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Abstract—Multifractal correlation, which studies the spatial correla-
tion characteristics of two points with different singularity indexes, is
a generalization of multifractal single point statistic. This paper intro-
duces multifractal correlation theory into the characteristic analysis of
aircraft echoes from low-resolution surveillance radars, and discusses
the application of multifractal correlation characteristics in target clas-
sification. Firstly, on basis of introducing multifractal correlation the-
ory, the multifractal correlation characteristics of aircraft echoes from
surveillance radars are analyzed in detail by means of the multifrac-
tal correlation analysis. Secondly, on basis of the foregoing analysis,
several characteristic parameters of the echo multifractal correlation
spectrum are defined, and the support vector machine (SVM) based
on the defined characteristic parameters is taken as the classifier to
classify different types of aircraft targets. Finally, real recorded air-
craft echo data are adopted to do the classification experiments, and
the experimental results validate the proposed method.

1. INTRODUCTION

Most of active surveillance radars adopt the conventional low-
resolution radar system. If they can provide class information of
a target while detecting it, there will be undoubtedly important
practical significance. Aircraft are a kind of main targets surveilled
by surveillance radars. On one hand, they have complex shapes
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and are nonrigid, and their nonrigid vibration or attitude change
relative to the radar will induce complicated nonlinear modulations
on the echo amplitude and phase [1]; on the other hand, echo
modulation induced by their rotating parts (such as the rotor,
empennage, propeller, turbine fan, etc.), called jet engine modulation
(JEM), is also a typical nonlinear modulation, which is embodied
in the echo characteristics such as amplitude, phase, frequency, and
polarization and is independent from target attitude if there is no
LOS-sheltering, i.e., the rotating parts can be seen by the radar [1–3].
These kinds of nonlinear modulations reflect the complicated micro-
motion modulation effects of various parts of aircraft and contain
target attribute information such as geometric structure, material
composition, etc. [4, 5]. Different types of aircraft often have different
structures and rotating parts, and have different nonrigid vibration and
JEM characteristics. Therefore, if these nonlinear modulation features
which reflect the physical characteristics of an aircraft target can be
extracted effectively, then they provide possibilities for aircraft target
classification and recognition.

So far, most of the features extracted in methods concerning
target classification with low-resolution radars are based on JEM
effect, and proposed extraction methods for JEM features mainly
contain the complex cepstrum method, autocorrelation method, AR
(auto regression) model power spectrum method, SVD (singular
value decomposition) eigenvalue decomposition method, etc. [6–10].
However, these methods are mainly concentrated on estimating
the interval of adjacent spectrum lines, and they often require
a higher pulse repetition frequency (PRF) and longer observation
time. In the conventional low-resolution radar system, it is
often difficult to meet the higher-PRF and longer-observation-time
requirements, and therefore the estimation accuracy of these methods
is often unsatisfactory, which restricts their applications in practical
engineering. [11] adopts fractional Brownian motion (fBm) to model
aircraft echo from the viewpoint of nonlinear analysis and on this
basis, proposes a target classification method based on echo fractal
Brownian dimensions, thus avoids this problem to some extent. Yet it
is difficult to fully characterize the complex nature of an aircraft echo
by using only a single fractal dimension. Therefore, [12–14] perform
multifractal modeling, characteristic analysis, and feature extraction
on simulated and real-recorded aircraft echo data from low-resolution
radars by means of the multifractal analysis of measures, and put
forward some classification methods based on multifractal features.
In spite of this, multifractal theory only performs statistical analysis
on the singularity index of an arbitrary point in geometry subsets of



Progress In Electromagnetics Research B, Vol. 54, 2013 29

a fractal object, and then determines the multifractal spectrum, while
the measure on the fractal object is generated by a potential series
process. What multifractal describes is just its macroscopic properties,
and a microcosmic description is needed for understanding its inherent
physical nature more deeply.

