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Abstract—The electromagnetic scattering mechanism of radar
targets in the high-frequency domain can be characterized exactly
by geometrical theory of diffraction (GTD) model. In this paper, we
propose a novel parameter estimation method for GTD model based
on compressed sensing. The sparse characteristic of radar echoes is
analyzed, and the parameter estimation problem is converted to one
of sparse signal reconstruction. Furthermore, clustering and linear
least-minimum-squares algorithms are utilized to improve the accuracy
of the result. Compared with several modern spectral estimation
techniques, the proposed method gives a more precise estimation of the
GTD model parameters, especially the scattering centers. Simulations
with synthetic and measured data in an anechoic chamber confirm the
effectiveness of the method.

1. INTRODUCTION

In the optical region, the electromagnetic scattering characteristics of a
radar target can be regarded as coherent syntheses of electromagnetic
scattering sources in several local positions. These electromagnetic
scattering sources, known as scattering centers [1], are mainly
generated around discontinuous parts of the target, such as edges,
corners, vertexes, and inflexions. Scattering centers identify the
physical locations and other relevant scattering information of the
radar target, such as the type and reflection intensity of the scattering
sources. The information embodied in scattering centers can be utilized
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in target data inversion [2], interpolation or extrapolation of radar
cross-section (RCS) [3], reconstruction of high-resolution range profile
(HRRP) [4] and synthetic aperture radar (SAR) images [5], and radar
stealthy/anti-stealthy techniques. More specifically, the extraction of
scattering center parameters can enhance the detection ability of radar,
and play an important role in radar target recognition [6].

Several models for the extraction of scattering centers have
been established. Common scattering center models include the
(undamped) exponential model [7], damped exponential model [8], and
Geometrical Theory of Diffraction (GTD) model [1, 9]. Usually, the
(undamped/damped) exponential model obtains a good, consistent
description for traditional targets that are mainly constituted of
specular scattering sources. However, as stealth technology develops,
the specular scattering of stealthy objects has broadly been eliminated.
Furthermore, one of the primary scattering centers of these stealthy
objects is a result of edge diffraction. Unlike the damped exponential
model, the GTD model is able to describe the high-frequency
electromagnetic scattering of stealthy objects, such as edge diffraction,
corner diffraction, point scattering, and curved surface reflection.

Traditional GTD model approaches are based on modern
spectrum methods, such as the Matrix Enhancement and Matrix Pencil
(MEMP) [10, 11], multiple signal classification (MUSIC) [12, 13], and
Estimation of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) algorithms [13, 14]. These methods describe the measured
scattering behavior using a two-step parametric model based on model
order selection [15] and parameter estimation. The range resolution
of these methods is not bandwidth limited, but is instead limited
by the fitness of model order selection and the fidelity with which
a particular model describes the actual scattering behavior. Moreover,
their results are somewhat sensitive to signal-to-noise-ratio (SNR), and
performance can degrade rapidly as the sampling rate decreases.

The recently developed field of Compressive Sensing (CS),
proposed by Donoho [16] and Candés et al. [17], has attracted
increasing attention in the field of radar applications. Owing to its
compressed sampling and exact reconstruction ability, CS has been
widely used in radar signal processing [18], such as high-resolution
radar [19], Ground-Penetrating Radar (GPR) [20], through-wall radar
imaging [21], SAR [22, 23], and ISAR imaging [24]. Motivated by these
properties of CS theory, we propose a novel algorithm for parameter
estimation in GTD models.

In the novel algorithm, the sparsity of the radar target echo
model is analyzed, and a modified CS (MCS) algorithm is adopted to
reconstruct the sparse parameter vectors of target scattering centers
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along the range distribution. Because of measurement noise and
the energy of one scattering center separating in neighboring range
resolution cells, some error is introduced to the scattering center
parameter of the reconstructed sparse vector. In order to reduce
this error, a clustering method is used to adjust the number of
scattering centers, and the least-minimum-squares method is applied
to modify their amplitude. Finally, we can estimate the parameters
of the GTD model by the proposed algorithm. This technique is
robust with respect to noise and less than Nyquist sampling frequency.
Another good property of the proposed method is its ability to handle
closely spaced scattering centers that cannot be resolved by traditional
methods.

