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Abstract—Evolutionary Search Algorithms (EA) have been inten-
sively used in solving numerical optimization problems. Since design
of antenna arrays is a numerical optimization problem, EAs have been
intensively used in solving antenna arrays design problems. Although
EAs are widely used in antenna array design problems, a performance
comparison study of the intensively used EAs for circular antenna ar-
ray design problem has been scarcely studied. In this paper, 3 different
circular antenna array design problems have been solved by using 15
different evolutionary search algorithms (i.e., ABC, ACS, BSA, CK,
CLPSO, CMAES, DE, E2-DSA, EPSDE, GSA, JADE, JDE, PSO,
SADE, S-DSA). The objective function designed for solution of the
relevant circular antenna array design problems ensures minimization
of side lobe levels, acquisition of maximum directivity, and null control
of the non-uniform, planar circular antenna array. Obtained statistical
analysis results show that S-DSA solves the relevant circular antenna
array design problems statistically better than the other evolutionary
algorithms used in this paper.

1. INTRODUCTION

Since antenna arrays are intensively used in mobile and wireless
communication systems, optimum design of array patterns is of
vital importance for increasing channel capacities of these systems,
broadening their coverage areas, and ensuring the efficient spectrum
utilization. When a single element based antenna is used, it
gets difficult to meet the gain or highly directive radiation pattern
conditions required in the long distance communication. Antenna
arrays use many individual antennas by means of a geometric and

Received 1 May 2013, Accepted 7 September 2013, Scheduled 8 September 2013
* Corresponding author: Pinar Civicioglu (civici@erciyes.edu.tr).



266 Civicioglu

electrical configuration, a variety of features of which have been
optimized previously. The antenna arrays are widely used in many
applications such as radar [1], GPS [2], sonar [3], radios [4], and third
generation wireless communication systems [5].

The objective function to be used for obtaining the optimum
parameters pertaining to antenna array geometry aims at determining
the positions of array elements [6–12]. Optimization of the positions
of array elements is very important for producing a radiation pattern
that is as similar as possible to the radiation pattern required to be
produced via the relevant antenna array [13–20]. Many researchers
studying in the field of electromagnetic optimization problems have
conducted many studies on the subject of non-uniformly spaced linear
antenna arrays [21–24].

Most of the classical optimization algorithms need very good
initial-solution values pertaining to the relevant problem in order
to solve an antenna array design problem. In addition, classical
optimization algorithms usually need the derivative of the relevant
problem. Since antenna array design problems are generally in a
multimodal form, it is a high possibility that most of the classical
optimization algorithms are caught up in a local-solution. Evolutionary
search algorithms can sub-optimally solve a multimodal numerical-
optimization problem defined by using an objective function without
needing the derivative of the relevant problem. Thus, the use of
evolutionary search algorithms has become widespread in solution of
antenna array design problems [10, 13–16, 18–22, 25]. Evolutionary
algorithms have been commonly used for optimizing Side Lobe Level
(SLL) [24–26] values of antenna arrays, and ensuring an optimized
null control from the designed arrays. Many studies were carried
out in order to develop antenna arrays having different geometric
characteristics [10–20]. Circular shaped antenna arrays [7, 9, 11, 12]
are intensively used in applications such as sonars, radars, mobile and
commercial satellite communication systems [27–32]. Evolutionary
algorithms, which are widely used for solution of the circular
array design problem, are Particle Swarm Optimization (PSO) [14–
16, 18, 20, 21], Differential Evolution Algorithm (DE) [19, 33–35],
Biogeography-Based Optimization algorithm [10], Invasive Weed
Optimization algorithm [13, 22, 26], Genetic Algorithm [16] and the
derivatives of these algorithms [36–41].

