprint. daz is the length
of subaperture and V s is the velocity of the SAR platform. In an
ideal situation, it will allow for a reduction of the pulse repetition
frequency (PRF) by a factor of N without rising azimuth ambiguities,
which is beneficial to acquire a wide ground coverage for the imaging
system. This reduction of the azimuth sampling rate becomes possible
by a coherent combination of each individual receiving signal where
the ambiguous parts of the Doppler spectra cancel each other. For
optimum performance, the along-track displacement between two
adjacent equivalent phase centers should be chosen as:

d =
2V s

N · PRF
(6)
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Figure 3. Imaging geometry
model of spaceborne DPCA SAR.

Figure 4. Imaging with nonuni-
form sampling data of TerraSAR-
X.
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which will generate a uniform sampling of the received azimuth signal
and a simple arrangement of the samples from the subapertures can be
focused using algorithms designed for monochannel SAR, such as the
range Doppler algorithm (RDA). Since the subaperture distance and
the platform velocity are fixed in practical system, a specific PRF will
be required according to Equation (6) so that the SAR platform moves
just one half of the total antenna length between subsequent radar
pulses. Nevertheless, such a rigid selection of PRF may be in conflict
with the timing diagram for some incident angles, which excludes the
opportunity to use an increased PRF for improved azimuth ambiguity
suppression. Obviously, such a rigid persistence is difficult for many
real cases and any deviation of the PRF will lead to nonuniform
sampling and an incorrect focus if using a matched filter directly.

Figure 4 presents a specific illustration of imaging ambiguities for
a ship target near the Bercelona coast caused by nonuniform sampling
in TerraSAR-X [26] (which is equipped with the split dual antennas
allowing the simultaneous acquisition of reflected signals from targets).
According to the parameter listed in [27], the separation between two
successive spatial samples for the uniform sampling mode of the system
corresponding to 1.2 m. However, the system operating PRF for this
imaging data is 3.773 kHz, leading to a separation of 0.827m between
successive sample pairs and a strong nonuniformity. The focus of
the nonuniform sampling data without preprocessing was shown in
Figure 4 and significant ambiguities of ship target can be observed from
the incorrect focusing image, which can introduce serious disturbance
for the ship detection.

Due to the serious ambiguities introduced by nonuniform
sampling, further processing of the azimuth multichannel signals is
required before conventional monostatic SAR imaging algorithms are
applied. In paper [28], an unambiguous spectrum reconstruction
algorithm is derived for nonuniform sampling of SAR signal. However,
since the true spectrum was computed using the inverse of the joint
frequency information matrices acquired from a combination of all of
the channels, such a reconstruction does not perform robust when the
samples overlapped each other. In this paper, we presented a more
efficient two-dimensional imaging scheme based on CS for azimuth
multichannel system without other preprocessing even for serious
nonuniform sampling through the combination of signal analysis in
DPCA and sparse modeling in compressed sensing. Besides, what need
to be highlighted for the proposed method is that it can accomplish a
stable recovery regardless of wether the PRF is operating at a singular
point.
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4. AZIMUTH MULTICHANNEL SAR IMAGING BASED
ON COMPRESSED SENSING

Figure 3 illustrated the imaging geometry of stripmap mode azimuth
multichannel SAR and how the echo was sampled: the center antenna
transmits radar pulses and the backscattered energy from illuminated
target located at Γ(t′, τ ′) ∈ Ω is received simultaneously by N
subantennas. Suppose the transmitting waveform is a chirp signal
expressed as:

sT (τ) = rect
(

τ

Tr

)
exp

(
jπKrτ

2
)
, (7)

where rect(·) is a unit rectangular window, τ the range fast time, Tr the
duration of the transmitted pulse, and Kr the chirp rate. For the ith
receiving antenna separated with the transmitting antenna by distance
di = (i− N+1