The remainder of the paper is organized as follows. In Section 2,
the GTD model of stepped-frequency radar target echoes is presented.
Section 3 gives an overview of the CS principle, and Section 4 discusses
the MCS algorithm and its application to parameter estimation in
the GTD model. Simulation results are presented in Section 5, and
Section 6 concludes this paper with a discussion of our work.

2. THE GTD MODEL OF RADAR TARGET ECHOES

Stepped-frequency waveforms can achieve high range resolution and
do not require wide instantaneous bandwidth, which is widely used
in modern radar systems. The improved range resolution of high-
resolution radar or ISAR/SAR results in enhanced target detection
and classification capability. Thus, we use the example of stepped-
frequency radar in this paper. According to GTD theory, noisy radar
target back-scattering data can be expressed as follows:

y(n)=
K∑

k=1

ak

(
j
fn

fc

)αk

exp
[
j
4πfnrk

c

]
+ w(n) n=0, 1, 2, . . . , N − 1 (1)

where the measurement noise w(n) is Gaussian white noise and fn =
fc+n∆f . fc is the initial carrier frequency, N the number of pulses, ∆f
the frequency step, K the number of scattering centers in the model,
ak the scattering complex intensity of the kth scattering center, rk

the range of the kth scattering center with respect to a zero-phase
reference, and αk the geometric type parameter of the kth scattering
center, which has the form 0.5l for l ∈ {−2,−1, 0, 1, 2}. The five
canonical scattering centers are summarized in Table 1.

For each localized scattering center, the aim of parameter
estimation for the GTD model is to estimate the parameter set {K, ak,
αk, rk} (k = 1, 2, . . . ,K) according to the radar back-scattering data
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Table 1. Type parameter for canonical scattering geometries.

Value of α Example scattering geometries

−1 corner diffraction

−1/2 edge diffraction

0
point scatterer; doubly curved surface

reflection; straight edge specular

1/2 singly curved surface reflection

1 flat plate at broadside; dihedral

received on a finite set of sampling frequencies. Note that the scattering
centers of an actual target are located in very few positions over the
whole region of interest (ROI) with stepped-frequency waveform high-
resolution radar, and this provides the prerequisite condition that CS
theory can be utilized for parameter estimation in the GTD model.

3. PRINCIPLES OF CS THEORY

CS theory [17, 18] is a new signal acquisition and reconstruction
method that takes advantage of the sparsity or compressibility of
signals. The algorithm originates from sparse signal decomposition
and approximation theory, which can accomplish compressive sampling
and recovery of initial signals based on the sparsity of signals, the
randomness of the measurement matrix and the nonlinear optimization
method. Different from Nyquist sampling, CS does not directly
measure the signal itself, but projects it into low-dimensional space
through a random measurement matrix. Thus, the measured data are
the projection of signals from high to low-dimensional space [25]. Three
essentials of CS are sparse transformation, incoherent measurement
and nonlinear reconstruction, and the general concept is as follows.

Assume the initial signal xN×1 is expressed as:

xN×1 =
N∑

i=1

〈
x, ϕT

i

〉
ϕi =

N∑

i=1

βiϕi (2)

where 〈·, ·〉 denotes the inner product, (·)T the transpose, Ψ = {ϕi},
(i = 1, 2, . . . , N) the basis matrix, and β = {βi} are the projection
coefficients of signals projected on Ψ. When β is a K-sparse signal (that
is, only K of the coefficients are nonzero, while the other coefficients
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are all zero or approximately zero, and K ¿ N), xN×1 is called a
K-order sparse or compressible signal. As the power of a radar signal
is finite, the square integrable signals h(t) and s(t) have the domain
[a, b]. Thus,

〈h(t), s(t)〉 =
∫ b

a
h(t)s∗(t)dt (3)

where (·)∗ denotes the conjugate operation.
According to CS theory, the projection y is first obtained by

projecting the original signal x on the measurement matrix Φ = {φi},
(i = 1, 2, . . . , M). β is then recovered from the measurement signal y.
y can be expressed as

yM×1 =
M∑

i=1

〈
x, φT

i

〉
φi = ΦM×NΨN×NβN×1 = Θβ, M < N. (4)