Multifractal correlation extends the multifractal single point
statistical characteristics. What it analyzes is the multifractal two-
point statistical characteristics, and it mainly examines the probability
observing the two given singular indexes on two points with a distance
of d in geometry subsets of a fractal object. Because it takes the
spatial correlation of singularity indexes into consideration, it can
provide more comprehensive self-similar information than multifractal.
Menuveau and Chhabra [15], Lee and Halsey [16], and O’Neil and
Meneveau [17] did research for multifractal correlation theory earliest
and analyzed the correlation characteristics of turbulence in the
multifractal space. Zhou et al. [18] analyzed the multifractal and its
correlation characteristics of random binomial measure and studied the
phase transition problem between different scaling regions consisting
in multifractal correlation. Shadkhoo and Jafari [19], Hajian and
Movahed [20] investigated the seismic data and sunspot activity by
means of multifractal correlation analysis and got a better result.
Guan et al. [21, 22] introduced multifractal correlation theory into
the characteristic analysis of sea clutter and low-observable target
detection in sea clutter. Based on the above analyses, this paper
intends to analyze the multifractal correlation characteristics of
real-recorded echo data from low-resolution surveillance radars and
on this basis puts forward a multifractal-correlation-feature-based
classification method for aircraft targets so as to identify different types
of aircraft targets in condition of no compensation for airframe echo
components.

2. THEORETICAL BASIS AND PARAMETER
ESTIMATION FOR MULTIFRACTAL CORRELATION

Multifractal correlation is the generalization of multifractal, and the
calculation of its descriptive parameters is closely correlated with
the multifractal descriptive parameters, which is generally realized
by statistic physics methods. In the following, multifractal theory
and multifractal correlation theory will be briefly introduced from the
viewpoint of statistic physics respectively.
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2.1. Multifractal

What multifractal describes is the characteristics of different levels
of a fractal object in its measured distribution. Therefore, one can
divide the investigated object into several small regions, noting the
total number of the regions and the size of a region with N and ε
(ε < 1), respectively, and let the measured distribution probability
of the fractal object in a small region be Pi(ε). Generally, there are
different measured distribution probabilities in different regions, and
the probabilities can be expressed by different indexes σ, i.e., [23]

Pi (ε) ∝ εσ, i = 1, 2, . . . , N, (1)
where σ is called local fractal-dimension, or singular index, whose value
reflects the size of the measured distribution probability in a small
region. Obviously, if the values of σ for all the regions are the same,
then the investigated object is a mono-fractal object; contrarily, if the
values of σ for different regions are different, then the investigated
object is a multifractal object. Construct a subset with small regions
with the same σ and note the number of these small regions with Nσ(ε),
then one has [23]

Nσ (ε) ∝ ε−f(σ) (ε → 0) , (2)

where f(σ) denotes the fractal dimension of this subset. For
large number of small regions, one need use an infinite series f(σ)
corresponding to different σ to represent the fractal dimensions of the
whole fractal object; therefore, f(σ) is called multifractal spectrum.

To calculate the multifractal spectrum, firstly one may define a
partition function [24]

Γ (q, ε) =
N∑

i=1

P q
i (ε) = ετ(q), (3)

where τ(q) is called mass index and q ∈ (−∞, +∞), but one can
determine its range according to the actual circumstances. Assuming
that µε(x) is the measured distribution function of the fractal object in
the scale ε, one can get the q-order statistical moment of this measured
distribution [25]

Mε (q) =
〈
µq

ε
(x)

〉 ∝ εD0+τ(q) (ε → 0) , (4)

where, D0 is the simple fractal-dimension of the fractal object; 〈·〉
denotes mathematical expectation. Therefore, τ(q) is also known as
moment exponent. Eq. (6) can be rewritten as [26]

Γ (q, ε) =
N∑

i=1

P q
i (ε) =

∑
N (P ) P q, (5)
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i.e., one can calculate
∑

P q
i (ε) through grading the regions according

to their measured distribution probabilities, where N(P ) denotes the
number of the regions with the same probability P . Substituting
Eqs. (1) and (2) into (5), then (5) can be further expressed as [26]