This paper includes 15 different evolutionary search algorithms
(Artificial Bee Colony Algorithm (ABC) [42], Artificial Cooperative
Search Algorithm (ACS) [43], Backtracking Search Optimization Al-
gorithm (BSA) [44], Cuckoo Search Algorithm (CS) [45], Compre-
hensive Learning Particle Swarm Optimizer (CLPSO) [46], Covari-
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ance Matrix Adaptation Evolution Strategy (CMAES) [47], Differ-
ential Evolution Algorithm (DERND; DE/rand/1/bin) [48], Differen-
tial Evolution Algorithm with Ensemble of Parameters (EPSDE) [49],
Gravitational Search Algorithm (GSA) [50], Adaptive Differential Evo-
lution Algorithm (JADE) [51], Self-Adaptive Differential Evolution
Algorithm (JDE) [52, 53], Particle Swarm Optimization Algorithm
(PSO) [45, 54], Strategy Adaptation Based Differential Evolution Algo-
rithm (SADE) [55] and Differential Search Algorithm (DSA; E2-DSA
and S-DSA) [53, 56]) in order to solve 3 different circular antenna array
design problems.

This paper is organized as follows: Sections 2 and 3 include
the Evolutionary Search Algorithms and Problem Formulation,
respectively. Section 4 describes the Experiments and Section 5
presents the Conclusions.

2. EVOLUTIONARY SEARCH ALGORITHMS

The general structures and basic evolutionary computing philosophy
foundation of the evolutionary search algorithms used in this paper are
briefly explained below.

ABC is a population-based evolutionary search algorithm that
analogically simulates nectar source search behavior of honey-bees.
ABC has an elitist, and two-phased search strategy. Because ABC’s
search strategy is elitist, its problem solving success of multimodal
problems is limited. ABC has only two control parameters and its
mutation strategy is rather similar to DE. ABC has no crossover
operator.

ACS is a swarm intelligence algorithm developed for solving
real valued numerical optimization problems. ACS is a bijective
search algorithm, that means each random solution evolves towards
a random solution of the related problem. The non-elitist structure of
ACS gives it ability to solve multimodal problems more successfully.
The swarm intelligence philosophy behind ACS is based on the
migration of two artificial superorganisms as they biologically interact
to achieve the global minimum value pertaining to the problem. In
ACS, a superorganism consisting of random solutions of the related
problem corresponds to an artificial superorganism migrating to more
productive feeding areas.

BSA has a simple structure that is effective, fast and capable
of solving multimodal problems and that enables it to easily adapt
to numerical optimization problems. BSA can be considered as a
modernized PSO. BSA has new strategies for crossover and mutation
operations and it has quite powerful local and global search abilities.
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In particular, BSA possesses a short-range memory in which it stores
a population from a randomly chosen previous generation for use in
generating the search-direction matrix. Thus, BSAs memory allows
it to take advantage of experiences gained from previous generations
when it generates a new trial preparation.

CS is a population based, elitist stochastic search algorithm. CK
has a tendency to evolve each random solution towards to the best
solution obtained beforehand. CK is structurally similar to DE and
ABC. However, it has a superior problem solving success in comparison
to ABC, DE and some DE variants. CK has only two control
parameters.

CLPSO is an advanced PSO version. Differently from the
standard PSO, CLPSO uses the historical best information of all
the other particles simultaneously to update the speed of a particle.
Instead of the pbest and gbest values used in the standard PSO,
CLPSO uses the pbest values of all random solutions in the swarm.
In contrary to the other numerous PSO versions, CLPSO can also
solve the multimodal functions.

CMAES is an evolution-strategy based metaheuristic algorithm.
CMAES is based on the update of a covariance matrix used to model
the relations among the parameters of the optimization problem.
CMAES uses the ranks of the random solutions in the population to
update the elements of relevant covariance matrix. In consequence
of the recombination, mutation, selection, and adaptation stages it
structurally has, CMAES tries to evolve the population iteratively.
CMAES needs the dimension of the problem, the initial mean and the
standard deviation values of the multivariate normal distribution to
initialization process.