In (4), an under-determined equation is needed to solve for β.
From (2), we know that the reconstruction of x is equivalent to
the reconstruction of β. According to CS theory, when the matrix
multiplication Θ = ΦΨ satisfies the restricted isometry property
(RIP) [13], K nonzero projective coefficients can be recovered, and
the sample number must satisfy M = O(K log(N/K)). The signal β
can then be recovered from y by solving the following optimization
problem:

min (‖β‖1) subject to y = ΦΨβ (5)

The RIP implies that there exists δK ∈ (0, 1) such that

(1− δK) ‖β‖2 ≤ ‖Θβ‖2 ≤ (1 + δK) ‖β‖2

holds for an arbitrary K-sparse vector β. The smallest δK is the
restricted isometry constant (RIC) of Θ. To recover the K-sparse
vector β, δK should be smaller than 1. Many approaches can be
used to reconstruct the K-sparse vector β satisfying (5), and the
optimization problem can be efficiently solved by greedy algorithms
such as matching pursuit [26], subspace pursuit [27], and orthogonal
matched pursuit (OMP) [28]. An alternative solution is convex
optimization [29], which is usually more precise but less efficient.

4. A NOVEL ALGORITHM FOR PARAMETER
ESTIMATION FOR GTD MODEL

The following demonstrates the use of basic CS to estimate GTD
parameters and a modified CS method for more accurate parameter
estimation.
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4.1. The CS Framework for Parameter Estimation in GTD
Models

According to the above theory, the echo acquisition processing of
stepped-frequency radar can be modeled as follows. Firstly, assume
that there are S resolution cells in the observed scene, and the range
to the zero-phase reference, back scattering coefficient, and parameter
type of each scattering center is denoted as rk, ak, and αk (k =
1, 2, . . . , K), respectively. When the kth scattering center is located in
resolution cell sk, then a(sk) = ak, α(sk) = αk, and r(sk) = rk. If there
is no scattering center in a resolution cell, the scattering coefficient or
parameter type for that cell is zero. More importantly, the number
of scattering centers of the radar target is much less than the number
of resolution cells in the scene, which means the scene satisfies the
sparsity condition.

We can write (1) in matrix form as

YN×1 = Ψ′
N×SIS×1 =

∑

k

ak

(
j
fn

fc

)αk

exp
[
j4πfn

rk

c

]
(6)

where the column vector {ψ′i} of the basis matrix Ψ′
N×S satisfies:

ψ′i =
(

fn

fc

)α(i)

exp
[
j4πfn

r(i)
c

]
i = 1, 2, . . . , S (7)

IS×1 =
[
a(1)jα(1), a(2)jα(2), . . . , a(S)jα(S)

]T

S×1
(8)

In (7), the first segment is the amplitude modulation term of the
basis matrix, when fc À N∆f , (fn/fc)α(i) ≈ 1, and its influence can
be neglected under this condition. Equations (6)–(8) indicate that the
original echo signal of the radar target can be linearly represented by
a column vector of the basis matrix Ψ′

N×S , and that the projective
coefficient IS×1, which is obtained by projecting the target echo signal
onto Ψ′

N×S , is a K-sparse vector.
As we must consider the influence of noise, the projective

coefficient can be estimated as follows:

min (‖I‖1) subject to
∥∥y −Ψ′I

∥∥
2

< ε (9)

where ε is the noise threshold, which can be estimated from noise-only
range cells of the radar range profile. According to CS theory, there is
always a random measurement matrix Φ that is utilized to enhance the
orthogonality of ΦΨ, but this can rarely be used to improve the SNR
of the measurement signal. Fortunately, a novel coherent accumulation
matrix [30] can improve SNR whilst retaining the incoherence of ΦΨ.
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Inspired by this, the estimation of IS×1 by measurement signal yN×1

can be expressed as:
min

(∥∥I ′
∥∥

1

)
subject to

∥∥Φ′y − Φ′Ψ′W−1I ′
∥∥

2
< ε′ (10)

where Φ′N×N is the Fast Fourier Transform matrix of N points, ε′ the
noise level after coherent accumulation, IS×1 = W−1

