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Abstract—A near-field three dimensional imaging algorithm for
circular SAR is proposed in this paper. It adopts the theory
of spherical wave decomposition to transform Green function to a
superposition of plane wave components. Using this relation, the
image-reconstruction can be implemented in frequency domain instead
of in spatial domain, which simplifies the solving process of target
reflectivity function, and allows for the target to be near to the radar.
Through compensating phase factor and filtering at each elevation,
we firstly get the ground CSAR signal of each elevation in frequency
domain. Then, performing two dimensional inverse nonuniform fast
Fourier transform and accumulating the results of all azimuth angles,
the reconstructed two dimensional image corresponding to an elevation
is achieved. Finally, using reconstructed image datum of all elevation,
the three dimensional image of target is obtained. To demonstrate
the imaging performance of our method, numerical simulations and
experiments are conducted. By comparing the results with the focusing
operator algorithm and the back-projection algorithm, it is found that
the proposed algorithm is more efficient and can obtain a good imaging
performance.

1. INTRODUCTION

With the increasing threat of terrorism, it is important and necessary
to detect the concealed dangerous objects at security checkpoints such
as airports, subways and train stations. At present, traditional means
for detecting the concealed objects at high-security checkpoints is metal
detector for personnel. However, this system has two shortcomings:
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1. Detecting results may include false detection for metal innocuous
objects in personnel, such as glasses, belt buckles, keys etc.; 2. It
is incapable to detect dangerous items which are made of innovative
materials, such as ceramic pistols and liquid explosives [1–3]. To
overcome drawbacks of metal detectors, microwave imaging systems
are paid more and more attention. They benefit from two advantages:
firstly, some high frequency electromagnetic waves, such as millimeter
waves (MMW) and terahertz waves (THz) can penetrate clothing
or packages; secondly, microwaves are nonionizing and, therefore,
microwave imaging systems are easily accepted by the public. These
merits make microwave imaging systems have great potential in the
field of concealed objects detection [4–8]. Besides detecting concealed
objects in security check, microwave near-field imaging is also applied
to non-destructive testing for quality compliance industrial procedures,
images acquisition of vivo tissues for biological and medical studies
and far-field radar cross-section (RCS) prediction with near-field
measurement of target back-scattering properties [9–12]. So, the
microwave near-field imaging has become an attractive topic.

Synthetic aperture radar (SAR) is the main means of microwave
imaging and many aperture synthetic modes have been proposed [13–
16]. Circular SAR (CSAR) is a special aperture synthetic mode [12, 16–
18]. In this mode, the target is illuminated by radar over a circular
trajectory. Comparing with linear SAR (LSAR), this special mode
enables CSAR achieves higher resolution, all-directional observation
and three dimensional imaging. Because of these attractive features,
CSAR has raised the interests of many researchers. However, because
of the special rotation motion trail of CSAR, traditional algorithms
for LSAR such as range Doppler (RD) algorithm, chirp scaling (CS)
algorithm, and range migration algorithm (RMA) cannot be used
to process CSAR data. In addition, the curved wavefronts cannot
be neglected under the near-field condition. And the conventional
algorithms based on the assumption of the plane wave cannot be used
directly, because this approximation results in the phase deviation
of the radar echo and severely limits the resolution of the near-field
imaging system.

For processing near-field CSAR data, a common way is back-
projection (BP) algorithm which is an extension of the computed
tomography (CT) imaging in medicine [4, 19]. In this algorithm, by
calculating the distance from each radar azimuth to each scatterer in
the scene, we can obtain the echo of each scatterer in different azimuth
through any interpolation scheme. Then, the three dimensional
(3D) image of the target is achieved by accumulate these echoes of
each scatterer. Although it can work with arbitrary geometry, the
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computation of BP algorithm is inefficient due to the interpolation
operation.

Another method for processing CSAR data is the focusing
operator (FO) algorithm which uses the focusing operator to
compensate the altitude and the phase variations along the wave
propagation path [4, 19, 20]. Due to the phase compensation operation
for all pixels in scene, this algorithm has even lower computational
efficiency than BP algorithm.

