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Abstract—In this paper, we provide a new theoretical model
describing mechanism of electromagnetic radiation (and scattering)
by passive single- and double-stranded (bifilar) helices. The proposed
model is derived from basic physical principles till the end formulas
which were computer processed for predicting a polarization type of
the wave scattered by a helix. Comparison of the two types of helical
oscillators revealed radical differences in their scattering performance
(intensity and polarization). Optimal parameters of the bifilar helix
for transformation of the polarization state from linear to circular
were found for a non-axial direction of the incident and scattered
field. Key features of the proposed model were confirmed by computer
simulations.

1. INTRODUCTION

Metallic helices, which have been studied at least since 1920 [1], interest
scientists today from a point of view of photonic crystal, metamaterial
applications, as well as new broadband microwave and optical devices.
Recent years, helix type metamaterials have been studied analytically,
experimentally, and numerically [2–7] for realization of a circular
polarizer based on the helix-axis wave propagation. However, the
case of non-axial wave propagation is also of high interest, because
it can lead to very diverse effects, e.g., it was shown that arrays
composed of metal helices with some specific spatial arrangements can
lead to observation of metamaterial effects such as a strong changeable
electric or magnetic response [8], negative permittivity and negative
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permeability [9], circular polarization filtering [4, 10], cloaking [11],
polarization rotation and transformation [12, 13], photonic stop
gaps [14] and others.

In this paper, we propose a new design of a double helical particle
(as a meta-atom) with the optimal shape for realization of linear-
to-circular polarization conversion. The optimal shape denotes that
the double stranded helix has a particular pitch angle at witch a
strong scattering of circularly polarized waves towards a perpendicular
to helix axis direction takes place. We have calculated this pitch
angle by considering in detail an electromagnetic response in every
elementary resonant fragment of the double helix and then recreated
the full scattering field formed by all resonant fragments. Importantly,
the incident linear wave should propagate perpendicular to the helix
axis and the plane of the E-vector oscillation should cross the ends
of the helix. This theoretical approach distinguishes this work from a
number of related ones. In the next sections we confirm the analytical
predictions by computer modeling. We emphasize the importance
of the double stranded configuration of the particle, however, if the
narrow directivity of the scattering is not necessary, an additional pairs
of helices can be added into the particle design for more omnidirectional
scattering.

2. HELICAL PARTICLE EXCITATION

Let us first theoretically consider a phenomenon of strong polarization-
sensitive excitation of helices by comparing two helical particles having
the same shape. The first one in Figure 1(a) represents a common
single stranded (ss-) helix, while the second one in Figure 1(b) has
a double stranded (ds-) structure. This simple combination of two
helices into one unit radically changes its electromagnetic properties.
The center of the particle is located in the origin and it can contain an
integer number of half-pitches (or half-turns).

Excitation of a helix as a passive element can be realized by
an external electromagnetic wave for different directions of wave
propagation, but here we emphasize a non-axial incidence which
leads to some promising results of practical realization. Consider,
for simplicity, a linearly polarized incident plane wave impinging
the helix perpendicular to its axis. In the case of the fundamental
frequency resonance, when the wavelength is equal to the helix period
(the length of one pitch) λ = P and the helix diameter is small
with respect to the wavelength d < λ/π, the helix has a specific
electric current mode. Electric charges oscillate synchronously along
the helix yielding the induced electric current distributed periodically
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(a)

(b)

Figure 1. (a) Schematic of a ss- and (b) ds-helix where electric p and
magnetic m responses are shown for the upper half-turn(s) as well as
the E-field induced by them at some point in space where the field is
investigated. Snapshot of the main mode of the surface electric current
distribution in the particle is shown on the left (computer simulation).

with the period P . Thus, a standing wave of the electric current
takes place [computer modeling snapshots are shown in Figure 1(a)
for ss- and (b) for ds-helices of 3 half-turns]. The current density
is represented schematically by yellow arrows with their thicknesses
proportional to the current density value. In this regime, the helix re-
radiates (scatters) in the so-called normal mode, which yields radiation
broadside to the helix axis [15].

In general, however, the electric current in the helix may have a
complex form described by the general Fourier expansion formula:

I(l) =
∞∑

n=1

bn cos
(

n
2π

P
l

)
, (1)

where P is the helix period, n is an integer, l is the coordinate measured
along the helix, and bn are the coefficients of the Fourier series (they



234 Balmakou, Semchenko, and Nagatsu

define the amplitudes of the electric current harmonics). For n = 1
(the first harmonic), we get from (1) the current distribution depicted
in Figure 1 (bn = 1 for simplicity). It is a very strong (and easily
excited) current mode resonance. The resonant electric current modes
depend on the excitation wavelength, therefore, one can expect the
excitation of different modes when shifting from the main resonance.