2 ) · daz , i = 1, . . . , N , the actual received signal of channel
i can be represented as:

si(t, τ) =
∫∫

Γ∈Ω

σ′(t′, τ ′) · rect
{

τ −Ri(t− t′, τ ′)
Tr

}

·rect
{

t− t′

Ta

}
· exp

(−j2πf0Ri

(
t− t′, τ ′

)
/c

)

exp
(
jπKr

(
τ −Ri(t− t′, τ ′)/c

)2
)

dt′dτ ′, i=1, . . . , N. (8)

and the slant range of channel i can be defined by

Ri

(
t−t′,τ ′

)
=

√(
τ ′c
2

)2

+[va(t−t′)]2 +

√(
τ ′c
2

)2

+[va(t−t′) + di]2 (9)

where c is the velocity of the electromagnetic wave propagation in
free space, σ′(t′, τ ′) the reflectivity of the point target Γ(t′, τ ′), t
the azimuth slow time, Ta the synthesis aperture time, and f0 the
carrier frequency. Ri(t − t′, τ ′) is instantaneous slant range from the
transmitting antenna to the target and back to the i-th receiving
antenna.

4.1. Range Recovery Based on CS

Consider the target scene reflectivity was discretized and generated
with t′ = m∆t′, m = 1, . . . , N · Na, ∆t′ = 1

N ·PRF , τ ′ = n∆τ ′,
n = 1, . . . , Nr, ∆τ ′ = 1

Fr
, N ·Na and Nr are azimuth and range length

of the observed scene, Fr is the range sample frequency, then the signal
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of channel i can be written as:

si(t, τ)=
N·Na∑
m=1

Nr∑
n=1

σ(m, n) · rect
{

τ −Ri(t−m∆t′, n∆τ ′)
Tr

}
· rect

{
t−m∆t′

Ta

}

· exp
(−j2πf0Ri

(
t−m∆t′, n∆τ ′

)
/c

)· exp
(
jπ

(
τ−Ri(t−m∆t′, n∆τ ′)/c

)2
)

=
Nr∑

n=1

{
N·Na∑
m=1

σ(m, n) · rect
(

t−m∆t′

Ta

)
· exp

(−j2πf0Ri

(
t−m∆t′, n∆τ ′

)
/c

)
}

· rect
{

τ−Ri(t−m∆t′, n∆τ ′)
Tr

}
· exp

{
jπ

[
τ−Ri

(
t−m∆t′, n∆τ ′

)
/c

]2}
,

i = 1, . . . , N. (10)

where σ(m,n) = σ′(m∆t′, n∆τ ′). At a given azimuth time t0, if we
note that:

σr(n)=

N·Na∑
m=1

σ(m, n)·rect
(

t0−m∆t′

Ta

)
· exp

(−j2πf0Ri

(
t0−m∆t′, n∆τ ′

)
/c

)

then the range signal at azimuth time t = t0 can be represented as a
linear superposition of the delay sequence of transmitted signal s(τ)
and Equation (10) can be expressed as:

si(τ)|t=t0 = si(t0, τ)

=
Nr∑

n=1

σr(n) · rect
{

τ −Ri(t0 −m∆t′, n∆τ ′)
Tr

}

· exp
{

jπ
[
τ −Ri(t0 −m∆t′, n∆τ ′)/c

]2
}

, i = 1, . . . , N (11)

if we sample the received range signal si(τ) not at every interval ∆τ
but at a random time sequence ω(p) ·∆τ , where ∆τ = ∆τ ′ = 1

Fr
, ω(p)

is a 1 × P random sequence, then P samples of the range signal can
be obtained:

Si(p) = si(ω(p) ·∆τ)|t=t0

=
Nr∑

n=1

σr(n) · rect
{

ω(p) ·∆τ −Ri(t0 −m∆t′, n∆τ ′)
Tr

}

· exp
(
jπ

(
ω(p) ·∆τ −Ri(t0 −m∆t′, n∆τ ′)/c

)2
)

, p = 1, . . . , P (12)

According to CS theory, when the range signal si(τ)|t=t0 is sparse
(σr(n) has only a few nonzero elements), the low rate samples
Si(p) contained sufficient information to reconstruct the signal σr(n)
corresponding to the Nyquist-rate samples of the scene reflectivity. At
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this point, the measurement matrix Φr ∈ CP×Nr for range dimension
can be constructed through Equation (12) and expressed as:

Φr(p, q)=sT ((ω(p)− q) ·∆τ)

=rect
[
(ω(p)− q) ·∆τ

Tr

]
exp

[
jπKr ((ω(p)−q) ·∆τ)2

]
(13)

when the CS frame was built, the reconstruction of range profile can
be recovered by solving a convex optimization problem through OMP
algorithm.

