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Abstract—In this paper, fusing of a metallic conductor is studied by
judiciously using the solution of the one-dimensional heat equation,
resulting in an approximate method for determining the threshold
fusing current. The action is defined as an integration of the square of
the wire current over time. The burst action (the action required to
completely vaporize the material) for an exploding wire is then used
to estimate the typical wire gapping action (involving wire fusing),
from which gapping time can be estimated for a gapping current
greater than a factor of two over the fusing current. The test data are
used to determine the gapped length as a function of gapping current
and to show, for a limited range, that the gapped length is inversely
proportional to gapping time. The gapping length can be used as a
signature of the fault current level in microelectronic circuits.

1. INTRODUCTION

In 1884, William Henry Preece [1, 2] derived a fundamental law of
fusing by considering the balance of heat generation (I2R) with the
heat loss (πhdl), which is approximately valid near the fusing threshold.
Here we assume that the wire current is constant. The notations used
are: I for the wire current, R for the wire resistance, σ is the wire
electrical conductivity, h is heat loss per unit area from radiation or
convection, d is for the wire diameter, and l is the wire length. Thus,

I2
fR = I2

f

4l

σπd2
= πhdl (1)
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or

If = Bd3/2, B =
π

2
(σh)1/2 (2)

where If denotes the fusing current. Preece’s law states that the wire
fusing current is proportional to the wire diameter to the three halves
power.

Preece’s observation must be complemented by the other limit
when the wire current is applied so quickly that heat loss is completely
negligible, i.e., all the energy is used in heating up the metal. Again,
the wire current is assumed to be constant. The skin effect is neglected.

∫
I2Rdt = I2

∫
dt

σ

4l

πd2
=

πd2l

4

∫
ρCpdt (3)

Here ρ is the density of the metal and Cp is the specific heat (including
latent heat) of the metal.

We assume the heating is uniform when there is no loss and
therefore

Ib = Cd2, C =
π

4

√∫
ρCp dt∫

dt
σ

(4)

Here Ib denotes the burst current for the wire going through melt and
vaporization. The comparison of (2) with Preece’s empirical data was
within 10% [2] because (a) near fusing, heat loss is very much larger
than the heat required to bring the metal to melt (B in (2) is much
larger than Cd1/2 in (4)) and (b) the two terms ((2) and (4)) differ in
the wire diameter exponent by 1/2.

The actual fusing current for a given wire diameter cannot be
determined by Preece’s argument. Preece relied on empirical data to
determine fusing currents for presumably 6-inch long wires (Preece’s
law is true if the wire is long enough so that heat loss would
dominate) [1]. For metals such as gold, aluminum and copper with
high thermal conductivities, it is possible to solve the one-dimensional
heat equation to obtain the fusing current for a specific diameter
and wire length. The lossless limit is discussed in the exploding
wire literature. This paper provides (1) a method for determining
an approximate fusing current for a given bond wire, (2) a lossless
limiting solution where a large current is applied quickly, and (3) an
approximate description for the gapping region (from the test data),
when the applied current is approximately more than a factor of two
over the fusing current. We distinguish fusing from gapping in that
fusing is wire-opening near a threshold current and gapping can be
caused by the current much larger than the fusing current. More details
are discussed below.
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First, a nonlinear one-dimensional heat equation in the length
direction, with tabulated electrical conductivity as a function of
temperature and tabulated thermal conductivity, is solved. The wire
ends are connected to a heat sink and are maintained at a low
temperature. The wire center has a maximum temperature. The
wire center is assumed to reach the melt point. The calculated
threshold values are found to be approximately 15% lower than the
measured value. After the wire center begins to melt, capillary action
dominates; Lord Rayleigh determined for an infinite fluid column that
the maximum capillary force instability occurs at a length of 4.51d.
This can be used as an estimation of the fused length. After accounting
for the shortening of the wire length by the minimum fused gap, a
better agreement between the one-dimensional calculation and the
measured value is obtained.