DE is a non-gradient-based, evolutionary raw-genetic algorithm.
Its mathematical structure is very simple and it can be adapted to
many problem types easily. For such reasons, DE is perhaps the mostly
used optimization algorithm in the literature. The basic difference
of DE from the genetic algorithm is its multi-structured mutation
operator. The most frequently used mutation operator in the literature
of DE is DERND (i.e., DE/rand/1/bin), which is used as DE in this
paper.

EPSDE uses the mutation strategies existing in the DE algorithm.
In EPSDE, a mutation strategy existing in DE algorithm is assigned to
each element of the population. The value of the mutation coefficient
to be used for the mutation strategy selected in EPSDE is randomly
selected from a pool in such a way that it will remain between 0.4
and 0.9 in each iteration. Despite of its low-speed, EPSDE is a quite
successful algorithm in problem solving.
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GSA is an evolutionary search algorithm and it has been inspired
from the universal gravitational laws. Random solution of the
respective problem desired to be solved in GSA has been modeled
as artificial-bodies that apply newtonian gravitational force to each
other. Mass of an artificial-body is related to the quality of the
solution that artificial-body provides for the respective problem. The
higher the quality of the solution, the slower the speed that artificial-
body abandons that position due to the gravitation force applied to it
by other artificial-bodies. Speed of the artificial-bodies with inferior
quality of solution is higher in the search-space. This phenomenon
allows GSA to search the search space very efficiently to find a solution
for a problem.

JADE has a new mutation strategy (i.e., DE/current-to-pbest)
that has been developed to be used together with DE. The mutation
operator used in JADE evolves a solution that is randomly selected
from the population, towards a random top-best solution that provides
the best solution at the moment in the population. JADE algorithm
can solve numerical optimization problems with much greater success
than DE/current-to-best/1 and DE/best/1 strategies that are used in
standard DE algorithms.

JDE uses a developed form of DE/rand/1/bin of DE. The initial
values of the mutation coefficient and crossover coefficient that are the
basic control parameters of DE algorithm are generally determined on
the basis of the structure of the problem to be solved. JDE similar
to DE operates on the basis of a fixed population size. JDE uses a
different mutation and crossover coefficients for each element of each
random solution making up the population. Although the structure of
JDE is very simple its success in problem solving is much higher than
DE/rand/1/bin algorithm.

PSO is a metaheuristic algorithm inspired by the joint movements
of the members of superorganisms. The artificial particles creating a
population in PSO and corresponding to the chromosomes used in the
genetic algorithm benefit from their initiative and social experiences
while searching the solution of a problem. The initiative and social
experience notions used in PSO correspond philosophically to the
local search and global search notions in the global search algorithms.
PSO has been used to solve numerous numeric optimization problems.
As a result of the ongoing researches, numerous relatively new PSO
structures that are generally more successful than the standard PSO
have been developed (e.g., CLPSO, PSO2007). In this paper, the
PSO2011, which is an advanced version of PSO2007 that includes a
considerable part of the improvements acquired through the long years
of researches carried out on the PSO algorithm has been used.
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SADE is an advanced DE version capable of using the mutation
strategies used in the standard DE adaptively. In SADE, the
mutation strategy to be used in any area is determined using the
probability values calculated on the basis of the successes the relevant
mutation strategies have had in the past iteration steps. Global search
capabilities of the SADE are rather advanced.

DSA is a multi-strategy based, advanced evolutionary swarm-
algorithm. DSA analogically simulates a superorganism that migrates
between two stopovers. DSA has only unique mutation and crossover
operators. The structure of mutation operator of DSA contains just
one direction pattern apart from the target pattern. The structure
of crossover operator of DSA is very different from the structures of
crossover operators used in advanced DE algorithms. DSA has only
two control parameters. These parameters pertaining to the crossover
process of DSA are used for controlling the degree to which the trial

Table 1. Control parameters of the related algorithms.