4.2. Azimuth Processing Based on CS

After range compression, the azimuth signal of channel i at a given
range gate τ0 = p0∆τ can be approximated as:

si(t, p0∆τ)=
N·Na∑
m=1

σ(m, n) · rect
(

t−m∆t′

Ta

)
· exp

(−j2πf0Ri(t−m∆t′, n∆τ ′)/c
)

·δ (
p0∆τ −Ri(t−m∆t′, n∆τ ′)/c

)

≈
N ·Na∑

m=1

σ(m,n0) · rect
(

t−m∆t′

Ta

)

· exp
(−j2πf0Ri(t−m∆t′, n0∆τ ′)/c

)
, i=1, . . . , N (14)

where δ(·) is Dirac function and p0∆τ ∼= Ri(t − m∆t′, n0∆τ ′)/c.
Similarly, in our sparse sampling scheme, supposing the centered
antenna transmits radar pulses at a random pulse repetition interval
ω(k)∆t rather than a regular interval ∆t, where ∆t = 1

PRF = N ·∆t′,
then the azimuth observed signal of channel i for range gate τ0 can be
written as:

yi(k) =si (ω(k)∆t, τ) |τ=τ0

=
N ·Na∑

m=1

σ(m,n0) · rect
(

ω(k)∆t−m∆t′

Ta

)

· exp
(−j2πf0Ri(ω(k)∆t−m∆t′, n0∆τ ′)/c

)

=
N ·Na∑

m=1

σ(m,n0) · rect
(

ω(k) ·N∆t′ −m∆t′

Ta

)

· exp
(−j2πf0Ri

(
ω(k)·N∆t′−m∆t′, n0∆τ ′

)
/c

)
i=1, . . . ,N (15)
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and the azimuth measurement matrix Φai ∈ CK×N ·Na for channel i
can be concluded as:

Φai(k, l) = rect

[
(ω(k) ·N − l)∆t′

Ta

]

· exp
(−j2πf0Ri

(
(ω(k) ·N − l)∆t′, n0∆τ ′

)
/c

)
i = 1, . . . , N (16)

where k = 1, . . . ,K · l = 1, . . . , N · Na, K is the number of random
transmitted pulses sequence, so the azimuth observed model for
channel i at range gate n0 can be presented as:

yi(k) = Φ(k)
ai · σn0 (17)

Φ(k)
ai denotes the k-th row of matrix Φai and σn0 is a 1×N ·Na vector

which denotes the azimuth reflectivity at range gate n0. According
to the theory of DPCA, the total azimuth observed signal can be
illustrated as:

Y = [y1(1) . . . yN (1) . . . y1(K) . . . yN (K)]T (18)

N
 channels  

Measurement 

Matrix Φa   

Range matrix Φ r  

2D Sparse Sampling 

of s 1 (t, τ)  

Azimuth CS Reconstruction

Azimuth Concatation

of N Channels 

Radar Image

Azimuth Φ a1  

Range Construction 

2D Sparse Sampling

of s (t, τ)N

Figure 5. Flowchart of azimuth multichannel SAR imaging algorithm
based on compressed sensing.
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[·]T means the transposition of matrix. Then the realization of the
total azimuth measurement matrix Φa ∈ CN ·K×N ·Na for the DPCA
system can be accomplished through corresponding rearrangement of
all the sub measurement matrixes Φai:

Φa =
[
Φ(1)

a1 . . . Φ(1)
aN . . . Φ(K)

a1 . . . Φ(K)
aN

]T
(19)

and the azimuth observed model at range gate n0 can be signified as:

Yn0 = Φaσn0 (20)

method ibid: the solution of Equation (20) can be obtained by solving
a l1 minimization problem as Equation (5) through OMP algorithm
and finally we can get the two-dimensional radar image of the scene.
The whole processing flowchart of the two dimensional DPCA SAR
imaging algorithm based on CS can be diagrammed as Figure 5.

5. EXPERIMENTAL RESULTS

In this section, simulation and real data experiment will be processed
and analyzed to validate the effectiveness of the proposed method
for azimuth multichannel SAR imaging through comparison with
traditional processing technique.