Second, the existing literature for the lossless limit is briefly
reviewed. When the wire is heated quickly by an applied current,
the joule heating is used solely for melting, vaporizing and bursting
the wire and their corresponding actions have been measured and
tabulated. This is the case when the gapping time (on the order of
µs) is completely negligible and the gapping length is the wire length.

Finally, experimental data clearly shows two different ranges of
wire breakage: (1) For wire currents less than a factor of two above
the fusing current, the wire breakup relies on capillary force instability
of the fluid column that causes a great variation in required action and
fusing time and; (2) for a much larger wire current, the gapping length
is empirically found to be almost linear in current and is approximately
inversely proportional to the gapping time.

2. BOND WIRE FUSING ANALYSIS

Bond wires used in microelectronic circuits are good thermal
conductors and thermal conduction dominates convection (by the
surrounding air) and radiation in the un-melted portion of the wire.
Most heat escapes through the bases of the bond wires (where the ends
of the bond wires are connected to heat sinks). In this analysis, we
assume that the bond wire is maintained at the ambient temperature
by the heat sink and, in contrast to previous analyses, this analysis
includes the phase transition of gold near the center of the bond wire.
One limitation to our present analysis is that the wire ends may not
be at the ambient temperature, especially when the current is applied
very quickly (or for a fat and short wire).
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2.1. Linear Electrical Conductivity Model

We briefly review the linear electrical conductivity model discussed
in [3] and use the result later to calculate the corresponding action.
The wire conductivity is described by

σ =
σ0

1 + a(T − T0)
(5)

where a = 3.4×10−3/K and σ0 = 1/ρ0 = 4.5×105 S/cm at T0 = 293 K.
Power dissipation at the length coordinate x is described by

P =
J2

σ0
[1 + a(T − T0)] (6)

where T is a function of x.
The heat equation can be written as

∂

∂x

(
κ

∂T

∂x

)
+ P = ρCp

∂T

∂t
(7)

for −L/2 < x < L/2 and T (−L/2) = T (L/2) = T1.
A steady state solution to the heat equation is given by

T (x) = D cosαx + T0 − 1/a, (8)

and

D =
T1 − T0 + 1/a

cos(αL/2)
, α = J

√
a

κσ0
. (9)

Setting T (0) = Tm in (8) yields

Ifuse =
πd2

2L
√

κσ0
arccos

T1 − T0 + 1/a

Tm − T0 + 1/a
. (10)

2.2. Derivation of the Nonlinear Solution

The resistivity (1/conductivity = 1/σ) does deviate from linear in
temperature behavior, and for gold it can be approximated as

1/σ = ρ0[1 + a(T − T0)]
[
1 + bρ(T − T0)2

]
(11)

The linear coefficient for resistivity is a = 3.4 × 10−3 K−1 and the
resistivity at T0 = 293◦K is ρ0 = 2.22 × 10−6 Ω-cm and bρ =
3.534× 10−7 K−2.

The thermal conductivity for gold is approximated by

κ = κ0

[
1 + bκ(T − T0)2

]−1
, κ0 = 3.18W/(cm−K),

bκ = 2.487× 10−7 K−2, Tm = 1337◦K.
(12)
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These parameters appear to fit the data given in [4]. For metals such as
copper and aluminum, the empirical electrical resistivity and thermal
conductivity are used for the calculation [4].

The one-dimensional governing heat equation in a steady state for
a finite wire of length L, is:

d

κdx

(
κ

dT

dx

)
=

d2T

dx2 +
dκ

κdx

dT

dx
= −J2

κσ
(13)

The right hand side (except for the negative sign) is the ratio of the
heat generation (caused by the Ohmic loss of the steady state current
density J and the conductivity of the metallic wire σ as a function of
T ) to the thermal conductivity κ. The negative sign accounts for the
heat flow direction opposite to the temperature gradient.

