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Abstract—Based on the method of the vectorial angular spectrum,
an analytical expression of the electric field of an elegant Laguerre-
Gaussian beam in free space is derived beyond the paraxial
approximation, and the corresponding magnetic field is obtained by
taking the curl of the electric field. By using the expressions for the
electromagnetic fields, the expression of the orbital angular momentum
density of the elegant Laguerre-Gaussian beam is derived, which is
applicable to both the near and far fields. The effects of the three
beam parameters on the distribution of the orbital angular momentum
density of the elegant Laguerre-Gaussian beam are studied. The
distribution of the orbital angular momentum density of the elegant
Laguerre-Gaussian beam is also compared with that of the standard
Laguerre-Gaussian beam. The result shows that the distribution of the
orbital angular momentum density of the elegant Laguerre-Gaussian
beam is more simple and centralized than that of the standard
Laguerre-Gaussian beam.

1. INTRODUCTION

The higher-order modes of axially symmetric laser cavities with
spherical mirrors are the standard Laguerre-Gaussian beams. As
an extension of the standard Laguerre-Gaussian beams, an elegant
Laguerre-Gaussian beam has been introduced [1]. The elegant
Laguerre-Gaussian beams are also the eigenmodes of the paraxial wave
equation. In the expression of the standard Laguerre-Gaussian beams
where the paraxial approximation is applied, only the Gaussian part
has a complex argument. While in the expression of the elegant
Laguerre-Gaussian beams where the paraxial approximation holds,
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the arguments are both complex in the Gaussian and the Laguerre
parts [1]. The properties of the elegant Laguerre-Gaussian beams
propagating in free space [2–4], through a paraxial ABCD optical
system [5], in apertured fractional Hankel transform systems [6],
through aligned and misaligned paraxial optical systems [7], at a
dielectric interface [8], in turbulent atmosphere [9], in non-Kolmogorov
turbulence [10], by an opaque obstacle [11], and in a uniaxial
crystal [12] have been extensively investigated. Based on the
expansion of the hard aperture function into a finite sum of complex
Gaussian functions, the propagation characteristics of truncated
elegant Laguerre-Gaussian beams have been examined [13, 14]. The
vectorial structure of the elegant Laguerre-Gaussian beam has been
depicted in the far-field regime [15]. Higher-order complex source has
been proposed to generate the elegant Laguerre-Gaussian beams [16].
The relationship between the elegant Laguerre-Gaussian and the
Bessel-Gaussian beams has been revealed [17]. Diagonal relations
between elegant Hermite-Gaussian and Laguerre-Gaussian beams have
also been evaluated [18]. New fractional-order solutions, which
smoothly connect the elegant Laguerre-Gaussian beams of integral-
order, of the paraxial wave equation have been presented by means of
the tools of fractional calculus [19]. Elegant Laguerre-Gaussian beams
can be used as a new tool to describe the axisymmetric flattened
Gaussian beam [20]. The elegant Laguerre-Gaussian beams have
also been extended to the nonparaxial case [21, 22] and the partially
coherent case [23–25].

Elegant Laguerre-Gaussian beams carry the orbital angular
momentum and can impart this angular momentum to microscopic
particles. Therefore, the elegant Laguerre-Gaussian beam can be
applied to optical trapping, optical micro-manipulation, nonlinear
optics, and quantum information processing [26–32]. To our best
knowledge, however, the research in the orbital angular momentum
density of the elegant Laguerre-Gaussian beam has not been reported
so far. In the remainder of this paper, therefore, we investigate the
orbital angular momentum density of the elegant Laguerre-Gaussian
beam. Moreover, we treat the elegant Laguerre-Gaussian beam beyond
the paraxial approximation. Under the condition of the paraxial
approximation, the elegant Laguerre-Gaussian beam is described by
the solution of the paraxial wave equation. When extended to the
case beyond the paraxial approximation, the perturbation method
in the scalar theory, the Lommel’s lemma in the vectorial theory,
and the vectorial Rayleigh-Sommerfeld formulae are usually used to
describe the elegant Laguerre-Gaussian beam. Here the description of
the elegant Laguerre-Gaussian beam is based on the method of the
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vectorial angular spectrum. By using the electromagnetic fields of the
elegant Laguerre-Gaussian beam beyond the paraxial approximation,
the expression of the orbital angular momentum density of the elegant
Laguerre-Gaussian beam is derived in free space. As the overall
transverse component of the orbital angular momentum is zero, only
the longitudinal component of the orbital angular momentum density
is considered. The effects of the beam parameters on the distribution
of the orbital angular momentum density of the elegant Laguerre-
Gaussian beam are also discussed.