5.1. Simulation Results

To evaluate the performance of proposed CS based method, we consider
a point target located at Γ (0 m, 700 km) with unit magnitude to
generate the echoes in the first example. The detailed parameters
of the system are listed in Table 1.

According to the parameter table, the total length of azimuth
antenna is 12.6m, and three subarrays are uniformly divided. The
center subantenna transmits signal with a bandwidth of 66.4 MHz and
all subapertures receive the back waveform. The Doppler bandwidth
is near 3600Hz with a corresponding azimuth resolution of 2.08 m and
the PRF is set to 1500 Hz yielding a highly nonuniform sampling.
Echoes of the target were generated separately through traditional
Nyquist sampling based on Equation (10) and 3 × 3 times sparse
random undersampling based on CS scheme. Results of the target
reconstruction through traditional RD algorithm and CS based method
were shown in Figure 6.

Comparing Figures 6(a) and (b), we can see that the CS based
method can accurately reconstruct the point target with only a few
samples of the echo, whereas severe ambiguities appear at (−1200m,
700 km) and (1200 m, 700 km) in the conventional RD imaging due to
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Table 1. System parameters for the simulation experiment.

Azimuth subaperture number N 3
Wavelength λ 0.03m
Altitude H 495 km

Slant range R 700 km
Antenna length L 12.6m

Bandwidth Br 66.4MHz
Subaperture Length daz 4.15m

Pulse width Tr 5µs
Platform velocity Vs 7500m/s

Pulse repeat frequency (PRF) 1500 Hz
Incidence angle θ 45 deg

Range undersampling 3 times
Azimuth undersampling 3 times

(a) (b)

Figure 6. Target recovery of nonuniform sampling. (a) RD imaging
with full samples without spectrum reconstruction. (b) CS based
recovery with 11.1% samples.

its spectrum aliasing. Generally, the ambiguities caused by nonuniform
sampling can be suppressed by Doppler spectrum reconstruction
method [7]. However, the filtering method is not robust when the
system working PRF approximates 2·Vs

i·daz
, i = 1, . . . , N − 1, which

corresponding to an overlapping samples scheme. Illustration of this
point is shown in Figure 7 when the selection of PRF is close to
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Figure 7. Azimuth profile of target reconstruction with different
method (PRF ≈ 1800Hz). (a) RD imaging with full samples before
spectrum reconstruction. (b) RD imaging with full samples after
spectrum reconstruction. (c) CS based recovery with 30% samples.

1800Hz. From Figure 7 we can see that when the samples are
nearly overlapped, the spectrum reconstruction method performance is
disappointing with an elevation of ambiguity energy to nearly −15 dB,
whereas the CS based algorithm can constantly accomplish an accurate
recovery regardless of the deviation of PRF.

Analysis above convictively shows the advantage of the new
method that it can elimate the ambiguity raised by the nonuniform
sampling and accurately focus all the back scattered energy to the
target point. The main explanation for this wonderful speciality may
be interpreted as that through nonadaptive and linear measurement,
CS scheme is not sensitive to the nonuniformity of the sampling.
Thus, the CS based method can remove the disturbance of nonuniform
sampling and accomplish an exact recovery of the target regardless of
whether the sampling data is uniform or not.

5.2. Super Resolution and ISLR Analysis

Besides the advantage mentioned above, another notable superiority
of the proposed method is its lower Integrated Side Lobe Ratio (ISLR)
and super resolution compared with traditional imaging algorithm.
Quantitative imaging capacity evaluations of both methods (CS based
reconstruction and matched filter imaging) are listed in Table 2, which
indicates that the ISLR of the target recovered from the new method
is lower and the CS based imaging scheme can reconstruct more
details beyond the conventional theoretical limitation. To confirm
this specialty, a further experiment is carried out using parameters in
Table 1. Two points targets T1 (0m, 700 km) and T2 (2m, 700 km)
are located at different azimuth distances and 2 meters apart. In
this case, the conventional imaging method cannot distinguish the two
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Table 2. Evaluations of the azimuth resolution and ISLR.

