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BASED ON RANDOM SPARSE ARRAY AND COM-
PRESSED SENSING
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Abstract—This paper proposes an imaging scheme using a random
sparse array (RSA) structure for radar target detection using
compressed sensing (CS). The array collects sparse measurements
with less collection time and data storage. Two schemes of
the RSA are considered, random SAR mode and random array
mode. Performances of both static and moving target detections are
investigated. Performance of RSA with CS is compared with that
using full SAR data with conventional back-projection (BP) method for
static target detection and full uniform linear array (ULA) data with
conventional beamforming (CBF) method for moving target detection.
Simulation and real experimental tests are provided to verify the
proposed target imaging scheme. Results show that RSA imaging with
CS can perform better than normal SAR and ULA with conventional
imaging methods. However, when environment is complicated and
background too noisy, CS may have degraded performance.

1. INTRODUCTION

Compressed sensing (CS) [1–3] is an emerging technology and
attracting much attention in many research areas. It challenges
Nyquist sampling theorem in signal processing. CS states that it is
possible to perfectly recover sparse/compressible signals with highly
incomplete information under proper transformation basis. This is very
useful and attractive in areas requiring large amount of data processing
time and storage, such as image to image processing, medical imaging
and radar imaging including Synthetic Aperture Radar (SAR) imaging
and Through Wall Radar Imaging (TWRI).
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CS has been proved to be efficient especially in applications
of radar imaging by many research works. In [4], Baraniuk and
Steeghs introduced CS to radar imaging and successfully demonstrated
its advantages in eliminating matched filtering and reducing receiver
analog-to-digital conversion (ADC) bandwidth. In [5], Patel et al.
introduced CS concept in SAR and presented an imaging modality
with high-resolution map of the spatial distribution of targets and
terrain using reduced number of transmitted/received signals. Wei et
al. [6] presented a high resolution imaging method for SAR sparse
targets reconstruction based on CS theory, which reduced sample size
and avoided limitation in the resolution ability of conventional SAR
imaging method based on matched filtering (MF) theory. In [7],
CS was applied to both simulation data and experimental SAR raw
data to demonstrate the effectiveness of CS on two separate 1-D
processing operations in range and azimuth dimensions. Similarly
in [8], Wei et al. applied CS to linear array SAR (LASAR) to
obtain high resolution images and verified via both simulation and
experimental data. Another novel imaging method proposed by Li et
al. in [9] based on SAR and compressed sensing also outperforms
conventional SAR imaging method with higher resolution, lower peak-
sidelobe ratio and less sample data. Recently in [10], Yang et al.
proposed a random-frequency SAR imaging scheme based on CS.
Limitations of stepped-frequency SAR system can be overcome by
transmitting only a small number of frequencies. At the same time, the
available imaging range width is enlarged significantly with range and
azimuth resolutions maintained. However, to the authors’ knowledge,
there are not many works on CS based random array processing.

The concept of random sparse array (RSA) was firstly presented
in [11] for forming building images from different angles. Ao et
al. [12] applied the RSA concept in multi-channel through-the-wall
radar target imaging. Such a random sparse array is able to reduce
the computational burden and operational complexity of an imaging
system. Inspired by the ideas, we propose a RSA imaging scheme
combined with CS for target detection with the aim of reducing
operational complexity as well as data collection time and storage. The
sparse property of RSA is able to satisfy the sparsity requirement of
CS [13, 14]. We have investigated the performance of the proposed RSA
scheme in both static and moving target detections. We present the
image formation results based on CS and time-domain back-projection
(BP) [15, 16] method and conventional beamforming (CBF) method
for static and moving targets respectively. After that, static target
detection based on CS is verified using real experimental data.

The rest of this paper is organized as follows. Section 2 gives the
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review of CS and SAR imaging theory. In Section 3, CS algorithm
based on RSA is described. Section 4 presents simulation results of
target detections, including static and moving targets. Section 5 gives
the respective experimental results. Finally, Section 6 concludes the
entire paper.