Γ (q, ε) =
∑

εσq−f(σ) = ετ(q). (6)

Rewrite the right equation of Eq. (6) as [26]
∑

εσq−f(σ)−τ(q) = 1 (7)

Obviously, when ε → 0, those items with σq − f(σ) − τ(q) > 0 will
verge on zero, while those items with σq − f(σ) − τ(q) < 0 will be
impossible. Otherwise, the sum will become infinite. Hence only those
items with σq − f(σ)− τ(q) = 0 will be kept, i.e., [26]

f (σ) = σq − τ (q) , (8)

and σ can be obtained by the differential coefficient of τ(q) on q,
i.e., [26]

σ = dτ (q)/dq. (9)

It can be seen from Eqs. (8) and (9) that the relationship among τ(q), q
and f(σ), σ is the Legendre Transform, i.e., one can get the multifractal
spectrum f(σ) by the Legendre Transform of τ(q) and q.

2.2. Multifractal Correlation

It can be known from the analysis of the previous section that
what multifractal examines is one-point statistical characteristics
of the measured distribution in geometry subsets of a fractal
object, that multifractal correlation extends it to two-point statistical
characteristics, and that it studies the probability Pε (σ′, σ′′, d)
observing the two given singular indexes σ′ and σ′′ on two points with
a distance of d in geometry subsets of the fractal object, where σ′ and
σ′′ are defined in the same scale ε, and d satisfies ε < d < 1 (if d is
smaller than ε, the two points will be thought of as one point).

Define multifractal correlation spectrum f̃(σ′, σ′′, ω) as [18]

Pε

(
σ′, σ′′, d

) ∝ εD0−f̃(σ′,σ′′,ω), (10)

where ω = ln d/ ln ε. To derive the relationship between f̃(σ′, σ′′, ω)
and f(σ), firstly one can generalize the moment function defined in
Eq. (4) and define a spatial autocorrelation function for the measured
distribution [17]

Cε

(
q′, q′′, d

)
=

〈
µq

ε
′ (x) · µq

ε
′′ (x + d)

〉 ∝ εD0+τ̃(q′,q′′,ω) (ε → 0) , (11)
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where τ̃(q′, q′′, ω) is known as correlation moment exponent. In
evidence, Cε(q′, q′′, d) contains more spatial information than Mε(q).
For the mathematical expectation shown by Eq. (11), one can derive
the following formula [17]
〈
µq

ε
′ (x) · µq

ε
′′ (x + d)

〉 ∝ ετ(q′)+τ(q′′)+2D0+ω min{φ(q′,q′′),1} (ε → 0) , (12)

where,
φ

(
q′, q′′

)
= τ

(
q′ + q′′

)− τ
(
q′

)− τ
(
q′′

)−D0. (13)

Comparing Eq. (11) with (12), one can get

τ̃
(
q′, q′′, ω

)
= τ

(
q′

)
+ τ

(
q′′

)
+ D0 + ω min

{
φ

(
q′, q′′

)
, 1

}
. (14)

It can be seen from Eq. (14) that when φ(q′, q′′) = 1, the first-order
derivative of τ̃(q′, q′′, ω) has a sudden change, which means that the
transition between Region I (φ(q′, q′′) < 1) and Region II (φ(q′, q′′) > 1)
is not continuous. This is the first order phase transition of the scaling
behavior in multifractal theory [27]. When φ(q′, q′′) < 1, one has [18]

{
σ′ = ωσ (q′ + q′′) + (1− ω) σ (q′)
σ′′ = ωσ (q′ + q′′) + (1− ω) σ (q′′) , (15)

while when φ(q′, q′′) > 1, one has [18]
{

σ′ = σ (q′)
σ′′ = σ (q′′) . (16)

