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Abstract—In recent years, Artificial Neural networks (ANNs) have
been intensively employed to build smart model of microwave devices.
In this paper a characterization of lossy SIW resonators by means
of Multilayer Perceptron Neural Networks (MLPNNs) on Graphics
Processing Unit (GPU), is presented. Once properly selected and
trained, a MLPNN can evaluate the lossy SIW resonator’s resonant
frequency fr and the pertaining quality factor Q at a shorter time than
the full-wave rigorous model. In this way, fast parametric models of
SIW structures to employ for the design and optimization of microwave
devices, exploiting the computational power of GPUs, can be obtained.

1. INTRODUCTION

Substrate integrated waveguides is nowadays a recognized field of
research. All kind of devices, operating in the regions of microwaves
and millimeter waves, have been developed making SIW a well
established technology. Filters [1], antennas [2], power combiners [3, 4]
and other devices have been successfully designed and realized. The
design of such devices can be faced with the help of commercial codes
based on finite methods like FEM [5], however, in a series of papers [6–
9] the authors have shown alternative and more effective methods to
analyze SIW structures. In particular the method based on the dyadic
Green’s function technique and the method of moments proved to
be effective and accurate and it has been applied to the analysis of
both non radiating [7] and radiating [8] structures and, recently, has
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been extended to lossy SIW devices [9]. The method provided also an
easy way to analyze SIW resonators. In [10, 11, 23] the characteristics
of SIW cavity have been proposed but losses were not taken into
account and no results on quality factor were given. In [12] losses
on the top and bottom plates and in the dielectric are included and
results on quality factor are also given. It is well known that to
improve the performances of the computer-aided design techniques
to design complex microwave devices and circuits the development
of smart models is essential ([13] and references within). As far as
SIW structures are concerned, in [14] a support regression machine
was implemented to evaluate the resonant frequencies of lossless SIW
resonators. In this paper, in order to develop an efficient tool for the
design and the optimization of lossy SIW resonator, a characterization
using a computational intelligence approach by means of Multilayer
Perceptron Neural Networks (MLPNN) on GPU, has been chosen. The
implementation of a support vector machine for the lossy case and its
comparison with the MLPNN will be the subject of a future work. In
the last years Artificial Neural Networks (ANNs) have been recognized
as useful alternative to conventional approaches usually exploited in
CAD models (see [15, 16] and references within). Now, due to the
nature of the ANNs’ algorithms, the performances of these models can
be enhanced exploiting both highly parallel architecture and processing
power of Graphics Processing Units (GPUs) (see [17, 18] and references
within). The paper is organized as follows: Section 2 gives a brief
description of the method used to model lossy SIW resonators, together
the algorithm to compute their complex resonance frequency fr and
related quality factor Q. Sections 3 and 4 give as short account on
MLPNN and GPUs. Numerical results relevant to MLPNN models of
lossy SIW resonators are given in Section 5. Finally, in Section 6, we
draw our conclusions.

2. RESONANCES AND QUALITY FACTOR Q OF
LOSSY SIW RESONATORS

The detailed study of a lossy parallel plates waveguide using the
rigorous derivation of the dyadic Green’s function, has been presented
in [9]. Here we recall only the main ideas and results regarding the
analysis and evaluation of the resonances fr and of the quality factor Q
for SIW resonators. In a lossy SIW structure, the field into the cavity
is determined using the following impedance boundary condition on
the top and bottom plates and on the cylinders surface [9]

ρ̂×∇×H = −jωεrε0

(
(1 + j)

√
ωµ0

2σ

)
H (1)
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The scattered field is expressed as a series of outgoing vector wave
functions having coefficients ATM

m,n,l (A
TE
m,n,l) computed by solving the

following matrix system [7, 9]

LTM ,TE ĀTM ,TE = Γ̄TM ,TE (2)
arising from the discretization via Method of Moments of the relevant
scattering operator [9]. Resonances are the frequencies for which (2)
has a nontrivial solution for Γ̄TM,TE = 0, i.e., [23]

det
(LTM ,TE

)
= 0 (3)

An efficient computational method to locate resonances has been
presented in [19] and is based on an estimation of the minimum singular
value σmin of the discretized operator LTM ,TE in the relevant frequency
band of interest rather than the direct calculation of the determinant
function (3). The algorithm, described in [19], firstly finds the behavior
of σmin(fre) of the matrix operator LTM ,TE as a function of the real
frequency only, locating its minima on this axis. Once that this
minimum is located, it is exploited as starting point of a Muller search
routine in the complex plane. The final results of this procedure is the
complex resonant frequency fre +jfim of the structure at hand [10, 23].
The quality factor Q of the lossy resonator is easily computed as [12]

Q =
fre

2fim
(4)

Because of SIW resonators are realized on substrates which are thin
with respect to the wavelength only the first TM to z mode is present.
Accordingly, in this paper only this mode will be considered.