2. COMPRESSED SENSING (CS) AND SAR IMAGE
FORMATION

2.1. CS Theory

A vector s (s ∈ CN ) is called Q-sparse if the number of non-null
elements in s is not larger than Q (‖s‖0 ≤ Q, ‖·‖0 represents the zero-
norm (l0 norm) which refers to the non-null elements in vector s). It
can be the vector representing a sparse scene with Q targets. Suppose
another signal x is sparse on a basis matrix Ψ which represents a linear
transformation. Signal x of length N × 1 is also Q-sparse if it can be
written in the form of (1).

x = Ψs (1)

where Ψ is called the sparsifying matrix of size N × N . Signal x
is usually measured by a measurement vector y in a system. The
measurement vector y of length M × 1 (M < N) is a linear projection
of x on a random matrix Φ,

y = Φx (2)

where Φ is a M ×N measurement matrix (where M ¿ N). From (1)
and (2) we can find the relationships between y and s. Obviously y
can be represented in terms of s via the following expression,

y = As (3)

where A = ΦΨ.
To recover s from y, one needs to solve a minimization problem

expressed in (4).
min

s
‖s‖1 s.t. y = As (4)

where ‖·‖1 represents the lp norm having the classic definition of

‖s‖p =
(

N∑
n=1

|sn|p
)1/p

at p = 1. When noise is present, the problem

becomes (5), and ξ is the uncertainty level.

min
s
‖s‖1 s.t. ‖y−As‖2 ≤ ξ (5)
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It has been proved in [1–3] that in order to exactly recover the
desired sparse vector s using y, the transformation matrix A must
satisfy the Restricted Isometry Property (RIP).

(1− δ) ‖s‖2 ≤ ‖As‖2 ≤ (1 + δ) ‖s‖2 (6)

where δ is the smallest possible constant (δ > 0). ‖·‖2 represents
the l2 norm (p = 2). The RIP actually measures how well every
set of Q columns of A forms approximately an orthonormal system.
The smaller the positive constant δ is, the more possible to perfectly
recover signals. The number of minimum measurements required is
determined by the mutual coherence of matrix Φ and Ψ. Mutual
coherence indicates the spreading extent of information associated with
s among the entries of y. The lower mutual coherence between Φ and
Ψ is, the fewer number of measurements are needed to recover s from
y [17]. The required number of measurements to recover s must satisfy
the condition stated in [18],

M ≥ C [µ (Φ,Ψ)]2 NQ log Q (7)

where C is a constant and µ(ΦΨ) the mutual coherence between Φ
and Ψ of which the mathematical expression is,

µ (Φ,Ψ) = max
i6=j

|〈Φi,Ψj〉| (8)

where Φi and Ψj are columns of the matrix and this expression is only
valid if these columns have unit norms.

Several approaches are used in CS to reconstruct the sparse signal,
such as convex optimization [19, 20] and greedy algorithms [21–24].
Among these approaches, Orthogonal Matching Pursuit (OMP) [22]
is a widely used version of greedy algorithms and s can be recovered
by iteratively finding global minimum from locally optimal solution in
each step.

2.2. SAR Imaging

In conventional SAR imaging system, single sensor moves along the
azimuth direction to transmit and receive signals at each azimuth
sampling position. Uniform azimuth sampling position and large
azimuth aperture are required to ensure FFT processing and good
azimuth resolution respectively. Range resolution is ensured by using
wideband signals such as linear frequency modulated (LFM) signal
(such as chirp) or stepped-frequency signal. Stepped-frequency SAR
synthesizes a wide bandwidth by transmitting large number of single
frequency pulses. This requires large data storage and extensive
processing time.
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Suppose there are total M radar positions, Q targets in the scene
and N number of frequency bins in the stepped-frequency signal. The
starting frequency is f0, frequency step is ∆f . The transmitting signal
with frequency fn is expressed as,

sn (t) = rect
(

t− Tp/2
Tp

)
exp (j2πfnt) (9)

where fn = f0 + (n− 1)∆f and rect( t−Tp/2
Tp

) = u(t) − u( t−Tp

Tp
), u(t) is

the unit function.
Received echo signal is amplitude modulated and phase shifted

version of the transmitting signal. The received echo signal from the
qth target to the mth radar position is,

rmq (n, t) = σqrect
(

t− τmq − Tp/2
Tp

)
exp [j2πfn (t− τmq)] (10)

where τmq = 2Rmq/c. Rmq is the distance between the qth target and
the mth radar position. σq denotes the reflectivity of the qth target.
After frequency demodulation, lowpass filtering and digital sampling,
the discrete baseband received signal at nth frequency and mth radar
position is,

x [m,n] =
Q∑

q=1

σq exp (−j2πfnτmq) + w [m,n] (11)

where w[m,n] represents the noise term. Therefore total baseband
received signal at mth radar position is a vector of length N × 1,

x [m] = [x [m, 1] x [m, 2] . . . x [m, N ]]T (12)
In matrix form, signal received at all the radar positions is expressed
as an N ×M matrix,