To overcome the computational inefficiency of the above
algorithms, Soumekh has developed a fast algorithm which is based
on the Fourier analysis for the Green’s function [21, 22]. In this
algorithm, the generalized Parseval’s theorem is used to transform the
SAR echoes from the spatial domain to the spatial frequency domain.
Then, the CSAR data of slant plane are transformed to ground plane
by pseudo-inverse operation. Finally, the transformed data will be
used in the ground plane CSAR reconstruction to obtain the target
function. Due to processing radar echoes in spatial frequency domain,
this algorithm improves the calculation efficiency greatly. However,
the step of taking pseudo-inverse to convert the slant plane data to
ground plane data may cause instability. To improve error bounds
and instability caused by pseudo-inverse, Burki and Barnes propose
Householder transform algorithm, but this algorithm increases the
complexity and computational load [23].

In Ref. [24], a reconstruction algorithm of ω-k type which suits
for wideband CSAR data taken in stripmap mode is presented. The
algorithm allows to reconstruct a two dimensional (2D) image on a
cylindrical surface and the range trajectory is approximated by Taylor
Series expansion using only the quadratic terms. However, the angular
reconstruction area and the length of the circular aperture for a single
scatterer are restricted by this range approximation. To overcome these
disadvantages, an improved algorithm of ω-k is proposed [25]. These
two algorithms only reconstruct a 2D image. A 3D image is achieved
by repeating this 2D reconstructing algorithm on different cylindrical
surfaces.

More recently, a 3D near-field CSAR imaging algorithm for the
system in which the receiver is a linear array of receiving elements
has been proposed by Olivadese et al. [26]. In this algorithm, the
wavefront curvature is taken into account by using a planar piecewise
approximation. But, this approximation may limit the resolution of the
near-field imaging system. In Ref. [12], an imaging algorithm for 3D
near-field target reconstruction with multiple-pass CSAR observations
is presented. Due to processing the radar echo in frequency domain,
this method can fast reconstruct the 3D target image. Nevertheless,



330 Zhang, Pi, and Min

this algorithm only suits for this special aperture mode and it is difficult
for the real time detection of concealed weapons in practice, because
the system needs to scan the target in different elevation passes.

In this paper, we propose a 3D near-field imaging algorithm
for CSAR which is based on spherical wave decomposition theory.
In this algorithm, the Green’s function can be transformed into a
superposition of plane wave components by using spherical wave
decomposition theory. Therefore, the target spread function is
transformed from spatial domain to spatial frequency domain. Then,
the height phase term is compensated in the spatial frequency domain.
Finally, the target function can be obtained by using 2D inverse
nonuniform fast Fourier transform (NUFFT) and summing all azimuth
results. Comparing the numerical simulation and experiment results
with FO algorithm and BP algorithm, the performance of the proposed
algorithm is verified. The imaging technique developed in this paper
does not have the Fresnel approximation, so it can be used to
reconstruct the near-field image of the target. This is because the
spherical wavefronts in the near-field of the target are decomposed into
plane-wave components using the spherical wave decomposition theory.
The proposed method for the CSAR near-field imaging can be used in
the 3D automatic target recognition (ATR) in anechoic chamber, near-
field RCS measurement, detection of concealed weapons and so on.

The outline of the paper is organized as follows. Section 2 presents
the CSAR imaging geometry, near-field target scattering signal model
and the derivation and processing steps of the proposed algorithm.
Section 3 gives the resolution and sampling criteria. Section 4 assesses
the performance of this algorithm by means of numerical results.
Section 5 gives the turntable experiment imaging results achieved by
our proposed algorithm. Finally, the conclusions of this paper are
provided in Section 6.