2. ORBITAL ANGULAR MOMENTUM DENSITY OF
AN ELEGANT LAGURRE-GAUSSIAN BEAM

The z-axis is taken to be the propagation axis. The elegant Laguerre-
Gaussian beam is assumed to be linearly polarized along the x-
direction, and the y-component of the optical field is equal to zero.
The elegant Laguerre-Gaussian beam in the source plane z = 0 takes
the form of

Ex(ρ, 0, θ) =
(

ρ

w0

)m

Lm
n

(
ρ2

w2
0

)
exp

(
− ρ2

w2
0

)
exp(imθ), (1)

where w0 is the beam waist width of the fundamental Gaussian mode,
and Lm

n is the associated Laguerre polynomial. n and m are the
radial and angular mode numbers, respectively. ρ = (x2 + y2)1/2 and
θ = tan−1(y/x). The time dependent factor exp(−iωt) is omitted
in Eq. (1), and ω is the angular frequency. Due to the radial and
azimuthal symmetry, the method of the vectorial angular spectrum is
used to derive the propagating electromagnetic fields of the elegant
Laguerre-Gaussian beam, which will result in the relatively simple
formulae. The exact description of the elegant Laguerre-Gaussian
beam should be directly initiated from Maxwell’s equations. Moreover,
the method of the vectorial angular spectrum is a useful tool to resolve
Maxwell’s equations. Eq. (1) is the boundary condition of Maxwell’s
equations. The elegant Laguerre-Gaussian beam should satisfy the
Maxwell’s equations:

∇×E(ρ, z, θ)− ikH(ρ, z, θ) = 0, (2)
∇×H(ρ, z, θ) + ikE(ρ, z, θ) = 0, (3)
∇ ·E(ρ, z, θ) = ∇ ·H(ρ, z, θ) = 0, (4)

where k = 2π/λ is the wave number with λ being the
optical wavelength. E(ρ, z, θ) and H(ρ, z, θ) are the propagating
electromagnetic fields. When the Maxwell’s equations are transformed
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from the space domain into the frequency domain, Eqs. (2)–(4) become

L× Ẽ(p, q, z)− ikH̃(p, q, z) = 0, (5)

L× H̃(p, q, z) + ikẼ(p, q, z) = 0, (6)

L · Ẽ(p, q, z) = L · H̃(p, q, z) = 0, (7)

where L = ikpi + ikqj + ∂/∂zk. i, j, and k are the unit vectors in the
x-, y-, and z-directions, respectively. p/λ and q/λ are the transverse
frequencies. Ẽ(p, q, z) and E(ρ, z, θ) are the spatial Fourier transform
pair:

E(ρ, z, θ) =
∫ ∞

−∞

∫ ∞

−∞
Ẽ(p, q, z) exp[ik(px + qy)]dpdq. (8)

H̃(p, q, z) and H(ρ, z, θ) are also the spatial Fourier transform pair:

H(ρ, z, θ) =
∫ ∞

−∞

∫ ∞

−∞
H̃(p, q, z) exp[ik(px + qy)]dpdq. (9)

The solutions of Eqs. (5)–(7) can be expressed in the form as

Ẽ(p, q, z) = A(p, q) exp(ikγz), (10)