X = [x [1] x [2] . . . x [M ]] (13)
The imaging process of SAR includes range compression and

azimuth compression. For stepped-frequency signal, range compression
is realized by performing inverse discrete Fourier transform (IDFT) on
received baseband signals, azimuth compression is normally achieved
by back-projection (BP) algorithm.

3. COMPRESSED SENSING TARGET DETECTION
USING RSA

3.1. Random Sparse Array (RSA)

In this section, we present the detailed geometry of the random sparse
array as well as its implementations.
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We characterize the RSA into two modes. One is called random
SAR mode and the other called random array mode (see Fig. 1). SAR
mode is similar to conventional SAR case — using single sensor for
transmitting and receiving at each azimuth position. But the difference
is that we randomly move the sensor to a position for transmitting and
receiving. The distance between adjacent azimuth positions is random,
and positions may be determined by inertial measurement units (IMU)
with ring laser gyro or MEMS gyro [25, 26]. Array mode is similar to
normal uniform linear array (ULA). Few number of antenna elements
are randomly placed in a position. The elements are located randomly
forming a large aperture array with very few elements. The element
positions may be determined using above method. Along with the
two modes, their respective comparable geometries are also illustrated
in Fig. 1. To make the comparison reasonable, the first and the
last elements of RSA are kept to be at the same position as that of
the respective SAR/ULA geometry, elements in between are random
located. From the schematic geometries, we can directly tell that RSA
needs much fewer elements and measurements than normal SAR and
ULA and is much easier to implement.

Figure 1. Schematic diagram of RSA schemes (SAR mode and array
mode) and respective comparisons (SAR and ULA).
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Assume that there are M random sparse positions or array
elements in the system. The RSA can be denoted using a position
matrix (14).

P = [r0 r1 . . . rm . . . rM−1]
T (14)

where r0 is the first azimuth position in RSA-SAR mode or the TX
position in RSA-array mode. The first position vector r0 is fixed and
the mth position vector can be expressed in (15).

rm = rm−1 + ∆xmax + ∆ymay, m = 1, 2, . . . , M − 1 (15)

where rm = xmax + ymay, ∆xm and ∆ym are the distance
displacements from the (m − 1)th position along x axis and y axis,
respectively. In this paper, we consider the case when the displacement
occurs at one direction (along the sensor moving direction above) only.

3.2. Static Target Detection Using CS

In this section, we investigate the performance of the first scheme of
RSA, random SAR mode, in which one sensor is used. We consider
that a RSA has M random sparse positions, the sensor transmits a
stepped-frequency signal and then receives it at each position, and the
signal is composed of N frequency bins.

Assume that the investigated target scene is sparse. We divide
the area into pixels of size dx × dy, where x = 1, 2, . . . , K, and y = 1,
2, . . . , L. Reflectivity at (x, y)th pixel is σxy . Denote target scene
reflectivity as a vector

s = [σ11,σ21, . . . , σK1,σ12,σ22, . . . , σxy , . . . , σKL]T (16)

where σxy = 0 if no target is in the (x, y)th pixel.
The received signal is related to the scene reflectivity by an

amplitude modulation and phase shift as in (10). Let g = x + (y −
1)K [27], ranging from 1 to KL, the received signal at nth frequency
and mth radar position without noise is expressed as,

x [m,n] =
KL∑

g=1

σg exp (−j2πfnτmg) (17)

where τmg = 2Rmg/c. Rmg is the distance between mth radar position
and gth pixel position.