2. SYSTEM MODEL

The geometry of CSAR near-field imaging system is shown in Fig. 1. A
radar sensor moves along a circular path with radius Rg on the plane
z = H. As the sensor moves, its beam center always points at the
center of the scene which is the origin O of the spatial coordinates
(x, y, z) with the incident angle θi. In Cartesian coordinate system,
the coordinates of the radar in the spatial domain is expressed as

~rs =
(
x′, y′, z′

)
= (Rg cos θ, Rg sin θ,H) (1)

where θ ∈ [0, 2π) represents slow time or aspect angle synthetic
aperture domain.
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Figure 1. Geometry of the imaging system.

Supposing that there is an arbitrary point located at ~r = (x, y, z).
Thus, the instantaneous distance from radar sensor to this point is
determined by

R = |~rs − ~r| =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2

=
√

(x′ − x)2 + (y′ − y)2 + H2
z (2)

where Hz = z′ − z.

2.1. Near-field Scattering Signal Model

The field radiated by an antenna or scattered by an object is usually
subdivided into three regions: (a) reactive near-field, (b) radiating
near-field (Fresnel) and (c) far-field (Fraunhofer) regions. The regions
of (b) and (c) are radiation field. In these two regions, electric and
magnetic field components to each other are orthogonal and wave
impendence is constant. Therefore, the radial field component can
be appreciable [27].

Supposing that the radar is located in the near-field (Fresnel) zone
of the objects and the amplitude attenuation of the scattering field is
negligible compared to the phase contribution, the echo of the target
in the near-field can be expressed as [21].

s(k, θ) =
∫∫

f [x, y, z(x, y)] e−j2kRdxdy (3)
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where f [x, y, z(x, y)] represents the target function of a single scatterer
at (x, y) with altitude z(x, y), k = 2πf/c is the wavenumber, k ∈
[kmin, kmax], f is the signal frequency, c is the speed of light. The
exponential term in (3) represents a spherical wave emanating from
(x′, y′, z′), which can be decomposed into a superposition of plane wave
components [1]

e−j2kR = e−j2k
√

(x′−x)2+(y′−y)2+(z′−z)2

=
∫∫

ejkx′ (x
′−x)+jky′ (y

′−y)+jkz′Hzdkx′ky′ (4)

where kx′ and ky′ are the Fourier-transform variables corresponding to
x′ and y′, respectively. They have the following forms:

kx′ =
∂ϕ

∂x′
= −2k

x′ − x

R

ky′ =
∂ϕ

∂y′
= −2k

y′ − y

R
.

(5)

Thus, the instantaneous wave number with respect to spatial
variable z′ can be expressed as

kz′ = −
√

4k2 − k2
x′ − k2

y′ (6)

2.2. Near-field Target Reconstruction

Target reconstruction is the solving process of target function from
radar echoes, i.e., the extraction process of f(x, y, z) from s(k, θ) in (3).
Because the form of (3) resembles the Fourier transform, the target
function can be obtained by using an integral resembling its inverse
transform with respect to k and θ, i.e., [19, 20]

f(x, y, z) =
∫∫

ks(k, θ)ej2kRdkdθ (7)

Because the single integral with respect to k in (7) can be regarded
as the inverse Fourier transform of a function ks(k, θ), [4] uses the back-
projection method to solve this double integral. In [19], the integral
operator kej2kR in (7) is used as the focusing function to compensate
for the phase of each target point.

In this paper, we use the theory of spherical wave decomposition
to transform the exponential term ej2kR in (7) to the superposition
of plane-wave components. This exponential term is the complex
conjugate of (4), i.e.,

ej2kR = ej2k
√

(x′−x)2+(y′−y)2+(z′−z)2

=
∫∫

e−jkx′ (x
′−x)−jky′ (y

′−y)−jkz′Hzdkx′ky′ (8)
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By putting (8) in (7), (7) becomes

f(x, y, z)

=
∫∫ [∫∫

ks(k, θ)ejkx′ (x−x′)+jky′ (y−y′)−jkz′Hzdkx′dky′

]
dkdθ. (9)

Because the coordinate systems of radar and target are coincident,
the distinction between the primed and unprimed coordinate systems
is dropped and the (7) is expressed as

f(x, y, z)