Algorithm Initial Values of Control Parameters

ABC
limit = N ·D

Size of EmployedBee = (Size of Colony)/2

ACS p = 0.10

BSA mixrate = 1

CK p = 0.25, β = 1.5

CLPSO

[c1, c2] = [1.49445, 1.49445], m = 0

pc = 0.5 · et−et(1)

et(ps)−et(1)

where t = 0.5 ≤
(
0 : 1

ps−1
: 1

)

CMAES

N = 4 + b3 · log(Dimension of problem)c
σ = 0.25

µ =
⌊

4+b2·log(N)c
2

⌋

DERND F = 0.50, CR = 0.90

E2-DSA p1 = p2 = 0.30 · κ|κ ∼ U [0, 1]

EPSDE F=[0.4 0.5 0.6 0.7 0.8 0.9] CR=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

GSA Rnorm = 2, Rpower = 1 α = 20, G0 = 100

JADE c = 0.10, p = 0.05 CRm = 0.50, Fm = 0.50, Afactor = 1

JDE Finit = 0.50, CRinit = 0.90

PSO C1 = 1.80, C2 = 1.80 ω = 0.5 + (1− rand)|rand ∼ U [0, 1]

SADE F ∼ N(0.5, 0.3), CR ∼ N(CRm, 0.10) c = 0.10, p = 0.05

S-DSA p1 = p2 = 0.30 · κ|κ ∼ U [0, 1]
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pattern will mutate in comparison to the target pattern. Each trial
pattern uses the corresponding target pattern for evolving towards
stopovers that provide a better fitness value. Standard DSA has 4
different options for obtaining direction matrix. In Bijective DSA; B-
DSA, population evolves in each cycle into the randomly permuted
form of current population. In Surjective DSA; S-DSA, population
evolves into artificial organisms in which relatively better solutions are
found. In Elitist DSA; E1-DSA, population evolves into the randomly
selected top-best solutions of the original population. In Elitist DSA;
E2-DSA, population evolves into the better solution of the original
population. In this paper, S-DSA and E2-DSA have been employed.

Table 1 gives the initial values of the relevant control parameters
for the evolutionary algorithms used in this paper.

3. PROBLEM FORMULATION

The antenna elements constitute a circular antenna array, as it is
illustrated in the Figure 1 [17]. Array factor value (AF) belonging
to a circular antenna array can be calculated by use of Eq. (1) when
the wavefront of incident plane wave is perpendicular to the x-y plane.

AF (φ)=
N∑

n=1

In · exp
[
j ·k ·r·(cos

(
φ0−φn

ang

)−cos
(
φ0−φn

ang

))
+βn

]
(1)

Here,
• φn

ang = 2 · π · n−1
N : Angular position of the nth element on the x-y

plane,

Figure 1. Geometry of circular antenna array.
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• k: Wave-number, where k ·r = N ·d and d denotes angular spacing
between elements,

• r: Radius of the circle defined by the circular array,
• ϕ0: Direction of maximum radiation,
• ϕ: Angle of incidence of the plane wave,
• In: Current excitation,
• βn: Phase excitation of the nth element.

Constraints between elements of the designed circular antenna
array were defined through Eq. (2).

In
2
+1∠βn

2
+1 = conj (I1∠β1) ,

In
2
+2∠βn

2
+2 = conj (I2∠β2) , . . . ,

In∠βn = conj
(
In

2
∠βn

2

) (2)

In this paper, the objective function defined in Eq. (3) has been
used for solution of the circular antenna array design problem [17].

F = w1 ·
∣∣∣AR

(
ϕsll , ~I, ~β, ϕ0

)∣∣∣
/∣∣∣AR

(
ϕmax, ~I, ~β, ϕ0

)∣∣∣

+w2 · 1

DIR
(
ϕ0, ~I, ~β

) + w3 · |ϕ0 − ϕdes|

+w4 ·
num∑

k=1

∣∣∣AR
(
ϕk, ~I, ~β, ϕ0

)∣∣∣ (3)

where w1 = w2 = w3 = w4 = 1 have been used in this paper.
The purpose of the objective function defined in Eq. (3) is to

minimize side-lobe levels, maximize directivity, and obtain null control.
To accomplish the purposes of the objective function, phase and
amplitude values exciting the antenna elements were investigated. The
range of normalized amplitude excitations is [0 1], and the range of
phase excitations is [−180 180].