The heat equation can be solved by a perturbation method;
however, the first-order correction term is numerically small and is
not needed in most situations. An approximate solution is derived by
dropping the derivative of the thermal conductivity term.

d2T

dx2 = −J2

κσ
(14)

Note that the resulting equation is exactly solvable. Assuming its
solution as Ta = Ta(x), we use it for approximating the derivative of
the thermal conductivity term as:

d2T

dx2 = −J2

κσ
− dκ

κdx

dTa

dx
= −J2

κσ
− κ′

κ

(
dTa

dx

)2

(15)

where κ′ = dκ
dT . The right hand side of the approximate equation is a

known function of T and can be solved exactly.
The one-dimensional wire is assumed to extend from x = −L/2

to x = L/2. The boundary conditions are:

T (−L/2) = T (L/2) = T1 = Ambient Temperature = 298◦K.

We have thus assumed the posts at the ends act as infinite heat
reservoirs.

The wire has the highest temperature at the center and it fuses
after the temperature at the wire center reaches the melt temperature,
Tm, and after the wire has a chance to break.

Multiplying (14) by dT/dx and integrating the governing equation
once from the center to point x we obtain the following equation:

(
dT

dx

)2
∣∣∣∣∣
x

0

= 2J2
a

∫ Tm

T

ρ(T ′)
κ(T ′)

dT ′ =
(

dT

dx

)2

(16)



204 Chen et al.

Separation and integration give
∫ Tm

T

dT ′′

Ja

√
2

∫ Tm

T ′′
ρ(T ′)
κ(T ′)dT ′

= x (17)

Note that x is a function of T and its inverse is thus the temperature
distribution along the wire.

Letting x = L/2 gives
∫ Tm

T1

dT ′′

Ja

√
2

∫ Tm

T ′′
ρ(T ′)
κ(T ′)dT ′

= L/2 (18)

Note that

Ja =
4Ia

πd2
(19)

Therefore,

Ia =
πd2

2
√

2L

∫ Tm

T1

dT√∫ Tm

T
ρ(T ′)
κ(T ′)dT ′

(20)

Including the approximate derivative term for the thermal conductivity
from (16) in (15) we have
(

dT

dx

)2
∣∣∣∣∣
x

0

= 2J2
a

∫ Tm

T

ρ(T ′)
κ(T ′)

dT ′ + 4J2
a

∫ Tm

T

dκ

κdT ′′

∫ Tm

T ′′

ρ(T ′)
κ(T ′)

dT ′dT ′′

=
(

dT

dx

)2

(21)

Note that because the current density can be factored out in (21),
we can alternatively avoid iteration by replacing the original current
density amplitude Ja by the final J , and solve for the current density
in one step
∫ Tm

T (x)

dT

J
√

2
∫ Tm

T
ρ(T ′)
κ(T ′)dT ′ + 4

∫ Tm

T
dκ

κdT ′′
∫ Tm

T ′′
ρ(T ′)
κ(T ′)dT ′dT ′′

= x (22)

∫ Tm

T1

dT

J
√

2
∫ Tm

T
ρ(T ′)
κ(T ′)dT ′+4

∫ Tm

T
dκ

κdT ′′
∫ Tm

T ′′
ρ(T ′)
κ(T ′)dT ′dT ′′

= L/2 (23)

Note that the more accurate wire current I is related to the current
density J by (19).
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2.3. A Summary of Nonlinear Electrical and Thermal
Conductivity Model

For a linear electrical conductivity profile with d = 50µm and L =
0.36 cm, the gold wire fusing current is calculated to be 3.012 A and
for a nonlinear profile, the fusing current is 2.555 A.

This more accurate model accounting for nonlinear metal electrical
and thermal conductivity gives the fusing current as follows [5]:

Ifuse =
A

L
M (24)

where A and L are the cross-section and the length of the wire,
respectively. M is the metal constant where T0 is the ambient
temperature (◦C) and Tm is the melt temperature (Table 1) and is
evaluated by:

M =
√

2
∫ Tm

T0

dT√∫ Tm

T
ρ(T ′)
κ(T ′)dT ′ + 2

∫ Tm

T
dκ

κdT ′′
∫ Tm

T ′′
ρ(T ′)
κ(T ′)dT ′dT ′′

(25)

where T0 is the ambient temperature (◦C) and Tm the melt
temperature.

Table 1. Metal constants for calculating fusing.