The helices, as chiral elements, are characterized by dielectric,
magnetic, and chiral polarizabilities in the field of monochromatic
electromagnetic waves. Therefore, the particles can be described by
the following coupling equations:

p = ε0αeeE− i
√

ε0µ0αemH, m = αmmH + i
√

ε0/µ0αmeE, (2)
where αee and αmm are the tensors of dielectric and magnetic
polarizabilities; αem and αme are the pseudotensors characterizing the
chiral properties of the helix; ε0 and µ0 are the electric and magnetic
constants, respectively. The Onsager-Casimir principle of symmetry
of kinetic coefficients yields the relationship αem = αT

me [16], where
T denotes the tensor transposition. Both the electric and magnetic
moments (2) refer to the same elementary segment of the helix with
a certain current distribution (they are determined by the shape and
size of this segment).

The electric and magnetic moments induced in the every
elementary segment (a half-turn in the case of Figure 1) of the helix
can be read according to their definitions as:

p = −
∫

(V )

eηS(l)dV , m =
1
2

∫

(V )

(r× j)dV, (3)

where e is the electron charge, η is the volume density of electrons,
S(l) is the electron oscillation displacement vector, dV = S⊥dl is the
volume of an elementary helix segment, S⊥ is the cross-sectional area
of the segment, r is the radius-vector of the helix, j is the current
density vector, and the cross × signifies the vector product.

The components of vectors (3) were calculated taking into account
the definition of the specific torsion of the helix |q| = 2π/h, which is
positive q > 0 for the right- and negative q < 0 for the left-handed
helix, where h is the helix pitch:

{
px

py

pz

}
=

i

ω
qr

x2∫

x1

I(x)





1
qr

− cos(qx)
− sin(qx)



 dx,

{
mx
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mz

}
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1
2
r

x2∫

x1

I(x)

{
qr

xq sin(qx) + cos(qx)
sin(qx)− xq cos(qx)

}
dx.

(4)
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Let us compare the results for the components px and mx which
play the dominant role in the radiation of the electromagnetic field in
a direction orthogonal to the helix axis. By eliminating the current
from px, mx in Eqs. (4), one can find the relation

px =
2i

ωr2q
mx, (5)

which holds valid for any current I(x) mode. When retrieving
components along the y- and z-axes, we assume that the current I(x)
satisfies the principal resonance excitation relation n = 1 in Eq. (1).
Thus, it follows that the current is some even function. Therefore,
by simple comparing y-components in Eqs. (4), we find the following
approximate (as the first integral in my does not equal to zero) relation:

py ≈ −2iq

ω
my, (6)

and, finally, by comparing z-components of Eqs. (4), we find that
pz = mz = 0.

Thus, for the ss-helix [see Figure 1(a)], equivalent electric p and
magnetic m dipoles are directed along the x- and y-axis, respectively.
For the ds-helix [see Figure 1(b)], however, the x-components are
doubled, the y-components of the complementary half-turns have the
opposite directions and, therefore, they compensate each other.

3. THEORY OF SINGLE-PARTICLE SCATTERING

Here we show how using the bianisotropic media composed of ds-helices
one can realize a reflection based polarization transformer, which
transforms linearly polarized incident waves into circularly polarized
ones. For this, we need to find out what shape of the helix is optimal
for re-radiation of circularly polarized waves in the perpendicular-to-
helix-axis direction (e.g., ±z-axis in Figure 1), if the linearly polarized
incident wave enters the helix perpendicular to its axis (e.g., propagates
along the ±y-axis).