In Eq. (3), the term of |AR(φsll , ~I, ~β, φ0)|/|AR(φmax, ~I, ~β, φ0)|
enables minimizing the side lobes. ϕsll shows the angle where the
maximum side lobe level is obtained.

The term of 1

DIR(φ0,~I,~β)
used in Eq. (3) maximizes the value of

the directivity of the array pattern. The directivity is very useful
for meeting different array patterns. The term of |φ0 − φdes| strives to
drive the maxima of the array pattern close to the desired maxima ϕdes .

The term of
num∑
k=1

|AR(φk, ~I, ~β, φ0)| penalizes the objective function if
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sufficient null control is not achieved. num is the number of null control
directions and ϕk specifies the kth null control direction.

Table 2 presents the descriptive properties pertaining to the
circular antenna design problem used in this paper. The relevant
circular antenna array design problems were solved by the relevant
algorithms, and current excitation and phase of the antenna elements
values enabling to obtain the desired pattern were obtained.

Table 2. The circular antenna array design problems used in tests.

Test # low up dim φdes
null

control

Test 1

[0.2, 0.2, 0.2,

0.2, 0.2, 0.2,

−180,−180,−180,

−180,−180,−180]

[1, 1, 1,

1, 1, 1,

180, 180, 180,

180, 180, 180]

12 180◦ -

Test 2

[0.2, 0.2, 0.2,

0.2, 0.2, 0.2,

−180,−180,−180,

−180,−180,−180]

[1, 1, 1,

1, 1, 1,

180, 180, 180,

180, 180, 180]

12 180◦ 120◦

Test 3

[0.2, 0.2, 0.2,

0.2, 0.2, 0.2,

−180,−180,−180,

−180,−180,−180]

[1, 1, 1,

1, 1, 1,

180, 180, 180,

180, 180, 180]

24 180◦ -

4. EXPERIMENTS

This section examines in detail the statistical parameters used in
analysis of the test results, algorithmic precision used in the statistical
analysis, common control parameters of related algorithms, stopping
conditions used by the relevant algorithms, and statistical results.

In the tests conducted, the relevant circular antenna array design
problems were solved 30 times, each time using a different initial
pattern-matrix [45]. In each test conducted, the relevant evolutionary
computing algorithms use the same initial population. Various values
acquired in the tests conducted (i.e., global minimum and global
minimizer) are kept for detailed statistical analysis. All tests and
statistical analysis performed herein have been carried out in the
Matlab platform.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 2. The best array patterns for the Test-2, which is obtained
by (a) ACS, (b) JADE, (c) PSO, (d) BSA, (e) SADE, (f) JDE, (g) CK,
(h) DERND, (i) GSA, (j) EPSDE, (k) E2-DSA, (l) ABC, (m) S-DSA,
(n) CMAES, (o) CLPSO.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3. The best array patterns for the Test-2, which is obtained
by (a) BSA, (b) CLPSO, (c) PSO, (d) E2-DSA, (e) DERND, (f) JDE,
(g) SADE, (h) JADE, (i) GSA, (j) CK, (k) ACS, (l) ABC, (m) S-DSA,
(n) EPSDE, (o) CMAES.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4. The best array patterns for the Test-2, which is obtained
by (a) EPSDE, (b) JADE, (c) JDE, (d) BSA, (e) SADE, (f) PSO,
(g) ACS, (h) CK, (i) CMAES, (j) E2-DSA, (k) DERND, (l) ABC,
(m) S-DSA, (n) GSA, (o) CLPSO.
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4.1. Algorithmic Precision

The algorithmic precision of numerous modern software development
tools is at the level of 10−16 in the double-precision mode. If the
arithmetic precision value is selected higher than necessary, it becomes
difficult to compare the local search abilities of the algorithms. In the
statistical analysis conducted in this paper, the arithmetic precision
value has been determined as 10−16 so that it can cover the precision
level needed in many practical applications.