PRF (Hz)

1000 1100 1200 1300 1400

Aizmuth

Resolution

(m)

MF

CS

2.212

1.846

2.119

1.828

2.040

1.825

2.062

1.837

2.081

1.843

Azimuth

ISLR (dB)

MF

CS

−17.83

−19.10

−18.15

−19.17

18.29

−19.26

−18.20

−19.24

−18.07

−19.22

A
zi

m
ut

h 
ga

te

50 100 150 200

50

100

150

200

250

50 100 150 200

50

100

150

200

250

A
zi

m
ut

h 
ga

te

Range gate Range gate

(a) (b)

Figure 8. Contour of two targets T1 and T2 with both method. (a) RD
imaging. (b) CS based recovery.

point targets as shown in Figure 8(a) due to their spacing is less than
theoretical resolution. Conversely, the proposed CS based method can
make an evident distinction between targets T1 and T2 after 16 times
interpolation illustrates as in Figure 8(b). The illustration indicates
that the new imaging algorithm is conductive for the improvement of
imaging resolution.

5.3. Real Data Processing Results

The new algorithm has also been investigated with a block of real SAR
data containing two ships in the ocean acquired by the RADARSAT-
1 [3] system (see the yellow rectangle in Figure 9(a)). Since there
is no multichannel mode in the RADARSAT-1 system, monostatic
data were used in the example. The raw data, which have been
originally sampled at a frequency fa in azimuth, were filtered with
an ideal low pass filter of bandwidth B = fa/3 to get the SAR data
oversampled by a factor of 3. Then, the ambiguous inputs to the
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Figure 9. Imaging of original Radrasat-1 raw data with different
methods: (a) Original radarsat-1image with two distributed ships
targets. (b) RD imaging with full samples and uniform sampling.
(c) CS based recovery with 11.1% samples after nonuniform processing.

three azimuth multichannel have been formed by taking every 9th
sample for each channel. Selecting adjacent samples for the three
channels will result in a maximum nonuniform sampling, while a
distance of three samples will generate a uniform sampling. After
the nonuniform sampling processing completed, the CS sampling
scheme follows with a 3×3 times downsampling in range and azimuth,
respectively. Figures 9(b) and (c) compare the experiment results of
RD imaging with the full uniform sampling and the CS recovery under
a maximum of nonuniform sampling condition with only a few set of
the samples. From the experimental results we can see that the new
algorithm can complete an exact reconstruction of the ship targets as
expected and there is not much difference between the imagings of two
methods. Although sparse sampling of CS may lead to some energy loss
for the imaging magnitude, the targets in the imaging are discernable
and experimental result is acceptable. This illustration demonstrates
that the new method is well applicative to the realities and efficient
for the real sparse cases.

6. DISCUSSIONS AND CONCLUSIONS

An innovative algorithm for azimuth multichannel SAR imaging based
on CS in derived in this paper. In the new imaging scheme, radar
system randomly transmits fewer pulses in azimuth and samples
fewer data in range than traditional system. Through constructing
measurement matrixes in range and azimuth sequently, the algorithm
applies the CS technique in two dimensions with a significant reduction
of data amount. Several favorable capacities of the algorithm have been
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demonstrated in this paper such as super resolution, lower ISLR and
better ambiguity suppression in case of nonuniform sampling, thereby
avoiding the stringent restriction of PRF. The innovative imaging
plan can find great potential in the application of currently azimuth
displaced phase center antenna systems like HRWS or dual receive
antennas approaches in TerraSAR-X and Radarsat-2 [29], especially
appropriate for the instance when the imaging scene is sparse, such
as ships detection and ocean imaging. Effectiveness of the algorithm
has been proved by simulation experiments and it is indicated that the
proposed algorithm is not only efficient in sampling data reduction,
but also profitable for the quality elevation of imaging in nonuniform
sampling scheme. What need to be mentioned is that the CS
based imaging algorithm is equipped with the excellent ambiguity
suppression performance at the cost of increase in computational
load. In addition, the CS recovery scheme is susceptible to noises
and sparseness of the observed area. When the system is situated in
a drastic noisy environment and the target scene does not meet the
sparse requirement, the recovery performance may not seem so good
and suffers a depression of the imaging capacity. Thus, further efforts
should be focused on finding a solution of the weakness mentioned
above and how to apply this technique to practical systems is also up
in the air and need to be further explored.
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