The discrete dipole radiation model is applied [17, 18], which
allows us to calculate the instantaneous E-field gained from an
individual half-turn(s). For segment(s) with a number k [in
Figures 1(a), (b) it is exemplified for k = 1 (upper)], it can be done
using the following formulas [19]:

Ep =
µ0

4πR0
(p̈k × nk)× nk, Em =

µ0

4πcR0
nk × m̈k, (7)

which are time and distance Rk dependent. Here nk is the unit vector
[see Figure 1(b) for k = 1], c is the speed of light, double dots denote
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the 2nd time derivative. We consider a monochromatic exp(−iωt)
incident wave, therefore, m̈ = −ω2m, p̈ = −ω2p. The resulting E-
field can be calculated and the polarization of the radiated wave can
be estimated by taking the sum of all field components from all half-
turns. The ellipticity ε, which is of the main interest here, characterizes
the polarization type of the wave and it is introduced through the
reciprocal axial ratio as defined in the general case in [20]. For the
ds-helix, however, the ellipticity calculation can be simplified by just
having the ratio of the components (9): ε = Ex/Ey, as the phase
difference between p and m (and therefore Ep and Em) is π/2 and Ep

is orthogonal to Em.
The following expressions have been found for the components of

the resultant electric field scattered by the ss-helix:

Ex = aR0

N∑

k=−N

exp
(

iω
Rk

c

){
(−1)k+1R0

R3
k

px +
1

cR2
k

my

}
,

Ey = a

N∑

k=−N

exp
(

iω
Rk

c

){
1

Rk
py +

(−1)k+1R0

cR2
k

mx

}
.

(8)

For the ds-helix, the net components are

Ex = 2aR2
0px

N∑

k=−N

(−1)k+1

R3
k

exp
(

iω
Rk

c

)
,

Ey =
2aR0

c
mx

N∑

k=−N

(−1)k

R2
k

exp
(

iω
Rk

c

)
,

(9)

where R0 is the distance between the origin and the observation point

(see Figure 1), Rk =
√

R2
0 + (k h

2 )2 the distance from the half-turn with
number k to the same point, and k an integer ranging from −N to N ,
a = µ0ω2

4π exp(−iωt).
We have performed the computer processing of Eqs. (8) and (9)

to analyze the resultant polarization type for short and long helices
taking into consideration Eqs. (5) and (6). In Figures 2(a), (b), the
real part of the ellipticity Re(ε) vs. the number of half-turns N is
shown for: (a) the ss-helix and (b) the ds-helix at some fixed distances:
R0 = 30, 60 or 100λ. The dotted lines here and later correspond
to the near-field region (R0 < 2D2/λ) where the theory gives only
approximate results, and the solid lines correspond to the far-field
region (R0 ≥ 2D2/λ), where the results are reliable, D is the largest
dimension of the helix [15].
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(a) (b)

(c) (d)

Figure 2. (a), (b) The real part of the ellipticity Re(ε) vs. the number
of half-turns N ; (c), (d) Re(ε) vs. the distance R0 for: (c) the ss- and
(d) ds-helix, respectively; the dashed lines correspond to the near-field
region where the theory gives only approximate results, the solid lines
correspond to the far-field region where the results are reliable.

From these results, one can conclude that in the far-field zone all
the curves (1)–(3) give approximately the same result of near 0.17–0.24
for ss- and near unit for ds-helices. It should be noted here that the
results in Figure 2 were obtained for the helices with the fixed pith
angle of 24.5◦ [21, 22]. One can see a weak deviation of the results
in the far-field region; even for a long ds-helix of 100 half-turns the
ellipticity drops only less than 1% in the far-field zone. Figures 2(c), (d)
show the dependence of Re(ε) on the distance R0 for: (c) the ss- and
(d) the ds-helix, when the helix is composed of N = 10, 30 or 60 half-
turns. The correlation of the ellipticity with the corresponding graphs
[(a) with (c) and (b) with (d)] is observed for the same parameters.
For the ds-helices the opposite trend of curves [Figures 2(a), (b)] is
observed because, with the increasing of R0, the observation point
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goes from the near-field zone towards the far-field zone, but with the
increasing of N the near-field zone is expanding.

These results can be explained by means of the proposed
theoretical model. With the increasing of N (and k), the angle δk

between dipole vectors p, m and the unit vector nk increases too,
and this leads to Epx and Emx decreasing (the first one decreases
faster), but some non-zero z-component of E is emerging. The last
one, however, does not contribute to the wave radiated along the z-
axis. On the other hand, with the increasing of R0, the trend is the
opposite, because the angle δk is decreasing.

For the ss-helix, however, the situation is more complicated due
to the additional y-dipole-components and their opposite to Epx , Emx

compensative response Emy , Epy . The ellipticity is determined by Ex,
Ey and the phase between them [20]. Therefore, the pattern of these
curves is so complex.