=
∫ {∫∫ [∫

ks(k, θ)e−j(kxx′+kyy′)e−jkzHzdk

]
ejkxx+jkyydkxdky

}
dθ. (10)

It is seen that the bracketed integral is the 2D Fourier transform
result of a scatterer’s reflectivity at an azimuth and can be expressed
as

G(θ, kx, ky) =
∫

k
Q(k, θ, kx, ky)e−jkzHzdk (11)

where

Q(k, θ, kx, ky) = ks(k, θ)e−j(kxx′+kyy′) (12)

The exponential term in (11) is the phase compensation term
which compensates the phase interference caused by near-field
spherical wave. Through this compensation, the images of all targets
in the given plane are focused. Figs. 2(a) and (b) show the results of
uncompensated phase and compensated phase.

Since the (11) is the polar spectrum of the target in kx−ky domain
and does not have the form of the rectangular spectrum, the 2D inverse
Fourier transform cannot be directly performed for this spectrum. A
generally method to solve this problem is the linear interpolation,
but this decreases the computational efficiency. Here, the NUFFT
approach is used to accurately evaluate the integrals within the braces.
Due to the double integral in the braces is 2D inverse Fourier transform,
the NUFFT based on min-max approach is applied [28].

Then, accumulating the 2-D inverse NUFFT result at each
azimuth, we can obtain the desired image of a scatterer at the given
elevation z. This process can be expressed as

f(x, y, z) =
∫

F−1
kx,ky

[G(θ, kx, ky)]dθ (13)

where F−1
kx,ky

indicates the 2D inverse FFT with respect to kx and ky.
To form the final 3D image of the target, we need to reconstruct

the image at equally spaced elevations.
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(a) (b)

Figure 2. Image results of a scatterer within uncompensated phase
and compensated phase: (a) Uncompensated phase, (b) compensated
phase.

2.3. Reconstruction Procedure

This section deals with the practical implementation of spherical wave
3D reconstruction algorithm. The whole procedure to reconstruct the
3D image of a target is summarized in the flowchart in Fig. 3 and the
major processing steps are listed as follows.

Step 1: Perform the phase compensation of Q(k, θ, kx, ky)
according to (11) and obtain the frequency spectrum data G(θ, kx, ky)
of a scatterer at a given elevation z.

Step 2: Use the inverse NUFFT method to obtain the result of
a target at an azimuth angle and a given elevation.

Step 3: Coherent summation over all azimuth angles to obtain a
2D image result of targets at a given elevation.

Step 4: Repeating Step 1 to Step 3 for each elevation, the 3D
image of a target is obtained.

3. SAMPLING CRITERIA AND RESOLUTION

3.1. Resolutions

Assuming that a single scatterer placed at the origin is an omnidirective
reflector, i.e., radar can receive the echo of this scatterer at all direction,
the range and azimuth resolutions in CSAR mode depend on the
mainlobe of point spread function (PSF) and this function has the
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Figure 3. Flowchart of near-field 3D imaging algorithm for CSAR.

expression of

PSF(x, y) = ρmax
J1(r0ρmax)

r0
− ρmin

J1(r0ρmin)
r0

(14)

where r0 =
√

x2 + y2, J1 is the Bessel function of the first kind, first
order and

ρmax = 2kmax sin θi

ρmin = 2kmin sin θi
(15)

where kmin and kmax are minimum wavenumber and maximum
wavenumber of transmitted signal [21]. Generally, the resolution of
an image is estimated by the mainlobe width of PSF [29]. Here, we
consider the 3 dB mainlobe width of PSF as the corresponding range
and cross-range resolutions:

∆x = ∆y ≈ 2.4
2kc sin θi

(16)

where kc is the wavenumber at carrier frequency.
The elevation resolution is approximately

∆z ≈ 2c√
2πB cos θi

(17)

where c is the light speed and B is the signal bandwidth.
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3.2. Sampling Criteria

From the Nyquist sampling theorem, we know that the signal sampling
intervals in the range domain and azimuth domain depend on the
extent of bandwidth in the corresponding frequency domain. In fast
time domain, the wavenumber bandwidth of the transmitted signal is

Ωk = [2kmin, 2kmax]. (18)

Therefore, the sampling frequency in the fast time domain is
determined by

∆f ≤ c

2Rmax
(19)

where ∆f is the frequency sampling interval and Rmax represents the
maximum detectable distance.