S×SI ′S×1, and the
weighted matrix W is a diagonal matrix whose diagonal elements wi

represent weight values for the ith component of I. Unlikely the non-
linear optimization methods based on Lagrange multiplier method to
enhance radar imagery [33, 34]. The proposed modified compressive
sensing algorithm enhances the reconstructed signal with partially
known support as Equation (11) illustrates. Equation (11) is a convex
problem and can be recast as a linear program [31], thus can be solved
more efficiently than l0-norm which is directly sparse restrict on I ′.
For Equation (11) is a convex problem, the solution of I ′ is a unique
solution. On the other hand, Equation (11) can be treated as a linear
program, so the solution of I ′ gets global convergence. Furthermore, as
the number of acquired samples is increased under suitable conditions,
this l0-norm minimization is equivalent to an l1-norm minimization
and therefore faster to compute [17, 32].

In a previous study [30], wi = 1/|sf (i)| and sf is the Fourier
Transform of y with zero-padding to give S points. As |sf (i)| is large,
the weight of the ith component is considerable; thus, this weighting
could lead to the analyzed signal concentrating on components with
larger weight values. In such cases, the estimations exceed the true
values of components with large weight values, while the estimations
become smaller for those with small weight values. As far as the
parameter estimation of scattering centers is concerned, the signal
energy should focus on the target support region, where the weights of
each component are supposed to be equal. Consequently, two different
weight values are used in the proposed algorithm. The first is smaller
and applied to range cells outside the target support region, whereas
the second, larger weight value is applied within the target support
region. Furthermore, the target support region can be determined by
the noise threshold, which can be estimated from the range cells in
which only noise exists. Once the noise threshold is obtained, the
target support region is determined as the range cells in which noise
exceeds the threshold. The diagonal elements of the weighted matrix
can be expressed as

wi =
{

1/max |sf | , |sf (i)| > λ
1/(min |sf |+ v) , |sf (i)| ≤ λ

(11)

where λ is the noise threshold, and the parameter v > 0 is introduced
to satisfy the strict stability condition.
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According to the above model, the projective coefficient IS×1 can
be estimated directly. Moreover, the positions of scattering centers
can be estimated by searching the corresponding ranges for non-zero
resolution cells of IS×1. Assuming that the kth scattering center is
located in the nth range cell, the GTD model parameters of the kth
scattering center can be estimated as

rk = r(n) (12)

ak = |I(n)| (13)

αk = angle (I(n))/(π/2) (14)

where r(n) = r0 + n∆r, r0 represents the distance of the first range
cell, and ∆r is the length of a range cell. Generally, ∆r is less than
c/2N∆f .

4.2. Parameter Estimation for GTD Model Based on
Modified Compressed Sensing

Although CS theory can be utilized for parameter estimation in the
GTD model, the position estimation values are discrete. However, in
practical applications, the positions of target scattering centers are
not strictly located at these discrete values. Furthermore, as the effect
of noise is inevitable, the energy of a scattering center that has been
projected to a sparse signal may be distributed in several (commonly
two) neighboring cells. Thus, contiguous scattering cells should be
combined, and a clustering methodology is applied to implement this
process. When two neighboring resolution cells of IS×1 are of the same
type, the lower amplitude of the resolution cells is set to zero while the
higher one is preserved. Because the clustering has been accomplished,
the number of resolution cells with non-zero amplitude provides the
estimated value of the target scattering center.

The sparse vector IS×1 is reconstructed by (10), but the amplitude
modulation term of the basis matrix Ψ′ is ignored. This introduces
some error into the amplitude estimation. As the energy of a single
scattering center may spread over several scattering centers, some
further error may be introduced to the intensity estimation of the
scattering center. Hence, the least-minimum-squares algorithm is
adopted to modify the amplitude of the scattering center. Thus, the
position coordinate r and type parameter α of the scattering centers
extracted by the proposed method can be obtained as above mention,
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and the scattering intensity a can be calculated as:

a =
(
GHG

)−1
GHy (15)

G = [g(α1, r1), g(α2, r2), . . . , g(αM , rM )] (16)
g(αi, ri) = [(jf0/fc)

αi exp (j4πf0ri/c) , (jf1/fc)
αi

exp(j4πf1ri/c) , . . . , (jfN−1/fc)
αi exp (j4πfN−1ri/c)]T (17)

In summary, the parameter estimation process for the GTD model
is as illustrated in Fig. 1.
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−1 <ε' 

N×1

y
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Figure 1. Flowchart of parameter estimation for GTD model.