A helix is characterized by both its radius r and pitch h. Typically,
when studying the helices, the radius and the pitch are changed
independently or only the pitch itself. This approach is not convenient,
because with changing only the radius (or the pitch), the resonant
frequency of the particle is changing too, what is not desirable
generally. Simultaneous change of the radius and the pitch can be
mathematically reduced to the helix pitch angle change via:

α = cot−1(qr). (10)
In this case, one begins changing the helix pitch angle yielding both the
radius and the pitch change, but the length of one helix pitch remains
constant.

Based on the formulas for the ellipticity derived from Eq. (8)
for the ss-helix and Eq. (9) for the ds-helix, it is possible to solve
numerically the implicit function and explore its dependence on the
pitch angle for some fixed N and R0.

It was found that the ellipticity results to unity only for the ds-
helix with α = 24.5◦ (see Figure 3, curve 1). The curve has a weak
dependence on N with the constant maximum position. The ss-helix
exhibits the maximum ellipticity of near 0.3 at more than the doubled
pitch angle in the far-field zone (see curve 2 in Figure 3). With
increasing of N (or R0), the curve 2 is deforming into the curves 3
and 4. They relate to the near-field region and, therefore, describe the
ellipticity only approximately.

The same result can be derived also from the analysis of the
following: Eq. (5), the relation (11) of circularly polarized wave
radiation [23]:

|px| = 1
c
|mx| (11)
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Figure 3. The real part of the ellipticity vs. the helix pitch angle
for both ss- and ds-helices when R0 = 50λ; the wave radiated by the
ds-helix (curve 1) with α = 24.5◦ is circularly polarized [dependence
on N for the ds-helix is negligible (no more than 5%) with the constant
maximum position]; the dependence on N is shown for the ss-helix for
N = 20 (curve 2, far-field); N = 60 (curve 3) and N = 100 (curve 4)
both for the near-field zone.

as well as the main resonance condition λ = P , and the projection of
the helix turn onto the yz-plane: P cosα = 2πr. Thus, the following
relation is derived: 2 tanα = cos α, which yields the pith angle of
circular polarization αCP = 24.5◦ for the ds-helix.

Intriguingly, we can draw a parallel between the considering
optimal ds-helix and B-DNA [24, 25], which is the most common form
of DNA (deoxyribonucleic acid) found in nature. It has the radius
r = 1.0–1.3 nm and the pitch h = 3.3–3.4 nm. Thus, one can find
the pitch angle range αDNA = 22.0◦–28.4◦ which contains the obtained
optimal angle αCP . From this point of view, the ds-helix can be called
‘DNA-like’, although, there is no full resemblance.

4. MODELING OF SINGLE-PARTICLE SCATTERING

Using computer simulations, we have managed to confirm the key
aspects of the proposed theoretical model. Parameters of the individual
helical particle (as well as periodical arrays of them) were modeled by
using the commercial finite element method solver for electromagnetic
structures Ansoft HFSS (High Frequency Structural Simulator). We
also aim to search and check the found optimal parameters of the
helix particle. We have investigated different helices (ss and ds) of
different length from 1 to 5 half-turn(s), but the following discussion
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and experimental realization is based on the results for the 5 half-turn
particle.

A monochromatic plane wave (3 GHz, propagating along the
y-axis) excites the helix according to the model considered above.
Simulations have shown that the principal surface current mode (n =
1) arising in the individual particle (see Figure 1) is realized at the
perpendicular to the helix axis direction of the particle excitation. The
current has its maximum in the center and the minimum at the ends
of each half-turn. The scattered field along the z-axis is investigated
in the far-field region. As the boundary conditions, we used either
the perfectly matched layers or the radiation surface; they both yield
adequate results. Moreover, we also used an alternative method of a
full-wave integral equation solver (IE-design) which is well suited for
the considered problem, because it is designed for large open problems
(no boundary condition are necessary). The results for single particles
show a radical difference of the ellipticities for the ss- and ds-helices
(see Figure 4).

Three resonance modes can be observed: the principal resonance

Figure 4. Polarization state evolution for individual particles (ss and
ds) in a wide frequency range for various helix pitch angles (calculated
in the far-field along the z-axis).
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νres = 3GHz and less distinct 1
2νres , 3

2νres resonances. As it was
predicted by the theory, the highest value for the ellipticity is achieved
at α = 55◦ for the ss-helix near the main resonance and at α = 20◦–30◦
for the ds-helix. It is seen from these graphs that circularly polarized
(or elliptical with high ellipticity) scattered waves are obtained for ds-
helices (but not for the ss-helices) in a wide frequency range with the
centre at the main resonance.