Metal Type Gold Copper Aluminum
M (A/cm) 4.685× 104 6.314× 104 3.489× 104

2.4. Applying Heat Equation Solution to Fusing

2.4.1. Melting Segment

Consider the limit of a large constant current applied to the wire,
the wire center segment is melting or even bursting. Under this
condition, the wire melts (or bursts) from outside inward. The inward
electromagnetic pressure (p) in the radial direction for wires with a
uniform current density is given by [6]

∇p = J×B

or

p = −µ0

∫ r

0
JzHϕdr + p0 =

µ0I
2

π2d2

(
1− 4r2

d2

)
. (26)
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Assuming that the pressure at the wire surface is zero (p0 = 0), we
can calculate the pressure at the wire center for a constant current of
100A and a wire diameter of 1mil:

p =
µ0I

2

π2d2
=

1.256× 10−6 × 1002

π2
(
2.54× 10−5

)2 ≈ 0.2GPa (27)

Gold’s melt temperature increases from 1062◦C to 1120◦C at 1 GPa [7].
We estimate that the melt temperature increases from the outside to
the wire center for 100A current drive is only 11.5◦C.

For a typical fusing current of approximately 2 A, the wire melting
temperature difference is thus negligible. We can assume that the wire
cross-section has to be fully melted before the Rayleigh instability can
occur.

2.4.2. Interpreting Fusing and Gapping Test Data

After the wire temperature reaches the melt point at the wire center,
the governing heat equation is only applicable to the un-melted part
of the wire or −L/2 < x < −ε(t)/2 and ε(t)/2 < x < L/2. This is
valid because the latent heat keeps the derivative of temperature with
respect to x zero, which is the same as the wire center solved in (23).
The region −ε(t)/2 < x < ε(t)/2 must be described by a different
equation. The difficulty in treating the melting segment is not the
phase transition but rather the accuracy of describing convection and
radiation heat losses. Also, in contrast to a fuse or an exploding wire,
bond wires are not straight. We do not attempt to treat this.

After the wire center has melted, capillary action dominates; Lord
Rayleigh’s fluid instability theory applies [8]. Rayleigh calculated the
exponential growth exponent eqt, with

q2 =
8Tc

ρd3

(
1− k2d2/4

)
(kd/2) I ′0 (kd/2)

I0 (kd/2)
(28)

(where k = 2π/λ is the wave number, Tc is the capillary tension, ρ is
the fluid density, I0 is the modified Bessel function of zero order) for an
infinite cylindrical fluid column. Rayleigh determined the maximum
of q2 occurs at a periodic length of λ = 4.51d. If we liberally
apply Rayleigh’s solution for the infinite fluid column to the melted
gold segment, this length can be used as the minimum fused length.
An alternative minimum length that corresponds to the onset of the
Rayleigh instability may also be used. Note that (28) changes sign at
1− k2d2/4 = 0, which gives λ = πd.

Given the bond wire length of 0.1524 cm (60mils), and a reduction
of 4.51d = 4.51×2.54×10−3 cm ≈ 0.0115 cm, the fusing current is found
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to be

If =
A

L
M =

π
(
1.27× 10−3

)2

0.1409
4.685× 104 ≈ 1.7A. (29)

Note that we are very conservative in our estimation. The one-
dimensional solution only assumes that the center of the wire reaches
the melt point and therefore the center of the wire still has to
be completely melted before Rayleigh’s fluid column instability is
applicable (That is why we used Rayleigh’s length corresponding to
the maximum instability to compensate for the segment not being
completely melted). The short length that corresponds to the onset
of instability may be more appropriate for the minimum gap length.
The actual comparison with specific wire parameters are given later in
Table 3 [9].

With this calculation and Preece’s law (2), we can determine the
fusing current for any given wire length and diameter.