5. SIMULATION EXPERIMENTS AND ANALYSIS

In this section, several examples are given to demonstrate the
parameter estimation performance of our method compared with
traditional spectrum estimation algorithms. First, we present an
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example of parameter estimation using the proposed MCS algorithm
and a target consisting of six point scatterers. We then compare the
performance of MCS and three spectrum estimation algorithms under
various SNR conditions and scatterers. The parameter estimations and
reconstructed range profiles given by the MCS algorithm are contrasted
with those from MUSIC, ESPRIT, and MEMP based on measured
data.

5.1. Simulated Data

5.1.1. A Simple Example

We apply a stepped-frequency signal in all simulation experiments.
The carrier frequency fc = 9GHz, the frequency stepping number
N = 100, and the frequency step ∆f = 2 MHz. Thus, the synthetic
bandwidth of the radar is 200 MHz, and the corresponding range
resolution based on traditional FFT is 0.75m. Gaussian white noise
is used for the receiver noise, and the measured target is formed from
between five and eight ideal scatterer centers. Their specific parameters
are listed in Table 2.

Setting the SNR to 10 dB and using six scattering centers (with
indexes from 1–6) to form the target, there are S = 256 resolution
cells in the measurement scenario (the region of interest is from −6.4–
6.4m). Therefore, based on the MCS algorithm, the range resolution
is 0.05m. Fig. 2(a) presents the reconstructed modulus value of IS×1

under this scenario. The positions of the non-zero components of
IS×1 are almost consistent with the positions of the six scattering
centers. However, a certain degree of error has been introduced as
a result of noise and the energy of one scattering center spreading to
neighboring resolution cells. In order to obtain more accurate results,
the clustering and amplitude modification processes are adopted for
scattering center estimation, and the final parameter estimations are
illustrated in Figs. 2(b) and (c). As these results indicate, the proposed
algorithm can effectively estimate the position, intensity, and types of
all scattering centers of the target, even in noisy conditions.

Table 2. Parameters of target scattering centers.
PPPPPPPParameter

Index
1 2 3 4 5 6 7 8

Position/m −5 −2 −1 1 3 5 −6 6

Normalized

Amplitude
0.707 0.5 0.707 0.5 0.707 1 1 0.5

Type 1 0.5 0.5 0 −1 −0.5 0 1
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In order to illustrate the convergence of the proposed algorithm,
500 Monte Carlo experiments are made to gain the parameter
estimation results for GTD model. All experiments obtain correct
estimation results for all parameters of GTD model. In Fig. 3, the
residual error of l2 norm in Equation (10) is drawn via iterative number
in convex optimization. The figure indicates that the error gets smaller
as the iterative number adds. Though there is a minor error after 18th
iterative, the reason is the existing noise. Further simulated results
show that the error is reduced as the noise decreases, and I ′ can be
exactly recovered when the noise vanishes.
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Figure 2. Parameter estimations by the proposed algorithm for GTD
model. (a) True |IS×1| and estimation. (b) True positions, ranges, and
their estimations. (c) True types and estimations.
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5.1.2. Performance Comparison

To evaluate the proposed algorithm numerically, we conducted Monte
Carlo simulations under several scenarios with different parameters.
Furthermore, we compare the parameter estimation performance of
our approach with that of three different spectrum algorithms, MUSIC,
ESPRIT, and MEMP. This comparison consists of 1000 Monte Carlo
simulations for each algorithm with different radar echo signals and
different SNRs.