Total scattered intensity can be obtained theoretically from
Eqs. (8) and (9) for the specified current mode. The intensity modelling
results for the scattered field are shown in Figure 5. Noticeably, the
intensity has strong correlation with the ellipticity resonances. The
intensity maximum for the ss-helices is obtained at the main resonance
frequency for the pitch angle of α = 55◦, for the ds-helices the main
resonance intensity maxima are almost of the same magnitude.

(a) (b)

Figure 5. Scattered intensity characterization of the individual
particles (ss and ds) in a wide frequency range for various helix pitch
angles. (a) ss-helix. (b) ds-helix.

In Figure 6, the normalized scattered field intensity and the
polarization characteristics (ellipticity) are presented for the individual
ds-helix of α = 30◦ at 3.05 GHz in the yz - (perpendicular to the helix
axis) and xz -planes. Here we see a pure circular polarization radiation
along the z-axis with predominant intensity scattering in this direction
too. The type of circular polarization was identified as left-handed
(LHCP), for this polarization the curved trajectory of the E-vector
of the wave (in space) is a left-handed helix. For the x- and y-axes,
the ellipticity takes its minimum value close to 0.1 and, therefore, can
be considered as linearly polarized. In contrast to the ds-helix, some
complex distribution of total intensity was observed for the ss-helix
(not shown), moreover, a steady circular polarization scattering flux
was not observed.
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Figure 6. Scattered field and ellipticity characterization in the yz-,
xz-planes for the individual ds-helix having α = 30◦ at 3.05GHz.

Thus, strong spatial intensity re-distribution and polarization
conversion are observed. The scattered intensity is almost completely
concentrated in the yz -plane (perpendicular to the helix axis plane) for
an individual particle. However, the total spatial intensity distribution
for arrays of helices is anisotropic in the yz -plane due to mutual
coupling between the helices. Moreover, these collective interactions
between the helices in the array can lead to the main resonance shifting.
However, the helical array investigation is out of the scope of this paper.

The results can be utilized for realization of a helical
array metamaterial which has demonstrated the negative refraction
phenomenon [9, 26–28]. Well known split ring resonators and fishnet
structures provide negative refraction index due to an overlapping
electric and magnetic resonances to achieve both negative ε and µ.
As it can be seen from Eq. (2), a chiral media provide an additional
parameter — the chirality parameter — for manipulating the negative
index of a circularly polarized radiation [29]. Thus, in a strong
birefringent media, negative refraction can be achieved without both
negative ε and µ.

A disadvantage of a standard birefringent quarter wave plate is
well known: it can operate only at a fixed wavelength. Design of
an achromatic quarter-wave plate requires a complex combination
of several retarders combined into one well adjusted device (e.g.,
Ref. [30]). This device can cover a wide range from 0.25 to 1.75 THz.
Another example of broadband operation was demonstrated recently
in Ref. [31]. The eye of a stomatopod crustacean operates as an
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achromatic quarter wave retarder in the visible wavelength region due
to its internal non-typical composition. Helix-shaped arrays can realize
achromatic operation regime due to multiple resonance behaviour. In
Ref. [12], it was reported a more than one octave operation waveband.
Our late study of helix-shaped arrays in THz region demonstrated the
realizability of increasing the waveband up to 1.5 octaves.

5. CONCLUSION

In this article, we have created and developed in detail the discrete
dipole re-radiation model describing an individual helix intensity-
polarization behavior and can be applied (to some extent) for
describing a bianisotropic media composed of helical inclusions. Based
on this model, we have predicted circularly polarized scattering
phenomenon realized for the perpendicular to the ds-helix axis
direction. Detailed analysis of helix parameters has revealed the
optimal parameters of the ds-helical particle for realization of the
phenomenon. The most crucial parameter is the helix pitch angle,
which is optimal in the range of 20◦–30◦ for the ds-helix.

Using computer simulations, we have demonstrated that most
intensity, scattered by the ds-helix (or by the one-layer array composed
of them), has unidirectional directivity and is circularly (or elliptically)
polarized at the main resonance. This contrasts strongly with the
directivity and the polarization type of the field scattered by the ss-
helices of the same shape. Computer modeling and experimental study
have confirmed the theoretically predicted model of the radiation based
linear-to-circular polarization transformer.

From analysis of Figures 4 and 5 one can say about broadband
operation of the ds-particle. The result of this work can be generalized
to other frequency regimes such as THz and even the infrared regimes
and, therefore, this work is also related to optics.
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