For given σ′, σ′′ and ω, such a point (q′, q′′) that satisfies Eq. (15)
and φ(q′, q′′) < 1, or Eq. (16) and φ(q′, q′′) > 1 simultaneously does
not always exist. If such a point exists, noting it as (Q′, Q′′), then
f̃(σ′, σ′′, ω) can be given by the following formula [18]

f̃
(
σ′, σ′′, ω

)
= Q′σ′ + Q′′σ′′ − τ̃

(
Q′, Q′′, ω

)
. (17)

When (Q′, Q′′) is located in Region I, substituting Eqs. (14) and (15)
into (17) and considering Eq. (8), one can get the following multifractal
correlation spectrum

f̃
(
σ′,σ′′,ω

)
=ωf

[
σ
(
Q′+Q′′)]+(1−ω)

{
f
[
σ

(
Q′)]+f

[
σ

(
Q′′)]−D0

}
; (18)

while when (Q′, Q′′) is located in Region II, substituting Eqs. (14)
and (16) into (17) and considering Eq. (8), the multifractal correlation
spectrum can be expressed as

f̃
(
σ′, σ′′, ω

)
= f

[
σ

(
Q′)] + f

[
σ

(
Q′′)]−D0 − ω (19)

Thus, the expression of Pε(σ′, σ′′, d) can be obtained.



Progress In Electromagnetics Research B, Vol. 54, 2013 33

3. MULTIFRACTAL CORRELATION CHARACTERISTIC
ANALYSIS FOR AIRCRAFT ECHOES

This section introduces multifractal correlation theory into the
characteristic analysis of real-recorded aircraft echoes from low-
resolution radars and takes the echo data from civil and fighter aircraft
which are recorded in a VHF-band surveillance radar as the example to
perform the analysis. To raise the dependability of target classification,
firstly one should do some preprocessing on the raw echo data, such
as attitude partitioning (flying towards the radar station, flying in
side direction, and flying off the radar station), energy normalizing,
so as to diminish the influence of factors such as flying attitude and
distance [28].

Because multifractal correlation analysis is to further examine the
spatial correlation of two-point singular indexes on basis of multifractal
analysis, which means that the data to analyze should have multi-
fractal characteristics. Therefore, firstly multifractal analysis should be
performed on the investigated echo data to validate their multifractal
characteristics. Figures 1 and 2 show the mass index and multifractal
spectrum curves of a group of echo data from the two types of aircraft
targets; thereinto, the civil and fighter aircraft are flying towards and
off the radar station, respectively, and the number of echo data points is
1024. As can be seen from the figures, the echo mass indexes of the two
types of aircraft are all convex functions of q, and their echo singular
indexes σ also have a certain range of distribution. Therefore, both
types of echoes have certain multifractal characteristics. Moreover, the
echo multifractal spectrum curves of the two types of aircraft take on
right-symmetrically hook-like structure, which indicates that subsets
with high probabilities dominate in the echo structure, i.e., components

(a) (b)

Figure 1. Multifractal characteristics of echoes from civil aircraft.
(a) Mass index. (b) Multifractal spectrum.
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(a) (b)

Figure 2. Multifractal characteristics of echoes from fighter aircraft.
(a) Mass index. (b) Multifractal spectrum.

with low amplitudes account for a large proportion. In addition, in
Figure 2(b), negative values appear in the multifractal spectrum curve,
viz., some subsets of σ have negative fractal dimensions, which means
that there are some multi-fractal characteristic ripples among different
possible samples [29].

Below, the multifractal correlation characteristics of aircraft
echoes from surveillance radars will be analyzed. Figures 3 and 4
present 3-D graphs and corresponding contours of min{φ(q′, q′′), 1} of
the same group of echo data as in Figures 1 and 2. As can be seen from
the figures, the whole q′ − q′′ plane can be divided into two regions,
i.e., Region I: φ(q′, q′′) < 1 and Region II: φ(q′, q′′) > 1, where the
corresponding height of the 3-D curved surfaces in Region II are 1; the
origin of the q′ − q′′ plane is their saddle points; the q′ = q′′ plane is
their plane of symmetry with the corresponding contours symmetrical
about the line q′ = q′′ in the q′− q′′ plane. By Eq. (14), one can figure
out the correlation moment exponents of the same group of echo data,
as shown in Figure 5, where ω = 0.5. It can be seen from the figure,
compared to the moment exponent τ(q) in the multifractal analysis,
the correlation moment exponents τ̃(q′, q′′, ω) have turned into 3-D
surfaces from 2-D curves, and it can be known from Eq. (14) that they
can also be divided into two parts corresponding to Regions I and II
shown by the contours in Figures 3 and 4.