2.5. The Lossless Case: Minimum Action Up to Melt and
Action for Wire Burst

2.5.1. Melting Start Action Assuming Linear Electrical Conductivity

If a large current is applied quickly, the thermal conduction term can
be ignored and the electrical conductivity term is assumed to be linear,
resulting in

J2tf =
ρCpσ0

a

∫ Tm

T0

dT

T − T0 + 1/a
=

ρCpσ0

a
ln[1 + a(Tm − T0)]. (30)

Action for melting is thus

Action =
A2ρCpσ0

a
ln [1 + a (Tm − T0)] (31)

where parameters are ρ = 19.3 g
cm3 and Cp = 0.129 J

g·K . At T = 20◦C,
these are given in (5) and (12). Therefore,

Action =

[
π

(
1.27× 10−3

)2
]2
× 19.3× 0.129× 4.5× 105

0.0037
× 1.6

or

Action = 2.57× 10−11 × 4.84× 108 = 0.0125A2 · sec .

This is the action needed for the metal to reach the melt-beginning for a
1mil gold wire if current is applied so quickly that there is no heat loss.
The more accurate action accounting for nonlinear electrical resistivity
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as a function of temperature would lead to a somewhat smaller action
(Table 2). We will show in the next subsection that the action required
for a 1mil gold wire to go all the way through vaporization to burst
without heat loss is 0.022A2 · sec. This would require a large current
to accomplish the near-lossless case. The empirical data indicates this
corresponds to the minimum action required for a one-mil gold wire
when tf → 0. When the wire current is smaller, it takes longer to gap
the wire and most of the action applies to the heat transfer out of the
wire.

2.5.2. Burst and Melt Action for Common Metals

Tucker and Toth [10] tabulated the resistivity (ρ = 1/σ) of
twenty-two common metals as a function of applied specific action
( 1

A2

∫
I2dt A2 · sec /mm4) and obtained specific actions for different

phase transition states. Expressed in terms of the unit of mil−4 for
1/A2, the action is given by

Action =
∫ t

0
I2dt = Kpd

4 A2 · sec (32)

where the wire diameter (d) is in mils (one-thousandth of an inch). Kp

is tabulated in Table 2.

Table 2. Burst and melt action coefficients for common metals.

Metal

Melt-start Action

Coefficient

Kp (mil−4)

(Kp defined in (32)).

Melt-end Action

Coefficient

Kp (mil−4)

Burst Action

Coefficient

Kp (mil−4)

Copper 0.0205 0.024 0.044

Aluminum 0.0065 0.0083 0.017

Gold 0.0113 0.013 0.022

Silver 0.0159 0.0185 0.029

Platinum 0.0039 0.0048 0.013

Nickel 0.0043 0.0053 0.014

Iron 0.0032 0.0037 0.009

Tungstan 0.0061 0.007 0.019

Titanium 0.0008 0.001 0.0049

Lead 0.0003 0.0004 0.0015

Zinc 0.0029 0.0037 0.01

Uranium 0.0017 0.002 0.009
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Table 2 is applicable to a very large current that leads to the
opening of the wire in a very short time because the heat loss becomes
completely negligible.

2.6. Analysis of 1 mil Gold Bond Wire Test Data

2.6.1. Fusing and Gapping Length

Lord Rayleigh’s instability characteristic length of 4.51d ≈ 0.0115 cm
for the maximum instability and his instability onset length of πd ≈
0.008 cm (d = 1 mil) will be used as a guide. In case of the melted
segment in the wire, Table 3 gives the minimum gap somewhat smaller
than Rayleigh’s characteristic length for the maximum instability
and greater than his instability onset length. The detailed physical
configuration, the fluid physical parameters and the finite fluid column
can influence the breakup. The last two columns of Table 3 give actions
(based on fused current and fuse time) and calculated fusing current

Table 3. Bond wire test data for near threshold fusing current.

Bond Wire 

No. 