Two evaluation criteria are utilized for each algorithm: mean
square error (MSE) and successful extraction probability (SEP). The
MSE of the position parameter for a scattering center is defined as
delta(r) =

√
E[(r − r′)2, where r is the real radial range of the

scattering center, r′ is the estimated value, and E[·] denotes the
ensemble average. The MSEs of the other two parameters for the GTD
model are defined similarly. The SEP is defined as the ratio of correct
parameter estimations for all scattering centers to the total number
of Monte Carlo simulations. Moreover, correct parameter estimation
requires all scattering centers forming the target to be completely
extracted and the MSEs of the range, amplitude, and type parameter
of each scattering center to be below some preset threshold.

The MSEs of the parameter estimations for the GTD model
with six scattering centers are illustrated in Fig. 4. As indicated by
Figs. 4(a) and (b), all four algorithms obtain acceptable estimation
results for the positions and amplitudes, exhibiting very low MSEs
under high SNR conditions (SNR > 12 dB). However, for lower SNRs
(SNR < 5 dB), MUSIC, ESPRIT, and MEMP obtain considerably
worse estimation results. At low SNRs, the MCS algorithm exhibits
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Figure 3. The convergence validation of proposed algorithm.
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Figure 4. MSEs of parameter estimations for GTD model under
different SNRs. (a) MSE of position estimation. (b) MSE of amplitude
estimation. (c) MSE of type estimation.

better performance than the other three algorithms, with a smaller
MSE. Fig. 4(c) illustrates the type parameter estimation results for
all four algorithms. This indicates that the proposed MCS algorithm
achieves better performance than the other spectrum estimation
algorithms under all SNR conditions. More specifically, the MCS
algorithm obtains more accurate type parameter estimation, with an
MSE of less than 0.15 for SNRs in [0 dB, 30 dB], whereas the other
spectrum estimation algorithms have MSEs for the type parameter of
more than 0.35. From Figs. 4(a), (b), and (c), it can be seen that
MCS achieves the best performance for all GTD model parameter
estimations with SNRs in [0 dB, 30 dB], especially the type parameter
estimation.

To allow further quantitative analysis of the scattering center
extraction performance of the four algorithms, we calculated the SEP
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with different numbers of scattering centers under different SNRs. The
components of the radar target have five (index 1–5), six (index 1–6),
seven (index 1–7), and eight (index 1–8) components, as shown in
Table 2, and the SNR is in the range [0 dB, 12 dB]. If the relative MSE
of all parameters for each scattering center is within 15% of the true
value, the estimation results are considered to be correct. Moreover, as
the estimation of the type parameter by the three spectrum estimation
algorithms was considerably worse than the proposed MCS algorithm
(Fig. 4(c)), this parameter is not considered in the SEP analysis. We
conduct 1000 Monte Carlo simulations under each SNR with five, six,
seven, or eight scattering centers. The simulation results are shown in
Figs. 5(a), (b), and (c).

Several conclusions can be reached from these results. Firstly,
from Fig. 5(a), we see that the SEP monotonically non-decrease
relative to SNR for all four algorithms, reaching 100% for an SNR of
9 dB. This increasing trend is easy to understand, for as the noise get
smaller, the target echo data achieves good consistency with the true
GTD model, and thus all the algorithms obtain better performance.
We can also see that the proposed MCS algorithm achieves a higher
SEP than the other three spectrum estimation algorithms for SNRs
below 9 dB.

Secondly, the SEP of the four algorithms is calculated for different
numbers of scattering centers composing the radar target under an
SNR of 5 dB. The results, as shown in Fig. 5(b), show that the SEP
of all four algorithms decreases with an increase in K. This is because
the complexity of the radar echo, which has a significant influence on
the accuracy of parameter estimation, is closely related to K. Again,
however, the proposed MCS method achieves the best performance
of the four algorithms. There is a big gap between the SEPs of
the MUSIC, ESPRIT, and MEMP algorithms and the proposed MCS
algorithms with K = 5, but this gap shrinks as K increases.

Finally, Fig. 5(c) shows that the success estimation probability is
a monotonic decreasing relative to SNR for all the four algorithms (i.e.,
MUSIC, ESPRIT, MPM and MCS). It is easy to understand this for as
the noise get smaller, the target echo data achieves good consistency
with the true GTD model, and thus all the algorithms obtain better
performance. However, all of four algorithms have a lower success
estimation probability as the K increases, and the reason is that the
complexity of the radar echo enhance with K, which has great influence
in the accuracy of parameter estimation.