3. FEED FORWARD MULTILAYER PERCEPTRON
NEURAL NETWORKS

Soft-computing via Artificial Neural Networks (ANNs) is an active field
of research, and there exists a large literature on the topic (see [21] and
references within). Briefly speaking, an ANN is a nonlinear statistical
data modeling tool that changes its structure on the basis of external
or internal information that flows through itself during the learning
phase. Typically ANNs consist of a set of nodes, named neurons,
interconnected by groups organized in input, output and hidden layers,
respectively. The characteristics and performances of an ANN depend
on its topology, that is, on the pattern of connections between the
neurons and by the flow of propagation of data through it. In this work
the feed forward multilayered perceptron neural network (MLPNN),
has been used. A MLPNN can be modeled as [21]

y = y (x,W) (5)
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where x is the input data vector, y the output responses vector, and
W the weight matrix pertaining to the network. A MLPNN works
properly when for some set of inputs {x}, it produces the desired
set of outputs {y}. This means that the weights wij ∈ W have to
be suitably chosen. This task is accomplished during the supervised
learning phase, or training phase Tp. Given a set of training samples
{x̂p, ŷp}, p ∈ Tp, the elements of W are changed until a suitable cost
function E(W)

E(W) =
∑

p∈Tp

Ep(W) (6)

results minimized. In (6) the term Ep(W) is the least square error
associated to the pth tuple belonging to Tp, i.e.,

Ep(W) =

[
1
2

M∑

k=1

(ŷpk − yk(W, x̂p))2
] 1

2

(7)

where yk(W, x̂p) is the kth output of MLPNN corresponding to the
input x̂p and ŷpk is the kth element of the output vector ŷp (for major
details see [21]). Equation (6) is a nonlinear least square optimization
problem, which can be solved using several different approaches. It
can be demonstrated that all the optimization algorithms exploited to
this aim, are based on the following update rule

W(t) = W(t− 1) + ∆W(t− 1) (8)

where ∆W(t−1) is the updating matrix computed at the step t−1 of
the iteration process (for an overview of the most common optimization
methods employed to train MLPNNs see [21]).

4. GRAPHICS PROCESSING UNIT DEVICES

It is well known as the main computational effort to build an ANN
is related to its training phase, which grows with the growth of the
nodes and layers of the network. However, this task is typically
amenable to be parallelized, and at this purpose, in the recent years a
number of papers have been devoted to its implementation on Graphic
Processing Units (GPUs) (see [17, 18] and references within). GPUs
are hardware devices originally designed to perform intensive, highly
parallel real time 3D graphics computations [22]. Progressively GPUs
have become general computing platforms, realizing nowadays which
is known as the general purpose computing on graphics processing
units (GPGPU) [22]. The GPUs’ huge computing performances are
due to their massive parallelism capability. In fact, a GPU consists
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of an array of streaming multiprocessors. Basically, a streaming
multiprocessor is built up of a set of special function unit and a number
of streaming processors cores or CUDA cores. Since this architecture
embeds also multi-threading and scheduling functionality in hardware,
thousands of threads run on hundreds of cores very efficiently, in a
scalable and transparent way. By means of the Compute Unified
Device Architecture (CUDA) developed by NVIDIA c© [22], a software
platform with a new powerful API, which extends the C/C++ language
with a scalable parallel programming model, programmers have a
simple and efficient tool to leverage the massively parallel resources
on the GPU, which allows to implement in relative easy way routines
called kernels. Roughly speaking, a kernel is launched on the GPU
using many parallel copies of it, called blocks split into threads, which
are the smallest units of parallelization for each block. This permits
the partition of the task described by kernel into sub-tasks, which
can be solved concurrently by independent blocks of threads, and into
smaller pieces that can be computed in parallel by each thread [22].
The implementation of ANNs on GPU is usually carried out by the
following steps: i) arranging and transfer the training data from CPU
to GPU, ii) running of the kernels devoted to ANN training phase
ii) transfer of the ANN estimated data from GPU to CPU (for more
details see [17] and references within). For a fast prototyping of ANNs
on GPUs, MATLAB c© framework in conjunction with Jacket c©, can
be used [20]. In this way a notable simplifying in programming it
is obtained. If fact Jacket c© thanks to its “compile on-the-fly system”
allows GPU functions to run in MATLAB’s interpretive style, enabling
m-files to run on GPUs without the need of rewriting them to CUDA
language [20].