The total measurement data are the summation of the received
signal from each individual pixel position. Therefore, expressing the
measurement data at all the azimuth positions in RSA in matrix format
when R number of frequency bins are selected for processing, we get

y = Φx + w = ΦΨs + w (18)
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where

Ψ =
[
ΨT

1 ΨT
2 . . . ΨT

N

]T

MN×KL

[Ψn]mg = exp(−j2πfnτmg)

τmg =
2

∣∣rm − r′g
∣∣

c
n = 1, 2, . . . , N, g = 1, 2, . . . , KL

x is the MN × 1 received vector, Φ the measurement matrix of size
MR ×MN for randomly selecting frequency bins, and w the MR × 1
noise vector, r′g = xgax + ygay the position vector of gth pixel. Matrix
Φ could be chosen to be a matrix consisting of a single one located
randomly in each row [28] so that the mutual coherence between Φ
and Ψ can be minimized. OMP reconstruction method can then be
applied to recover the target scene.

3.3. Moving Target Detection Using CS

Moving target detection is considered in this section, and the second
scheme of RSA, the random array mode, is used. Here RSA consists
of M number of antenna elements placed in random positions. The
first element of RSA acts as a transmitter (TX), and all the elements
are receivers (RX), including the first one. We will look at the case of
moving target detection without walls instead of the TTW case in [27].

Target scene is also divided into K × L pixels. According to [29],
moving target scene can be considered sparse. The target scene at time
ti is the same as (16) and can be denoted as,

si =
[
σi

11, σ
i
21, . . . , σ

i
K1, σ

i
12, σ

i
22, . . . , σ

i
xy , . . . , σi

KL

]T (19)

where σi
xy is the reflectivity of (x, y)th pixel at time ti. σi

xy = 0 when
no target is inside the pixel. Moving target scene at time instant ti
can be represented by the scene difference between time instants ti and
ti−1,

si
∆=si−si−1 =[∆σ11, ∆σ21, . . . , ∆σK1, ∆σ12, ∆σ22, . . . ,∆σKL]T (20)

∆σxy =σi
xy − σi−1

xy =

{ −σq, target move out
0, no target
σq, target move in

(21)

Instead of being represented by summation of difference signals
from all target positions, difference signal at mth RX can be
represented in another form — sum of difference signals from all the
KL pixel positions, including noise-only terms for non-target pixels and
signal-plus-noise terms for target pixels during the observation time.
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By using index g in Section 3.2, the difference signal from gth pixel
position is,

xi
∆g[m,n] = ∆σg exp(−j2πfnτTgm) (22)

where ∆σg = ∆σxy , and τTgm is the round trip time delay from TX
via gth pixel to mth RX. The total difference signal is thus in the form
of (23),

xi
∆[m,n] =

KL∑

g=1

∆σg exp(−j2πfnτTgm) + W∆[m,n] (23)

When selecting R number of frequency bins, total measurement vector
becomes,

yi
∆ = Φxi

∆ + wi
∆ = ΦΨsi

∆ + wi
∆ (24)

where Φ and Ψ are the same as (18), except the format of elements
in Ψ, [Ψn]gm = exp(−j2πfnτTgm), τTgm = (|rg − r′T |+ |r′m − rg|)/c,
and rT is the fixed transmitter position in the RSA. xi

∆ is a MN × 1
difference signal vector and wi

∆ the difference noise vector. The target
scene difference si

∆ could also be recovered via OMP method.

4. NUMERICAL SIMULATIONS

4.1. Static Target Detection Using RSA and CS

The system model used in the simulation consists of four point targets
and a line of sampling positions along x direction. The four point
targets are located inside an area of size 5m× 5m and range from 0m
to 5m in x direction and 15 m to 20 m in y direction. Pixel size is set
at 0.1m × 0.1m. All targets’ reflectivities are the same (σ = 1), and
other pixels have zero reflectivity (σ = 0). The exact target positions
are set at (1.5, 17.9) m, (1.3, 17.5) m, (2.7, 17.5) m, and (4.1, 17.5)m,
respectively. The simulation parameters are listed in Table 1, and
the target scene can be found in Fig. 2(a). The aperture length of
normal SAR and RSA-SAR mode is set to be the same (around 5 m).
Therefore, number of sampling positions in normal SAR is much larger
than that RSA requires. Results of back-projection and compressed
sensing using normal SAR data and RSA data are compared. All
results are shown in [−30, 0] dB scale.