According to the calculated multifractal spectra, correlation
moment exponents along with their relationships with multifractal
correlation spectrum shown by Eqs. (15)∼(19), one can calculate the
corresponding multifractal correlation spectrum with the points in
Regions I and II of the q′ − q′′ plane and then put them together to
acquire the complete multifractal correlation spectra of aircraft echoes
from surveillance radars. Figures 6(a) and (b) show the multifractal
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Figure 3. 3-D graph and its contour of min{φ(q′, q′′), 1} of echoes
from civil aircraft.

Figure 4. 3-D graph and its contour of min{φ(q′, q′′), 1} of echoes
from fighter aircraft.

(a) (b)

Figure 5. Correlation moment exponents of echoes from two types of
aircraft targets. (a) Civil aircraft. (b) Fighter aircraft.

correlation spectra of the same group of echo data from the two
types of targets, respectively, as a contrast, Figure 6(c) presents the
multifractal correlation spectrum of a group of pure clutter data, and
Figures 6(d)∼(f) are their contours in the σ′ − σ′′ plane respectively.
As can be seen from the figures, the multifractal correlation spectra
are symmetrical on the σ′ = σ′′ plane, and there are sudden changes
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(a) (b) (c)

(d) (e) (f)

Figure 6. Multifractal correlation spectra as well as their contours in
the σ′-σ′′ plane, where, (a)∼(c) are the multifractal correlation spectra
of echoes from civil aircraft, fighter aircraft and nontarget respectively,
and (e)∼(f) are their contours in the σ′-σ′′ plane.

from their centers to both wings, which is in accordance with the
before-mentioned first order phase transition of the scaling behavior.
Moreover, it also can be seen from the figures that the presence of a
target broadens the echo multifractal correlation spectrum and shifts
the distribution region of the singular index, and the surface texture
characteristics have also undergone a significant change. In addition,
because different types of aircraft targets have different nonlinear echo
modulations due to different physical characteristics, the multifractal
correlation spectra of the two types of aircraft targets also show some
obvious dissimilarity, which is advantageous for aircraft classification
and identification.

4. EXTRACTION OF MULTIFRACTAL CORRELATION
SPECTRUM FEATURES

Below, the echo multifractal correlation spectra of different types
of aircraft targets will be further analyzed, and their characteristic
parameters will be defined. Firstly, according to the characteristic
analysis of the echo multifractal correlation spectra of different types of
aircraft targets, the following two characteristic descriptive parameters
can be defined.
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(1) Spectral barycenter

σ0 =
∫∫

σ′ |f (σ′, σ′′, ω)|2 dσ′dσ′′∫∫ |f (σ′, σ′′, ω)|2 dσ′dσ′′
. (20)

As multifractal correlation spectra are symmetrical on the σ′ = σ′′
plane, the quadrature in Eq. (20) can also be solved on σ′′, and
the result is the same. Obviously, the point (σ0, σ0) describes
the distribution barycenter of the multifractal correlation spectrum
f(σ′, σ′′, ω) in the σ′-σ′′ plane.