H̃(p, q, z) =
√

ε0

µ0
[s×A(p, q)] exp(ikγz), (11)

where A(p, q) is the vector angular spectrum. γ = (1 − p2 − q2)1/2,
s = pi + qj + γk. ε0 and µ0 are the electric permittivity and the
magnetic permeability in vacuum, respectively. The vector angular
spectrum A(p, q) reads as

A(p, q) = Ax(p, q)i + Ay(p, q)j + Az(p, q)k. (12)

The transverse components of the vector angular spectrum Ax(p, q)
and Ay(p, q) are given by the Fourier transform of of the transversal
components of initial electric field. The longitudinal component of the
vector angular spectrum Az(p, q) is given by the orthogonal relation
s ·A(p, q) = 0 and turns out to be

Az(p, q) = −[pAx(p, q) + qAy(p, q)]/γ. (13)

Therefore, the propagating electric field of the elegant Laguerre-
Gaussian beam in the z-plane is found to be

E(ρ, z, θ) =
∫ ∞

0

∫ 2π

0
Ax(b, ϕ)

(
i− b cosϕ

γ
k
)

exp{ik[bρ cos(ϕ− θ) + γz]}bdbdϕ, (14)
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where b2 = (p2 + q2)1/2, and ϕ = tan−1(q/p). Ax(b, ϕ) is the x
component of the vector angular spectrum and is given by the Fourier
transformation of the x-component of initial electric field [33]:

Ax(b, ϕ) =
1
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∫ ∞

0
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n
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)]
ρ′dρ′dθ′, (15)

We recall the following mathematical formulae [34]:
∫ 2π

0
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where Jm is the m-th order Bessel function of the first kind and
f = 1/kw0. The x-component of the vector angular spectrum is found
to be

Ax(b, ϕ) =
(−i)m

4πf2
exp(imϕ)

n∑

l=0
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n− l

)(
b

2f
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. (19)

The x-component of the optical field of the elegant Laguerre-Gaussian
beam yields

Ex(ρ, z, θ) =
1
f2

n∑

l=0

l∑

s=0

(−1)l+s

22s+m+1s!

(
n + m
n− l

)(
l + m
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) ∫ ∞

0
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)
Jm(kbρ) exp(imθ + ikγz)bdb. (20)

When z is larger than several wavelengths, the effect of the evanescent
waves can be ignored. Therefore, the upper limit of integral in Eq. (20)
can be replaced by 1. In this case, exp(ikγz) can be expanded as [34]

exp(ikγz) =
∞∑

u=0

1
2uu!

(kz)u+1H1
u−1(kz)b2u, (21)
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where H1
u−1 is the (u−1)th-order spherical Bessel function of the third

kind. Eq. (20) can be expressed as

Ex(ρ, z, θ) =
1
f2
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When 1/f2 is large, the second integral term in Eq. (22) is controlled
by the Gaussian exponential term. With the fixed values of n and
m, the second integral can be neglected for the certain range of f ,
which has been demonstrated in Refs. [35–38]. When n = m = 0, the
omission of the second integral is allowed for the case of f ≤ 0.2. When
n + m/2 ≤ 15, the omission of the second integral is allowed for the
case of f ≤ 0.055 [39]. When the second integral is omitted, Eq. (22)
analytically turns out to be
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When u only takes 0, Eq. (23) is just the paraxial solution. Therefore,
our result includes numerous correction terms, which is characterized
by f2u (u 6= 0). Therefore, here the procedure is performed beyond
the paraxial approximation. The longitudinal component of the optical
field of the elegant Laguerre-Gaussian beam reads as

Ez(ρ, z, θ) = − i cos θ

2f2
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When b < 1, the following expansion is valid [34]
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γ

=
∞∑

u=0

i

2uu!
(kz)u+1H1

u(kz)b2u. (25)



Progress In Electromagnetics Research, Vol. 141, 2013 757

Similarly, the longitudinal component of the optical field of the elegant
Laguerre-Gaussian beam can be analytically expressed as