We choose an amount of RSA data that satisfies the measurement
requirement stated in (7) and keep it to a very small value which is
around 5% × 20% = 1% of full SAR data in the simulation. The
number of azimuth positions in RSA is 5% of that in SAR and 20% of
frequency bins are selected to form the sparse RSA data. Fig. 2 shows
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Table 1. Static target simulation parameters.

Symbol Quantity Value

fst starting frequency 2 GHz

fed ending frequency 3GHz

N number of frequency bins 201

Ns number of azimuth positions in SAR 101

ds azimuth sampling spacing of SAR 50 mm

MRSA number of azimuth positions in RSA 5

r percentage of MRSA/Ns 5% of Ns

R selected frequency bins 20% of N

(a) (b)

(c) (d)

Figure 2. Static target detection results at SNR = 30dB: (a) original
target scene, (b) detection using full SAR data and back-projection,
(c) detection using sparse RSA data and back-projection, (d) detection
using sparse RSA data and compressed sensing.

the simulation results using full SAR data and sparse RSA data with
very good signal quality. The conventional back-projection method and
compressed sensing method are compared by using the same amount
of sparse data.

Comparing Fig. 2(c) and Fig. 2(d), we see that using the same
amount of data, compressed sensing can perform much better than
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back-projection algorithm in reconstructing target scene. Although
targets can be identified in Fig. 2(b), there are many sidelobes around
the target positions, while detection result using RSA and compressed
sensing has no sidelobes at all. This indicates that with much less

(a) (b)

Figure 3. Detection resolutions at SNR = 0 dB: (a) back-projection
with full SAR data, (b) compressed sensing with RSA data of the same
size as full SAR data.

(a) (b)

(c) (d)

Figure 4. Static target detection results using sparse RSA data and
compressed sensing at different SNR values: (a) 20 dB, (b) 10 dB,
(c) 0 dB, (d) −10 dB in [−30, 0] dB scale.
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amount of data, RSA with compressed sensing can give much clearer
detection results than normal SAR imaging method.

Beside sidelobe levels, resolution of detection is also improved. To
demonstrate this, we increase the data size of RSA to the same value
of SAR data, which means that RSA data has the same number of
azimuth positions and frequency bins as those of SAR. The aperture
of RSA is thus much larger than the aperture of SAR. A signal
with relative weak quality is chosen (SNR = 0dB). Fig. 3 gives the
comparison of detection resolutions of SAR and RSA. We could observe
that the resolution of target detection using RSA with compressed
sensing is better improved than that using SAR with back-projection
method.

However, when noise level goes up, we may see some ghost
positions arise in the reconstructed image (as shown in Fig. 4). But
target positions can still be seen easily when SNR is larger than
−10 dB. When SNR level reaches −10 dB, targets cannot be fully
detected. The image display scale in Fig. 4 is set at [−30, 0] dB. To
see the results more clearly, we increase the minimum display scale to
−10 dB in Fig. 5.

(a) (b)

(c) (d)

Figure 5. Static target detection results using sparse RSA data and
compressed sensing at different SNR values: (a) 20 dB, (b) 10 dB,
(c) 0 dB, (d) −10 dB in [−10, 0] dB scale.
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4.2. Moving Target Detection Using RSA and CS

RSA-array mode is used in moving target scene reconstruction. System
model for moving target is shown in Fig. 6. Three targets are located
in the scene with positions (1.0, 16.8) m, (1.2, 17.4)m, (2.8, 17.6) m,
respectively. The first one is a static target with strong reflectivity
(σ = 10) and the other two are moving targets with relatively weak
reflectivity (σ = 1). Velocities of the two moving targets are assumed
to be (−2,−1)m/s and (2, −1)m/s. After a pulse repetition interval
(PRI), new positions of the two moving targets will be (1.0, 17.3) m,
(3.0, 17.5) m respectively. Pixel size is still set to be 0.1m × 0.1 m.
Performance of RSA with compressed sensing is compared with that
of ULA of the same aperture with conventional beamforming method.
Assume that there are 5 antenna elements in the array, which is
about 5% of the ULA elements with the same array aperture. 20%
of frequency bins are selected. Parameters are shown in Table 2.