(2) Spectral correlation width

σwidth = σ′max − σ′min, (21)

where σ′max and σ′min denote the maximum and minimum of σ′,
respectively. Similarly, due to the symmetries of multifractal
correlation spectra on the σ′ = σ′′ plane, σwidth can also be calculated
by the range of σ′′. It is easy to know from the definition that σwidth

depicts the correlation range of singular indexes of f(σ′, σ′′, ω).
Secondly, if taking the slice of f(σ′, σ′′, ω) in the σ′ = σ′′ plane,

one can get a hooked curve shown by Figure 7, which is similar to a
multifractal spectrum. If defining the curve asymmetric index

Rσ =
∆σL −∆σR

∆σL + ∆σR
(22)

as another characteristic descriptive parameter for f(σ′, σ′′, ω), where,
∆σL = σ0 − σmin, ∆σR = σmax − σ0, and σ0 is the singular index
corresponding to the maximum of the curve, i.e., max f̃(σ, σ, 0.5), then
Rσ depicts the asymmetric property of the slice of f(σ′, σ′′, ω) in the
σ′ = σ′′ plane from the whole.

Figure 8 gives the probability density distribution curves of these
three multifractal correlation characteristic parameters of radar echoes

Figure 7. Slice of f(σ′, σ′′, ω) in the σ′ = σ′′ plane.
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(a) (b) (c)

Figure 8. Probability density distribution curves of three
multifractal correlation characteristic parameters. (a) Spectral
barycenter. (b) Spectral correlation width. (c) Asymmetric index.

from a civil aircraft and a fighter aircraft when they fly off the radar
station, and as a contrast, those of pure clutter are also presented. As
can be seen from the figure, each of the three characteristic parameters
has powerful abilities for different types of aircraft targets, and as to the
three types of radar echoes, any of the three characteristic parameters
can distinguish them easily. Of course, the type of target involved here
is less. In the case of many types of aircraft targets needed to identify,
these three characteristic parameters can be combined together to
identify different types of aircraft targets, so as to obtain a better
performance.

5. TARGET CLASSIFICATION EXPERIMENTS

Here the aforementioned real-recorded echo data from six types of
aircraft targets will be adopted as the experimental data to do the
classification experiments, and the classification method based on
multifractal features (CMMF) proposed in [13] will be taken as the
contrast to analyze the performance of the classification method based
on multifractal correlation features (CMMCF).

Experiment 1 : Take the support vector machine (SVM) [30] as
the classifier to analyze the performance of CMMF and CMMCF
contrastively when targets fly towards the radar station. In the
experiment, the classifier takes the Gaussian kernel K(xi, xj) =
exp(−||xi−xj ||2/σ2) as the kernel function, and there are three types of
targets (Types 1∼3) used for the classification experiment, where the
numbers of training and testing samples are 1024 and 256, respectively
for each type of targets. Because there is no prior knowledge about
the parameter σ2, below, the parameter values which can well classify
different types of aircraft targets will be taken as the kernel function
parameters. All the correct classification rates (CCRs, here CCR is
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defined as the ratio of the number of samples classified correctly to the
total number of samples) given in the following are the classification
results using the better kernel function parameters. Table 1 shows the
CCRs of CMMF and CMMCF. It can be seen from the table that
when targets fly towards the radar station, whether for the CCR of
each type of aircraft targets or the average CCR, CCRs of CMMCF
are all more than ninety-nine percent, which exceed those of CMMF
more than four percent.

Experiment 2 : Still take SVM using the Gaussian kernel function
as the classifier to analyze the performance of CMMF and CMMCF
contrastively when targets fly off the radar station. Also there
are three types of targets (Type 4∼6) used for the classification
experiment, and the numbers of training and testing samples are 1024
and 256, respectively, for each type of targets. Table 2 presents the
corresponding classification results. As can be seen from the table,
when targets fly off the radar station, except for Type 4, the CCRs
for the other two types of aircraft targets and the average CCR of
CMMCF are all higher than those of CMMF, and the average CCR of
CMMCF outstrips that of CMMF more than three percent.

Table 1. Classification results of CMMF and CMMCF when aircraft
targets fly towards the radar station.

CMMF CMMCF

Type 1 97.20% 100.00%

Type 2 93.43% 100.00%

Type 3 95.08% 99.61%

Average CCR 95.18% 99.87%

Table 2. Classification results of CMMF and CMMCF when aircraft
targets fly off the radar station.