Diameter 

(µm) 

Length 

(mm) 

Fusing 

Time  

(ms) 

Fusing  

Current  

(A) 

Gap 

Length 

After 

Fusing 

(mm) 

Calculated 

Action 

(10
-3

A
2
 

sec) 

Calculated

Fusing 

Current  

(A) 

1 27.98 1.51  1.8 0.09   1.94 

2 26.66 1.51  1.8 0.09  1.77 

3 27.97 1.40  28 1.9 0.10 101 2.1 

4 27.39 1.41  0.09   2 

5 26.81 1.42  52 1.9 0.08 188 1.9 

6 26.23 1.41  58.8 1.9 0.08 212 1.83 

7 25.64 1.46  196  1.8 0.09  635 1.69 

8 26.42 1.51  30 1.8 0.10 97 1.73 

9 25.84 1.51  29 1.8 0.10 94 1.66 

10 27.39 1.54  29.6  1.8 0.09  96 1.83 

11 27.59 1.53  70 1.8 0.08 227 1.87 

12 27.78 1.50  45 1.8 0.09 146 1.93 

13 27.59 1.51  36 1.8 0.09  117 1.89 

14 27.00 1.52  24 1.9 0.09 87 1.8 

15 27.59 1.46  31 1.9 0.09 112 1.96 

16 27.39 1.47  126  1.8 0.08  408 1.92 

17 27.39 1.51  32 1.8 0.09 104 1.86 

18 27.78 1.50  23 1.9 0.09 83 1.93 

19 27.39 1.52  24 1.8 0.10  78 1.85 

20 27.00 1.53  28 1.8 0.10 91 1.79 

21 27.59 1.51  46 1.8 0.09 149 1.89 

22 27.78 1.50  74 1.8 0.09  240 1.92 
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23  27.98 1.53 38 1.8 0.10 1.93  

24  26.62 1.49 184  1.8 0.09  1.79  

25  27.20 1.51 34 1.8 0.10  1.84  

26  27.59 1.52 37 1.8 0.09 1.88  

27  27.39 1.51 38 1.8 0.09 1.86  

28  27.59 1.52 33 1.8 0.10  1.88  

29  27.20 1.53 50 1.8 0.09 1.81  

30  28.36 1.51 73 1.8 0.08 2  

31  27.2 1.40 42 1.8 0.09  1.99  

32  27.2 1.53 43 1.8 0.09 1.81  

33  27.59 1.49 170 1.7 0.09 1.92  

34  27.00 1.43 36 1.9 0.09  1.91  

35  27.78 1.50 218 1.8 0.09 1.93  

36  27.39 1.49 76 1.8 0.09 1.89  

37  28.36 1.52 24 1.9 0.09  1.98  

38  27.78 1.51 54 1.8 0.08 1.92  

39  28.36 1.50 27 1.9 0.09 2.00  

40  29.14 1.46 31 1.9 0.09  2.18  

41  29.14 1.50 30 1.9 0.09 2.12  

42  27.00 1.48 36 1.9 0.08 1.85  

43  27.59 1.52 33 1.9 0.09  1.88  

44  27.39 1.52 54 1.8 0.08 1.85  

45  28.17 1.52 46 1.8 0.09 1.96  

123

596

110

120

123

107

162

237

136

139

491

130

706

246

87

175

97

112

108

130

119

175

149

using the recipe leading to (29) (based on actual wire length, wire
diameter and Rayleigh’s length (4.51d)). The difference between the
measured and calculated fuse current is within 10%.

2.6.2. Fusing and Gapping Time

Test data from References [9] and [11] are used for comparisons with
calculated fusing and gapping times. Note that the current used for
gapping in [11] is not strictly constant in time, but the action calculated
is based on the actual current waveforms.

The fusing time (time to wire opening for the minimum wire
current) is typically uncertain because it relies on the instability of
the molten metal. The breaking of the molten segment can occur after
the minimum fusing length is melted and may take a long time for the
instability to cause breaking. When the fusing current is somewhat
larger than the threshold value (within 20% greater than the fusing
threshold) the fusing action can vary considerably (Table 3).

The gapping time for a very large current applied quickly to the
wire can be very small because the very short gapping time makes the
heat loss completely negligible. Therefore, in this limit the required
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action for gapping lies between the two actions listed in Table 2: the
melt-end action and burst action but very close to the burst action.
For the wire current approximately a factor of two above the threshold
fusing current, a good approximation to gapping time (less than 20%
error) can be determined from the burst action divided by the square
of the applied gapping current. The calculated gapping time is given
in the last column of Table 4.