Table 2. Moving target simulation parameters.

Symbol Quantity Value

fst starting frequency 2 GHz

fed ending frequency 3GHz

N number of frequency bins 201

Na number of antenna elements in ULA 101

da array element spacing of ULA 50mm

MRSA number of antenna elements in RSA 5

r percentage of MRSA/Na 5% of Na

R selected frequency bins 20% of N

PRI pulse repetition interval of TX 0.1 s

In this part, RSA data are again set to be 1% of ULA data, and the
aperture of both RSA and ULA are kept the same for fair comparison.
Moving target detection is achieved by performing change detection
between two observation instants. Two positions of the targets at
these two instants are reconstructed and displayed.

From the simulation results shown in Fig. 7, one can see that
RSA imaging with compressed sensing can recover moving target scene
perfectly with very few measurements. Conventional beamforming
algorithm nearly fails when measurements are not enough. When
using full ULA data of the same aperture as that of RSA, meaning
much more measurements, the results are still not good compared with
reconstruction result of RSA data with compressed sensing. It is also
necessary to view the performance of RSA and compressed sensing
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Figure 6. Original target scene (static target in black circle and
moving targets in black dots).

(a) (b)

(c) (d)

Figure 7. Moving target detection results at SNR = 30dB: (a) moving
target scene, (b) detection using full ULA data and beamforming
method, (c) detection using sparse RSA data and beamforming
method, (d) detection using sparse RSA data and compressed sensing.

at low SNR values. We obtain the detection results at different SNR
values and compare them in Fig. 8. At SNR = −10 dB, moving targets
cannot be fully detected as shown in Fig. 8(d).
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(a) (b)

(c) (d)

Figure 8. Moving target detection results using sparse RSA data
and compressed sensing at different SNR values: (a) 20 dB, (b) 10 dB,
(c) 0 dB, (d) −10 dB in [−30, 0] dB scale.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

We carried out an experimental test outside a laboratory area to verify
the performance of the proposed scheme in static target detection case.
Fig. 9 shows a simple SAR sensor setup consisting of two collocated
broadband ridged horn antennas for transmitting and receiving, an
Agilent N3382A Vector Network Analyzer (VNA) for signal generation
and measurements, and a laptop with LabView software for automated
measurement control. The two antennas are broadband ridged horn
antennas with frequency specification from 0.8GHz to 8.0 GHz.

The interested target scene is about 20 m long and 20 m wide.
A synthesized aperture of length 13 m is used for both full SAR and
RSA. The number of azimuth positions is 372, and the spacing between
adjacent azimuth positions is 35mm for SAR. The spacing between
azimuth positions of RSA is random, and the number of azimuth
positions in RSA is a portion of the number in SAR. A wideband
signal ranging from 4GHz to 6 GHz is synthesized by a number of
frequency steps. The frequency step is 1.25 MHz, and there are 1601
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Figure 9. Equipment setup with collocated broadband transmitting
and receiving antennas and an Agilent N3382A VNA as the transceiver.

Table 3. Experimental parameters.

Symbol Quantity Value

fst starting frequency 4GHz

fed ending frequency 6 GHz

N number of frequency bins 1601

Ns number of azimuth positions in SAR 372

ds azimuth sampling spacing 35mm

MRSA number of azimuth positions in RSA 148

r percentage of MRSA/Ns 40% of Ns

R selected frequency bins 80% of N

θ
(H)
3 dB H-plane antenna beam width 36◦ ± 3◦

frequency steps in total. We obtain the H-plane beam width of the
antenna from its test report and list the value in Table 3 along with all
other parameters. The RSA azimuth position number is 40% of that in
SAR, and we choose a larger percentage (80% for instance) of selected
frequency bins in the experiment for RSA to tolerant unexpected
interferences or noises in the experimental case.

Figure 10 shows a photo of the ground truth that we are
investigating. There are six targets in total. The four palm trees
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Figure 10. Ground truth of the target area with main targets: four
palm trees, one street lamp post, and one trihedral corner reflector
(circled in red).