The maximum support of the CSAR signal spectrum in the slow
time frequency domain is

Ωθ = [−2kmax sin θi, 2kmax sin θi] (20)

Thus, the sampling interval in slow time domain should satisfy
the following:

∆θ ≤ π

2kmax sin θiR0
(21)

Equation (21) indicates that the slow time sampling interval
decreases with the increase of the incident angle, signal frequency and
the scene size.

4. SIMULATION RESULTS

In this section, two simulation experiments are used to validate
performance of the proposed algorithm. In the first simulation,
the resolution and sidelobe metrics of the proposed algorithm are
analyzed. The PSFs of three reconstruction algorithms are compared
to demonstrate the performance of the proposed method. In the second
simulation, the 3D image reconstruction capability of the proposed
algorithm is verified.

In CSAR mode, PSF is the reconstructed image of a single
scatterer located at the origin of the coordinate system. The 3 dB
width of its mainlobe represents the resolution of a reconstructed image
and this function can be also used to evaluate the sidelobe metric.
Thus, the performance of the proposed algorithm is examined through
its PSF. The main system simulation parameters appear in Table 1.

The PSF images obtained via the FO algorithm, BP algorithm and
our method are shown in Fig. 4, respectively. Comparing three images



Progress In Electromagnetics Research, Vol. 141, 2013 337

Table 1. System simulation parameters.

Parameter Value

Carrier frequency fc 9.6GHz
Bandwidth B 660MHz

Range sampling number Nr 221
Azimuth sampling number Na 3600

Slant range Rc 8m
Scene Radius R0 2m
Incident angle θi 70◦

(a) (b)

(c)

Figure 4. PSF images of three algorithms: (a) FO algorithm, (b) BP
algorithm, (c) our method.
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in Fig. 4, the −30 dB PSF image areas of the BP algorithm and FO
method are lower than the proposed algorithm. But, the PSF image of
our method is more ideal than the other two algorithms, because the
reconstructed image of the proposed algorithm has perfect concentric
circles.

Table 2. Image performance parameters.

Algorithm
PSLR
(dB)

X-Y Resolution
(mm)

Processing Time
(s)

FO −8.4 6.45 8329.5
BP −8.0 6.49 341.8

Our method −8.0 6.47 12.2

(a) (b)

(c)

Figure 5. PSLR and mainlobe width of the three algorithms: (a) FO
algorithm, (b) BP algorithm, (c) our method.
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In order to quantitatively analyze the performance of the proposed
algorithm, the resolution, the peak sidelobe rate (PSLR) and cost time
are evaluated in Table 2. The PSLR is the ratio between the peak value
of the largest sidelobe Aside and the peak value of the mainlobe Amain

and it is expressed as

PSLR = 20 log10

[
Aside

Amain

]
. (22)

The PSLR and −3 dB mainlobe width of the PSF images, which
are reconstructed by the three algorithms respectively are in Fig. 5.

From Fig. 5 and Table 2, we can see that the proposed algorithm
has a close accuracy to BP. Although the sidelobe level of our method
is higher than the FO, our method is more efficient in processing CSAR
data.

To validate the 3D image reconstruction feasibility of the proposed
algorithm, the 3D geometry structure formed by 9 scatterers with
reflectivity value 1 is used in the simulation. The parameters used
in this simulation experiment are listed in Table 1. From the Fig. 6(a),
we can see that the target extension dimension D is about 2.8 m.
According to the far field requirement R ≥ 2D2

/
λ, the target far field

range is equal or greater than 519 m. In our simulation experiment, the
range from radar to target is only 8 m, so the radar is in the near-field
zone of the target.