CMMF CMMCF

Type 4 93.19% 89.51%

Type 5 86.74% 100.00%

Type 6 99.61% 100.00%

Average CCR 92.97% 96.09%
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Synthetical analyses of Tables 1 and 2 show that both CMMF
and CMMCF have nice classification performance, that their average
CCRs are all more than ninety percent, and that CMMCF excels
CMMF appreciably in the total performance. The reason is as follows:
in comparison with multifractal spectrum, multifractal correlation
spectrum further considers the spatial correlation characteristics of
singular index, and it can provide more comprehensive self-similar
information about a target. In addition, due to having done feature-
dimension-reduction-processing, the computation load of CMMCF
increases inconspicuously with respect to that of CMMF. Hence,
CMMCF is an effective classification method for aircraft targets and
deserves applications in engineering practice.

The previous analysis and application of multifractal correlation
spectra are all carried out with the assumption that parameter ω equals
0.5. Below, the impact of different values of ω on the classification
results will be further analyzed. In Region I, d → 1 when ω → 0,
here Eq. (15) translates into Eq. (16), and thus the phase transition
disappears; however, d → ε when ω → 1, here it can be obtained from
Eq. (15) that τ̃(q′, q′′, ω) is dominated by such a point set made up
of singular indexes σ(q′ + q′′), i.e., the singular index σ′′ of a point
found in the small region of σ′ equals to σ′. In Region II, τ̃(q′, q′′, ω) is
independently dominated by σ′ and σ′′ together and independent of ω.
Figures 9(a) and (b) present the multifractal correlation spectra when
ω equals 0.01 and 0.99, respectively. As can be seen from the figures
that when ω is close to 0, the boundaries between Region I and II are
already inconspicuous, which are connected into a whole, and the phase
transition disappears. When ω is close to 1, the multifractal correlation
spectrum is mainly distributed in both wings, i.e., the spectrum is
mainly distributed in Region II, and the spectrum in Region I verges
on a curve in the σ′ = σ′′ plane.

(a) (b)

Figure 9. Multifractal correlation spectra of aircraft echoes when ω
equals to 0.01 and 0.99 respectively. (a) ω = 0.01. (b) ω = 0.99.
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Table 3. CCRs in condition of different ω values.

ω 0 0.25 0.5 0.75 1

Flying towards the

radar station
99.22% 99.87% 99.87% 99.87% 99.87%

Flying off the radar station 96.74% 96.88% 96.09% 96.74% 97.00%

To quantify the impact of different values of ω on the classification
results, with the same conditions as in Experiment 1 and Experiment 2,
target classification experiments are performed again with ω taking
different values, respectively. Table 3 gives the average CCRs with
ω taking different values when targets fly towards or off the radar
station. As can be seen from the table, different values of ω have
little effect on the final classification results, which demonstrates that
the classification results of SVM have not been affected by the edge
transition of the multifractal correlation spectrum caused by the phase
transition of the scaling behavior. The main reason is that the
difference among echo multifractal correlation spectra of different types
of aircraft targets embodies in both scale regions as Regions I and II,
and different values of ω just mean redividing these two scale regions.
However, the difference among them is still stable. Consequently, the
target classification results of CMMCF will not be affected by the
parameter ω.

6. CONCLUSIONS

This paper introduces multifractal correlation theory into the echo
characteristic analysis and classification of aircraft targets with low-
resolution surveillance radars. Firstly, on basis of introducing
multifractal correlation theory, the paper analyzes the multifractal
correlation characteristics of real-recorded aircraft echo data from
a VHF-band surveillance radar. Secondly, based on the previous
analysis, it puts forwards the extraction method of multifractal
correlation features. Finally, it does target classification experiments
using the multifractal correlation features and SVM classifier
in condition of no compensation for echo airframe components.
The experimental results show that the multifractal-correlation-
feature-based SVM classifier can classify different types of aircraft
targets effectively, and the proposed method has good classification
performance.
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