Ez(ρ, z, θ) =
1
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As the orbital angular momentum density involves the Poyting
vector, the definition of the Poyting vector is based on the electric
and the magnetic fields. By taking the curl of the electric field, the
magnetic field of the elegant Laguerre-Gaussian beam turns out to be

H(ρ, z, θ) =
i

ωµ0
∇×E(ρ, z, θ), (27)

(a) (b)

(c) (d)

Figure 1. The orbital angular momentum density of the elegant
Laguerre-Gaussian beam in different reference planes. w0 = 5λ, n = 3,
and m = 0. (a) z = 0. (b) z = 5λ. (c) z = 10λ. (d) z = 15λ.
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where µ0 is the magnetic permeability of vacuum. Eq. (27) is just
one of Maxwell’s equations, which is the exact solution. As no
paraxial approximation is used, the electromagnetic fields of the elegant
Laguerre-Gaussian beam propagating in free space are derived beyond
the paraxial approximation. For the certain range of f , the omission
in the electric field does not affect the magnetic field, which can be
verified by the self-consistence of Maxwell’s equation:

E(ρ, z, θ) = −iωε0∇×H(ρ, z, θ), (28)

where ε0 is the electric permittivity of vacuum. The Poyting vector of
the elegant Laguerre-Gaussian beam is given by

S(ρ, z, θ) =
1
4
〈E(ρ, z, θ)×H∗(ρ, z, θ)+E∗(ρ, z, θ)×H(ρ, z, θ)〉

= Sx(ρ, z, θ)i + Sy(ρ, z, θ)j + Sz(ρ, z, θ)k, (29)

(a) (b)

(c) (d)

Figure 2. The orbital angular momentum density of the elegant
Laguerre-Gaussian beam in the reference plane z = 20λ. w0 = 5λ
and n = 3. (a) m = 0. (b) m = 1. (c) m = 2. (d) m = 3.
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with Sx(ρ, z, θ), Sy(ρ, z, θ), and Sz(ρ, z, θ) being given by

Sx(ρ, z, θ) =
i

4ωµ0

{
Ez(ρ, z, θ)

[
∂E∗
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]}
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where the angle brackets indicate an average with respect to the time,
and the asterisk denotes the complex conjugation. j is the unit vectors
in the y-direction. In Eqs. (30)–(32), Ey(ρ, z, θ) = 0 is taken into
account. The orbital angular momentum density is defined as [40, 41]

J(ρ, z, θ) = ε0µ0[r× S(ρ, z, θ)], (33)

where r = xi + yj + zk. Therefore, the orbital angular momentum
density of the elegant Laguerre-Gaussian beam is found to be

J(ρ, z, θ) = Jx(ρ, z, θ)i+Jy(ρ, z, θ)j + Jz(ρ, z, θ)k, (34)

with Jx (ρ, z, θ), Jy (ρ, z,θ), and Jz (ρ, z, θ) being given by

Jx(ρ, z, θ) = ε0µ0[ySz(ρ, z, θ)− zSy(ρ, z, θ)], (35)
Jy(ρ, z, θ) = ε0µ0[zSx(ρ, z, θ)− xSz(ρ, z, θ)], (36)
Jz(ρ, z, θ) = ε0µ0[xSy(ρ, z, θ)− ySx(ρ, z, θ)], (37)

Inserting Eqs. (23) and (26) into Eqs. (35)–(37), one can obtain the
orbital angular momentum density of the elegant Laguerre-Gaussian
beam. The overall transverse components of the orbital angular
momentum can be verified to be zero. Therefore, here we only
consider the longitudinal component of the orbital angular momentum
density. In Refs. [40, 41], the electromagnetic fields are treated within
the framework of the paraxial approximation. While in the present
paper, the electromagnetic fields are obtained beyond the paraxial
approximation, which is the difference between the present paper and
Refs. [40, 41].
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3. NUMERICAL CALCULATIONS AND ANALYSES