In conclusion, it is obvious that the MCS algorithm can
achieve outstanding performance compared to the modern spectrum
estimation methods under different SNR condition. In addition, the
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MCS algorithm obtains more accurate parameter estimation for the
scattering centers when K ≤ 10.

5.2. Measured Data in an Anechoic Chamber

We now measure the performance of our proposed MCS algorithm
using real data from an anechoic chamber. The shape and geometrical
size of a typical radar target is displayed in Figs. 6(a) and (b).
Furthermore, the parameters of the stepped-frequency radar used for
data acquisition are as follows.

The radar operates in the HH polarization state (i.e., the radar
transmits and receives horizontal polarization), and the working
frequency ranges from 8–12 GHz with a step size of 20 MHz. The
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Figure 5. Successful estimation probability for different values of K
and SNRs. (a) SEP vs. different SNRs (K= 6). (b) SEP vs. different
K (SNR = 5). (c) SEP vs. different K and SNRs.
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observation pitching angle is 0◦, and the azimuth angle varies from
0–180◦ (0◦ corresponds to the no-sewing direction) with a step size of
0.2◦. We measure data in the azimuthal range of 0–15◦ to validate the
proposed MCS algorithm.

The parameter values estimated for the scattering centers by the
MCS algorithm are illustrated in Fig. 7. These correspond to the 11th
echo of the warhead and an azimuth angle of 2◦. As Fig. 7 shows, the
relative distance between the strong scattering centers are consistent
with the geometry of the actual warhead model, and these centers
are distributed on the head, the discontinuities in the middle and
tail parts, and the two conical reflectors with small incident angles
in the intermediate section. It should be pointed out that echoes from
the scattering centers are sensitive to azimuth angle. Therefore, the
number of scattering centers may vary with the azimuth angle. The
measurement data show six scattering centers extracted for azimuth
angles in [0◦, 15◦], which reflects the actual scattering centers of the
warhead.

In order to compare the performance of MCS with the other
three modern spectrum techniques, we conducted scattering center
extractions and HRRP reconstructions using all four algorithms. The
results are illustrated in Fig. 8. As this figure indicates, all algorithms
are able to extract all six scattering centers on the warhead. However,
the ESPRIT algorithm obtains a rather lower amplitude for the third
scattering center. The other algorithms achieve a more reasonable
amplitude estimation for all six scattering centers, although the
proposed MCS algorithm reconstructs the most satisfactory HRRP,
with the smallest MSE compared to the original HRRP. The actual
parameter values and the estimates given by each algorithm are listed
in Table 3 for all six scatterers on the warhead.

As Table 3 shows, for MUSIC, ESPRIT, and MEMP, some
individual scattering center parameter estimates are close to their
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Figure 6. Actual shape and geometrical size of a scaled model of a
warhead target. (a) Actual shape. (b) Geometrical size.
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Figure 7. Scattering center extraction using the MCS algorithm.
(a) Full domain. (b) Partial enlargement.
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Figure 8. Scattering center extraction and HRRP reconstruction
under azimuth angle of 2◦. (a) Extracted scattering centers.
(b) Reconstructed HRRP.

true value, whereas others are totally incorrect. On the other hand,
the MCS algorithm obtains accurate type parameter estimations
for all six scattering centers. Thus, we can state that the MCS
algorithm exhibits outstanding performance in terms of type parameter
estimation compared to the other three modern spectrum estimation
algorithms.