Table 4. Bond wire test data for larger gapping currents.

Bond Wire 

No. 

Diameter 

(µm) 

Length 

(mm) 

Gapping 

Time  

(ms) 

Gapping 

Current  

(A) 

Gap 

Length 

After 

Gapping 
(mm) 

Calculated 

Action 

(10 -3A2 sec) 

Calculated 

Gapping 

Time using 

Burst Action

(ms) 

1 28.56  1.559  9.39 2.0 0.135 37.6 

2 28.85  1.590  6.84  2.2 0.158  33.1  

3 29.43  1.566  5.26 2.4 0.192 30 

4 29.43  1.573  4.25 2.6 0.214 28.7 

5 29.14  1.558  2.8 

6 28.85  1.581  3.50 2.8 0.249 27.4 

7 28.56  1.594  2.90 3.0 0.278 26.1 

8 29.43  1.578  2.64  3.2 0.392  27 

9 28.85  1.538  2.15 3.4 0.344 24.9 

10 28.56  1.539  1.93 3.6 0.350 25 1..7 

11 28.85  1.544  1.64  3.8 0.394  23.7 1.52 

12 27.10  1.519  1.61 4.0 0.43 25.8 1.38 

13 27.10  1.533  1.31 4.2 0.482 23.1 1.25 

14 28.56  1.551  1.28  4.4 0.536  24.8 1.14 

15 28.27  1.537  1.19 4.6 0.580 25.2 1.04 

16 28.27  1.499  1.08 4.8 0.618 24.9 0.95 

17 28.56  1.527   

18 28.56  1.555  0.92 5.0 0.730 23 0.88 

19 28.27  1.525  0.86 5.2 0.756 23.3 0.81 

20 28.27  1.551  0.83  5.4 0.787  24.2 0.75 

21 27.98  1.574  0.75 5.6 0.863 23.5 0.7 

22 28.85  1.590  0.73 5.8 0.861 24.6 0.65 

23 29.43  1.527  0.69  6.0 0.797  24.8 0.61 

Other data [12] gave actions corresponding to small gapping
time between the burst action and the melt-end action. Actions
corresponding to large fusing times are very large.
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2.6.3. Gapping Length versus Wire Current

The results of a linear regression analysis of gap length and wire current
with 90% prediction bounds are shown in Figure 1. The prediction
bounds can be interpreted as a 90% chance of capturing the next
observation. The analysis shows that there is a very strong linear
relationship between current and gap length.

Figure 1. Current vs. gap length.

2.6.4. Gapping Length versus Gapping Time

Note that the minimum gap length corresponds to Rayleigh’s length
for the onset of instability (πd ≈ 0.08mm) as shown in Table 3.
The gapping length is approximately a linear function of gapping
current [9]. For currents a factor of two above the fusing current,
the heat loss is approximately proportional to gapping time. The
lower heat loss allows more material to be melted and gapped and thus
the gap length is approximately inversely proportional to the time for
gapping (Figure 2). We can argue that the incremental heat loss is
proportional to the melted length of the wire (which loses most heat
through radiation and convection), and the incremental decrease in
gapping time and the heat required to melt an incremental wire length
is proportional to the gapping time and the incremental increase in
gapping length. Therefore, Lg∆tg + tg∆Lg ≈ 0 which is equivalent to
Lgtg ≈ constant. We don’t expect this to be applicable to both limits
of fusing threshold and exploding wire regions.
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Figure 2. The gap length is approximately inversely proportional to
gapping time.

3. CONCLUSIONS

We have examined two limiting cases: (1) the Preece’s heat loss
dominated region that describes the threshold fusing limit (which
leads to a method of calculating the threshold fusing current for good
thermal conducting metals such as gold) and (2) the lossless limit of
the exploding wire region, where a very large current is applied to the
wire very quickly (which gives us a good estimate for gapping action).
Approximate methods for estimating gapping time and gapping length
are also prescribed for an intermediate range of wire currents by
examining the gapping test data. The wire configuration (after the
current is applied to the wire), such as gapping length, can be used for
investigating microelectronic circuit failures.
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