Figure 1 represents the orbital angular momentum density of the
elegant Laguerre-Gaussian beam in different reference plane where
w0 = 5λ, n = 3, and m = 0. When n + m/2 ≤ 15, the obtained
formulae are valid for w0 > 2.89λ. Note that ∂Ex(ρ,z,θ)

∂z is emerged in the
expression of the orbital angular momentum density, the optical field
of the elegant Laguerre-Gaussian beam in the source plane is described
by Eqs. (8) and (12). When m = 0, the areas of the positive and the
negative angular momentum densities are symmetrical. The overall
angular momentum in the reference plane is zero. The distribution of
the positive angular momentum density is located along the π/4 line
with respect to the x-axis, and the distribution of the negative angular
momentum density is located along the 3π/4 line with respect to the
x-axis. Though the angular mode in the x-component of the elegant
Laguerre-Gaussian beam is m, the angular mode in the longitudinal
component of the elegant Laguerre-Gaussian beam is a mixed one of
m + 1 and m − 1, which results in the above distribution. Upon
propagation, the profile of the orbital angular momentum density

(a) (b)

(c) (d)

Figure 3. The orbital angular momentum density of the elegant
Laguerre-Gaussian beam in the reference plane z = 20λ. w0 = 5λ
and m = 2. (a) n = 2. (b) n = 3. (c) n = 4. (d) n = 5.
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slowly expands, and the magnitude of the orbital angular momentum
density increases.

The orbital angular momentum density of the elegant Laguerre-
Gaussian beam in a reference plane is determined by the angular
mode number, the radial mode number, and the beam waist width.
Now, we investigate the effects of these three beam parameters on
the distribution of the orbital angular momentum density, which are
shown in Figs. 2–4. The reference plane is fixed to be z = 20λ.
w0 = 5λ and n = 3 in Fig. 2. When m is a positive integer, the
orbital angular momentum density is negative, which only indicates
the spiral direction. The distribution of the orbital angular momentum
density is composed of two symmetrical lobes, which are located in the
horizontal direction. With increasing the angular mode number, the
magnitude of the orbital angular momentum density increases rapidly,
and the pattern size of the orbital angular momentum density also
slowly augments. However, the shape of the distribution of the orbital
angular momentum density does not change a lot. In Fig. 3, m is
kept to be 2 and n varies. With increasing the radial mode number,
the magnitude and the pattern size of the orbital angular momentum

(a)

(c)

(b)

(d)

Figure 4. The orbital angular momentum density of the elegant
Laguerre-Gaussian beam in the reference plane z = 20λ. m = 2 and
n = 3. (a) w0 = 4λ. (b) w0 = 5λ. (c) w0 = 6λ. (d) w0 =7λ.



762 Zhou and Ru

density both increase. However, the orbital angular momentum density
is more sensitive to the angular mode number than to the radial mode
number. With increasing the radial mode number, the change in the
shape of the distribution of the orbital angular momentum density is
also little. In Fig. 4, m = 2, n = 3, and the beam waist width of
the fundamental Gaussian mode is a variable. With increasing the
beam waist width of the fundamental Gaussian mode, the magnitude
and the pattern size of the orbital angular momentum density also
increase. Nevertheless, the orbital angular momentum density is more
sensitive to the radial mode number than to the beam waist width.
Comparatively, the change in the shape of the distribution of the
orbital angular momentum density is more noticeable with altering
the beam waist width.

For the convenience of comparison, the distributions of the orbital
angular momentum density of a standard Laguerre-Gaussian beam in
the reference plane z = 20λ are shown in Figs. 5–7. The equation used
is from Ref. [39]. Figs. 5–7 match with Figs. 2–4 in terms of beam
parameters. Under the same conditions, the distributions of the orbital

(a) (b)

(c) (d)

Figure 5. The orbital angular momentum density of the standard
Laguerre-Gaussian beam in the reference plane z = 20λ. w0 = 5λ and
n = 3. (a) m = 0. (b) m = 1. (c) m = 2. (d) m = 3.
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(a) (b)

(c) (d)