5. NUMERICAL RESULTS

Figure 1 shows the layout of the SIW resonators taken in consideration
in this work. Since the feeding techniques normally used in the
applications of these devices do not excite the TE to ẑ mode [10],
only TM modes have been considered. Two sets of MLPNN networks,
one for the circular geometry and the other one for the rectangular
one, have been implemented in a MATLAB code. The via hole radius
a0, the pitch p, the substrate thickness h, the dielectric constant εr,
the dielectric loss tangent tan(δ), the metal conductivity σm and the
geometrical dimensions of the structure at hand (the length L and the
width W for the rectangular case, the radius R for the circular case)
were used as input parameters while the resonant frequency fr of the
fundamental mode TM101 and the quality factor Q were the output.
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Figure 1. Circular and rectangular lossy SIW resonators, where,
in particular, the pitch p, the via-hole diameter 2a0, the dielectric
substrate height h, the sides W and L, the radius R are shown.

Table 1. Ranges of the physical parameters for the SIW resonators
considered in this study (all dimensions are in millimeters, σm is in
Siemens/meter).

a0 p h εr tan(δ)

0.05÷ 0.8 0.1÷ 3.5 0.45÷ 0.55 2÷ 10 1.1 · 10−3 ÷ 3.5 · 10−3

σm R L W

4.8 · 107 ÷ 5.8 · 107 2÷ 9.5 10÷ 30 1
2
L

The ranges of variation exploited for the inputs are reported in Table 1.
Numerical simulations have been performed on an Intel Xeon

DP E5405 Quad Core 2.0 GHz based workstation, with 20GB of
main memory and equipped with a NVIDIA c© Tesla GPU C2070
(448 streaming processor cores, 6 GB of memory). Three set of
data, one of training and the others of validation and testing, having
1650, 412, and 85 tuples, respectively, were created by full wave
simulations. The time required to generate these data were about
10 hours. For each of the two sets of networks, a number of
MLPNNs’ architectures have been developed and tested. At this
purpose, the following backpropagation learning rules: i) Conjugate
Gradient backpropagation with Powell-Beale restarts (CGPB), ii) One
Step Secant backpropagation (OSS), iii) Resilient backpropagation
(RB), have been employed in conjunction with the modified Elliot
sigmoid transfer functions (see [21] and references within). All the
relevant information about the numerical experiments carried out, are
summarized in Table 2, for the circular case and in Table 3, for the
rectangular case. To improve the performances of neural computations
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Table 2. Architectures, training algorithms and performances of
MLPNNs’ models of a lossy SIW circular resonator (all the times are
in seconds).

Net
Neurons and

Hidden Layers

Training

Algor.
Epochs

GPU

Time

GPU

Time
RMSE

#C1 18, 24, 24, 18, 6 CGBP 202 5.28 11.02 1.31 · 10−4

#C2 18, 24, 24, 18, 6 OSS 157 4.95 12.10 4.42 · 10−4

#C3 18, 24, 24, 18, 6 RB 164 2.07 2.49 2.81 · 10−4

#C4 12, 24, 24, 12 CGBP 88 2.58 4.57 6.72 · 10−3

#C5 12, 24, 24, 12 OSS 170 4.46 9.90 5.53 · 10−3

#C6 12, 24, 24, 12 RB 175 1.85 2.12 5.12 · 10−3

#C7 24, 48, 24 CGBP 137 3.47 8.22 7.84 · 10−3

#C8 24, 28, 24 OSS 51 2.12 4.22 92.72 · 10−3

#C9 24, 28, 24 RB 190 2.04 3.02 2.73 · 10−3

Table 3. Architectures, training algorithms and performances of
MLPNNs’ models of a lossy SIW rectangular resonator (all the times
are in seconds).