We can analyze additional measured data to contrast the MCS
algorithm with modern spectrum estimation algorithms. The 61st
radar echo (corresponding to azimuth angle 12◦) of the warhead
gives the scattering centers shown in Fig. 9(a), and the reconstructed
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HRRPs of all algorithms are illustrated in Fig. 9(b). This figure
shows that the three modern spectrum estimation algorithms give
mistaken range and amplitude estimations in one or two scattering
centers, whereas the MCS algorithm estimates an acceptable range
and amplitude for all six. Moreover, Fig. 9 also indicates that, when
the measured data become inconsistent with the ideal GTD model,
the modern spectrum estimation algorithms obtain rather poor range
and amplitude estimation performance, while the MCS retains superior
performance. Thus, the MCS algorithm provides more accurate
parameter estimation and more extensive scope of application with
actual measured data.
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Figure 9. Scattering center extraction and HRRP reconstruction
under azimuth angle of 12◦. (a) Extracted scattering centers.
(b) Reconstructed HRRP.

Table 3. Type parameter estimation of warhead scattering centers.

PPPPPPPParameter
Index

1 2 3 4 5 6

Equivalent

typical

Geometry

point

scatterer

flat plate

at

broadside

edge

diffraction

flat plate

at

broadside

angle

scatterer

edge

diffraction

True type

parameters
0 1 −0.5 1 −1 −0.5

MCS 0.106 0.964 −0.504 1.152 −1.08 −0.479

MUSIC 0.536 1.131 0.432 −0.536 −0.107 0.063

ESPRIT −0.639 0.294 −0.519 0.495 1.235 0.675

MEMP 0.798 0.463 0.361 −0.043 −1.102 −0.987
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Figure 10. Scattering center extraction and HRRP reconstruction in
noise condition. (a) Extracted scattering centers. (b) Reconstructed
HRRP.

We now consider another two common conditions, namely the
existence of noise and a decrease in sampling frequency. Specifically,
Fig. 10 illustrates the scattering center extraction and HRRP
reconstruction under the noise condition SNR = 30 dB at azimuth
2◦. The MUSIC algorithm gives a false extraction of one scattering
center, because it should only be applied for GTD parameter
estimations with undamped harmonic signals. When the true target
echo is significantly different from an undamped harmonic, the
performance of this algorithm declines dramatically. In comparison,
the ESPRIT and MEMP algorithms obtain slightly better estimation
results, with some low amplitude estimates for one scattering
center. However, the proposed MCS algorithm achieves outstanding
performance. Moreover, Fig. 11 presents the extraction results and
HRRP reconstruction with low sampling frequency (working frequency
from 8–10 GHz) at azimuth 2◦. This figure indicates that the MCS
algorithm obtains more acceptable parameter estimation results than
the MUSIC, ESPRIT, and MEMP algorithms. Additionally, the
MCS algorithm gives range and amplitude estimations that are more
consistent with the results of Fig. 10, whereas the modern estimation
algorithms provide rather different results.

In conclusion, it is clear that the MCS algorithm can estimate
the parameters of scattering centers more accurately than the modern
spectrum estimation algorithms in different azimuth conditions,
particularly the type parameter. We have shown that the MCS method
is robust with respect to noise and a lower sampling frequency, a
property not shared by the modern spectrum estimation algorithms.
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Figure 11. Scattering center extraction and HRRP reconstruction
with low sampling frequency. (a) Extracted scattering centers.
(b) Reconstructed HRRP.

6. CONCLUSIONS

Estimating radar target parameters for the GTD model is important in
target recognition and other relevant areas. In this paper, we propose
a novel parameter estimation algorithm for the GTD model. Our
approach creatively adapts the theory behind Compressed Sensing.
Firstly, we analyzed the sparseness of the amplitude and type vectors
of target scattering centers along the range distribution. We then
utilized an improved compressed sensing method to reconstruct the
sparse vectors, modifying the data using clustering and least-minimum-
squares. Finally, more accurate parameter estimations for the GTD
model were obtained by the proposed MCS algorithm. In order
to verify the effectiveness of MCS, we compared its performance
with that of three different spectrum estimation algorithms using
simulated and measured data via Monte Carlo experiments. The
experimental results indicate that the MCS algorithm is significantly
better than the comparative algorithms for all parameter estimations,
especially the type parameter of the GTD model. Moreover, the
proposed MCS method is more robust with respect to noise and lower
sampling frequency, and obtains more accurate information about the
scattering centers with measured data. Furthermore, the proposed
MCS algorithm can be utilized in other waveform radar systems with
a few adjustments, and has a variety of application areas.
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