Figure 11. Imaging result using full SAR data and back-projection
method with pixel size of 0.01m× 0.01m.

are considered as main targets. One trihedral corner reflector is placed
at a position between two palm trees at the center, but a little further
than them in range direction. Near the second tree from the left, there
is a street lamp post made of metal and is another strong target in the
scene. Fig. 11 gives the two-dimensional SAR image with a pixel size
of 0.01m× 0.01m.

5.2. Static Target Detection Based on RSA and CS

Before presenting the experimental results, we give the respective
simulation results using the same parameter set as in the experiment.
As seen from Fig. 11, the six targets are located approximately at
(6.6, 35) m, (9.5, 32)m, (12.8, 29.5) m, (8.5, 29.5) m, (4.5, 29.5) m and
(0, 29.5)m in the sequence from further to nearer and from left to
right. Fig. 12 shows the target scene and detection results using back-



350 Huang and Lu

(a) (b)

(c) (d)

Figure 12. Static target detection results with same set of parameters
as in Table 3 at SNR = −10 dB: (a) original target scene, (b) detection
using full SAR data and back-projection, (c) detection using sparse
RSA data and back-projection, (d) detection using sparse RSA data
and compressed sensing.

projection method and compressed sensing. To reduce the processing
time, the pixel size is set to be 0.5m× 0.5m in the simulation.

In the experimental results, we set the pixel size at the same value
(to 0.5m × 0.5m) as that in Fig. 12 with the purpose of reducing
processing time and giving a fair comparison. OMP algorithm is
applied in compressed sensing reconstruction using RSA data. Result
using full SAR data and back-projection method is shown in Fig. 13.
Compared with the image in Fig. 11, the corner reflector becomes
difficult to identify in this figure after pixel size is increased. Fig. 14
shows the detection result using sparse RSA data and back-projection,
and Fig. 15 shows the detection result using sparse RSA data and
compressed sensing.

To see the results more clearly, we decrease the image display
scale of Figs. 14 and 15 to [−10, 0] dB and show the resulted images in
Figs. 16 and 17, respectively. Besides, we also circled necessary places
in both images to emphasize the real target positions. By comparing
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Figure 13. Detection result
using back-projection with full
SAR data in [−30, 0] dB scale.

Figure 14. Detection result
using back-projection with sparse
RSA data in [−30, 0] dB scale.

Figure 15. Detection result
using compressed sensing with
sparse RSA data in [−30, 0] dB
scale.

Figure 16. Detection result
using back-projection with sparse
RSA data in [−10, 0] dB scale.

Figure 17. Detection result using compressed sensing with sparse
RSA data in [−10, 0] dB scale.

these two figures, we can see that compressed sensing with sparse RSA
data produces better result in Fig. 17 than back-projection with the
same sparse data in Fig. 16. In Fig 17, the lamp is recognizable. Four
palm trees can still be identified in the image except the one nearest
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to the lamp. This is possibly due to the strong reflections of the lamp
which submerges the reflection of the second palm tree. The corner
reflector is totally missed due to weak reflection. Targets in Fig. 16 are
not recognizable at all.

When comparing the result in Fig. 17 with that in Fig. 13, we find
that detection result of compressed sensing with sparse RSA data is
not as good as that using back-projection method with full SAR data.
In this case, from the viewpoint of perfect target detection, full SAR
method gives much better result than RSA and compressed sensing.
It is concluded that in practical experiments, target detection using
compressed sensing and RSA may not be ideal, but it decreases data
storage and processing time with acceptable performance. Targets may
not be fully and correctly detected when the environment consists of
many unknown sources, possibly including the undesired reflections
and possible multiple scattering from the static background. When
data storage and processing time are not the concern, back-projection
method with more SAR data may have better detection result than
compressed sensing method with less RSA data.

6. CONCLUSIONS

In this paper, a target detection method based on random sparse array
(RSA) and compressed sensing imaging is presented and evaluated.
Simulated and experimental examples are presented to validate the
method. The results show that the two proposed RSA schemes
combined with compressed sensing can achieve higher resolution and
lower sidelobe levels than traditional imaging methods in both static
and moving target detections. However, the performance of RSA with
compressed sensing is degraded for real situations since environment is
complex with many unknown sources, and further studies are needed
to improve the algorithms for real applications.
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