Net
Neurons and

Hidden Layers

Training

Algor.
Epochs

GPU

Time

GPU

Time
RMSE

#R1 13, 19, 29, 13, 7 CGBP 222 5.12 14.27 1.23 · 10−4

#R2 13, 29, 29, 13, 7 OSS 129 3.99 11.61 6.11 · 10−4

#R3 13, 29, 29, 13, 7 RB 109 1.58 2.10 2.53 · 10−4

#R4 11, 27, 27, 11 CGBP 149 3.51 7.46 5.62 · 10−3

#R5 11, 27, 27, 11 OSS 141 3.93 9.55 20.01 · 10−3

#R6 11, 27, 27, 11 RB 152 1.72 1.97 6.73 · 10−3

#R7 11, 27, 13 CGBP 145 2.93 4.49 9.94 · 10−3

#R8 11, 27, 13 OSS 169 3.81 7.41 8.12 · 10−3

#R9 11, 27, 13 RB 117 1.38 1.92 1.72 · 10−3

on GPU, data have been conveniently normalized and processed so
that them were aligned properly in the GPU memory. In this way the
MLPNN’s training phase was about twice times faster than compared
to the case of unprocessed data. As expected, and as it is confirmed
by numerical results reported in Tables 2 and 3, using the GPU a
reduction of the computational time is obtained in correspondence of
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Figure 2. Scatter plots of the #C1 estimated and full wave computed
resonant frequency fr and Q factor, in the case of lossy SIW circular
resonator.

Table 4. Resonant frequency and Q for a lossy circular SIW resonator
(R = 7mm, p = 2.2mm, εr = 3.5, tan(δ) = 0.0035, h = 0.5mm,
a0 = 0.4) computed by HFSS and estimated by #C1 network.

Resonant Frequency fr Quality Factor Q

HFSS 8.965 GHz 188.38

MLPNN #C1 8.955 GHz 187.85

an increase of the number of MLPNN’s neurons and hidden layers.
At the same time an improvement of the RMSE, and consequently
of the performances of the MLPNN model, can be also noticed. In
term of this parameter, the best results have been obtained using
the CGPB algorithm, while the RB is the faster. Figure 2 shown
the scatter plots, provided by the best MLPNN architecture for the
circular case (the MLPNN #C1), obtained comparing among them the
values of fr and Q obtained by full wave simulations and by MLPNN
estimations. The tight grouping of these values along the diagonal axis
gives an excellent indication of the ability of the network to capture the
input-output relationship present in the data. Finally, two lossy SIW
resonator have been implemented in the HFSS framework, and the
resonant frequencies and the Q factors have been evaluated. Tables 4
and 5 shown the comparison between these results and those obtained
by means of the networks #C1 and #R1. The excellent agreement
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Table 5. Resonant frequency and Q for a lossy rectangular SIW
resonator (L = 24 mm, W = 14 mm, p = 2 mm, εr = 3.5, tan(δ) =
0.0035, h = 0.5mm, a0 = 0.4) computed by HFSS and estimated by
#R1 network.

Resonant Frequency fr Quality Factor Q

HFSS 6.710GHz 191.65

MLPNN #R1 6.750 GHz 189.85

obtained confirms the capability of the MLPNN model to give an
accurate evaluation of the couple fr and Q over the whole range of
the geometrical and electrical parameters considered for its training,
in a time about thirty times shorter than a single full wave simulation.

6. CONCLUSIONS

In this paper, an effective approach to model the behavior of lossy
SIW resonators, based on MLPNNs on GPU, is presented. Numerical
results are consistent with full wave computations, confirming the
robustness of the proposed approach. Once that the MLPNN model is
trained, it can predict the fundamental resonant frequency fr and the
quality factor Q of an assigned lossy SIW resonator in a very fast and
accurate way. Future investigations are aimed at the integration of this
model in the framework of an automated high speed design procedure
of microwave SIW devices on GPU. In fact a MLPNN provides a fast
parametric model of a generic SIW structure, allowing to avoid the
long full wave simulations times when evaluating changes in the layout
geometry or substrate’s parameters [23].
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