The 3D imaging result obtained via proposed algorithm is shown
in Fig. 6(b). It can be seen that 9 scatterers in different planes are
focused very well. The position of each reconstructed point is nearly
consistent with its actual position. And the reconstructed image is
consistent with the 3D simulation geometrical structure. Figs. 6(c)–
(e) show 2D image of scatterers in each plane, and the dynamic range
of each image is 25 dB. Comparing these images, we also find that the
reconstructed points at z = 0 are smaller than those at z = 1 and
z = −1. The reason for this phenomenon is that the resolution of a
scatterer in scene declines with range to the scene center.

5. EXPERIMENT RESULTS

In this section, the turntable data of the T72 tank collected by the
group at Georgia Tech Research Institute (GTRI) in the United States
are used to provide experimental validation to the proposed method.
The turntable SAR parameters are shown in Table 3.

As shown in the table, the maximum frequency of the SAR system
is 9.93 GHz and the target extension dimension D is about 9.4 m,
and the distance between radar to the center of turntable is 52.88m.
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Figure 6. Simulation results: (a) 3D scatterers structure, (b) 3D
reconstructed image, (c) slice image at z = −1m, (d) slice image at
z = 0 m, (e) slice image at z = 1m.
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Table 3. System simulation parameters.

Parameter Value
Carrier frequency fc 9.6GHz

Bandwidth B 660MHz
Range sampling number Nr 221

Azimuth sampling number Na 6715
Slant range Rc 52.88m

Scene Radius R0 7.2m
Incident angle θi 60◦

(b)(a)

Figure 7. Turntable imaging geometry: (a) Top view, (b) side view.

According to the far-field criteria, the far-field range of the target
should be equal or greater than 5849.4m. Therefore, the target is in the
near-field zone and this turntable SAR data meet the requirement of
the near-field imaging. Figs. 7(a) and (b) show the turntable imaging
geometry [30].

Figures 8(a)–(f) show six slices of the tank 3D image at z = −2,
−1.25, 0, 0.75, 1.25 and 2 m. As shown in Fig. 8, different parts of
the T72 tank are focused in different elevation z. For example, the
two corner reflectors are focused very well at z = −1.25 m, the focused
barrel appears at z = 0.75m and the tank turret is focused at z = 2 m.

The imaging results in Figs. 9(a)–(c) are 2D images at the
elevation z = 0 m reconstructed by FO algorithm, BP algorithm and
our proposed method. To reconstruct this 2D image, our method
costs only about 13 seconds. The other two algorithms need about
hundreds or even thousands of seconds for reconstruct an image. The
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(a) (b)

(c) (d)

(e) (f)

Figure 8. T72 tank 3D image: (a) Image result at z = −2 m,
(b) image result at z = −1.25m, (c) image result at z = 0 m, (d) image
result at z = 0.75m, (e) image result at z = 1.25m, (f) image result
at z = 2 m.
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(a) (b)

(c)

Figure 9. Imaging results of a slice at z = 0: (a) FO algorithm,
(b) BP algorithm, (c) our method.

comparison of these results shows that the proposed algorithm has the
same accuracy but needs less processing time. Therefore, the proposed
algorithm in this paper has potential prospect in the real time detection
and imaging field.

6. CONCLUSIONS

In this paper, we propose a near-field 3D imaging algorithm for CSAR
which is based on the theory of the spherical wave decomposition.
By using this theory, the Green’s function is transformed to a
superposition of plane wave components and the far-field assumption
is not used in this transformation process. Therefore, this algorithm
can be used to reconstruct an image of the target in the near-field
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zone. The PSF images, resolutions, sidelobe levels and computational
time of the FO algorithm, BP algorithm and the proposed method
are discussed in details. Compared with the other two algorithms, this
algorithm overcomes the problem of the computational inefficiency and
achieves a good performance. The simulation and experiment results
validate the effectiveness of the proposed algorithm for the 3D target
reconstruction.
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