Figure 6. The orbital angular momentum density of the standard
Laguerre-Gaussian beam in the reference plane z = 20λ. w0 = 5λ and
m = 2. (a) n = 2. (b) n = 3. (c) n = 4. (d) n = 5.

angular momentum density of elegant and standard Laguerre-Gaussian
beams are different. When m = 0, the positive and the negative
angular momentum densities takes on staggered distribution. When m
is a positive integer, the distribution of the orbital angular momentum
density is composed of two central lobes and n pairs of side lobes, which
surround the two central lobes. All of the lobes are located in the
horizontal direction. With increasing the angular mode number or the
beam waist width, the shape of the distribution of the orbital angular
momentum density keeps nearly invariant and only expands in the
pattern size. With increasing the radial mode number, the number of
the side lobes surrounding the central lobes increases, and the pattern
size also augments. Under the same conditions, the magnitude and the
pattern size of the orbital angular momentum density of the standard
Laguerre-Gaussian beam are both larger than those of the elegant
Laguerre-Gaussian beam. However, elegant and standard Laguerre-
Gaussian beams have one thing in common. Of the angular mode
number, the radial mode number, and the beam waist width, the
orbital angular momentum density is most sensitive to the angular
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(a) (b)

(c) (d)

Figure 7. The orbital angular momentum density of the standard
Laguerre-Gaussian beam in the reference plane z = 20λ. m = 2 and
n = 3. (a) w0 = 4λ. (b) w0 = 5λ. (c) w0 = 6λ. (d) w0 = 7λ.

mode number and is most insensitive to the beam waist width. The
advantage of the elegant Laguerre-Gaussian beam over the standard
Laguerre-Gaussian beam is the relatively uniform distribution of the
orbital angular momentum density.

4. CONCLUSIONS

Based on the method of the vectorial angular spectrum, an analytical
expression of the electric field of the elegant Laguerre-Gaussian beam in
free space is derived beyond the paraxial approximation. The magnetic
field of the elegant Laguerre-Gaussian beam is given by taking the
curl of the obtained electric field. By using the expressions of the
electromagnetic fields for the elegant Laguerre-Gaussian beam, the
expression of the orbital angular momentum density of the elegant
Laguerre-Gaussian beam is derived. The formula is applicable to both
the near and far fields. As the overall transverse component of the
orbital angular momentum is zero, only the longitudinal component
of the orbital angular momentum density is taken into account.
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The effects of the three beam parameters on the distribution of the
orbital angular momentum density of the elegant Laguerre-Gaussian
beam are examined. When m 6=0, the distribution of the orbital
angular momentum density is relatively stable and is composed of
two symmetrical lobes. To acquire the maximum orbital angular
momentum density, the optimal choice is to increase the angular mode
number, and the second best choice is to increase the radial mode
number. Also, the distribution of the orbital angular momentum
density of the elegant Laguerre-Gaussian beam is compared with
that of the standard Laguerre-Gaussian beam. When m 6=0, the
distribution of the orbital angular momentum density of the standard
Laguerre-Gaussian beam is composed of two central lobes and n
pairs of side lobes. Under the same conditions, the magnitude and
the pattern size of the orbital angular momentum density of the
standard Laguerre-Gaussian beam are both larger than those of the
elegant Laguerre-Gaussian beam. However, the distribution of the
orbital angular momentum density of the elegant Laguerre-Gaussian
beam is more simple and centralized than that of the standard
Laguerre-Gaussian beam. When altering the radial mode number, the
distribution of the orbital angular momentum density of the elegant
Laguerre-Gaussian beam is more stable than that of the standard
Laguerre-Gaussian beam. As mentioned in the optical field, one wants
to know the distribution of the optical field. When mentioned in the
orbital angular momentum, one also wants to know the distribution of
the orbital angular momentum density. The distribution of the orbital
angular momentum density is significant to the optical trapping,
optical guiding, and optical manipulation. Therefore, the present
study is useful to e.g. optical trapping, optical guiding, and optical
manipulation with an elegant Laguerre-Gaussian beam.
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