4.2. Common Control Parameters of Algorithms

The common control parameters of the relevant evolutionary search
algorithms are as follows.

• The maximum generation number value (i.e., maxcycle) is
2,000,000.

• Size of the pattern matrix (i.e., size of population) = 30.

Table 3. Statistical values of global minimum values obtained from
30-trials in Test 1; Mean: mean value of global minimum values, Std:
standard deviation of the mean global minimum value, Best: the best
value of global minimum values and Median: median value of global
minimum values.

Algorithm
Statistics

Mean Std Best Median

S-DSA −21.3959 0.955676 −21.9024 −21.7067

EPSDE −21.581 0.377924 −21.9023 −21.6606

CK −21.7273 0.150403 −21.9023 −21.7076

BSA −21.6781 0.198937 −21.9002 −21.7067

ACS −21.6273 0.174802 −21.899 −21.6389

CMAES −2.98977 27.6972 −21.8979 −12.1883

E2-DSA −21.5388 0.449843 −21.8976 −21.6158

DERND −20.947 1.759608 −21.8975 −21.4957

SADE −21.3964 0.621627 −21.8967 −21.5322

JADE −21.353 0.239282 −21.86 −21.3393

CLPSO −19.5979 1.560356 −21.0628 −20.1316

ABC −17.534 1.351429 −20.5099 −17.2709

GSA −16.5437 0.42498 −17.5645 −16.4553

JDE −9.72518 1.931982 −16.6028 −9.28692

PSO −13.4075 0.505283 −14.3721 −13.3552



278 Civicioglu

4.3. Stopping Conditions

The predetermined criteria to stop the search processes of the relevant
algorithms used in this paper are as follows.

• If absolute value of objective function is less than 10−16, stop.
• If the algorithm has failed to find a better solution than the

existing solution even at the end of the last 200,000 function
evaluations, stop.

• When the number of function evaluations reaches 2,000,000, stop.

4.4. Statistical Analysis

Tables 3–5 gives basic statistical values (i.e., Mean, Std, Best,Median)
of global optimum values obtained in 30 trials by the relevant algo-
rithms for the circular antenna array design problems. Array patterns
obtained by the relevant algorithms are showed in the Figures 2–4.

Table 4. Statistical values of global minimum values obtained from
30-trials in Test 2; Mean: mean value of global minimum values, Std:
standard deviation of the mean global minimum value, Best: the best
value of global minimum values and Median: median value of global
minimum values.

Algorithm
Statistics

Mean Std Best Median

S-DSA −21.4399 0.614433 −21.9017 −21.6274

CK −21.65 0.178681 −21.9017 −21.6677

SADE −21.277 0.701287 −21.9002 −21.4768

E2-DSA −21.4905 0.288214 −21.8987 −21.4796

BSA −21.6608 0.165671 −21.8981 −21.6674

EPSDE −21.6397 0.183391 −21.8915 −21.6602

ACS −21.6033 0.173024 −21.8824 −21.506

JADE −21.4089 0.271234 −21.8393 −21.3857

DERND −21.3465 0.426849 −21.8368 −21.4212

CLPSO −20.2716 0.933406 −21.2502 −20.5683

CMAES 18.59502 37.19945 −20.565 4.370296

ABC −18.0684 1.167902 −20.3474 −18.0741

GSA −16.6642 0.421773 −17.6169 −16.6748

JDE −9.61435 2.39578 −17.6116 −8.94924

PSO −13.2438 0.644399 −14.6641 −13.2706
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Table 5. Statistical values of global minimum values obtained from
30-trials in Test 3; Mean: mean value of global minimum values, Std:
standard deviation of the mean global minimum value, Best: the best
value of global minimum values and Median: median value of global
minimum values.

Algorithm
Statistics

Mean Std Best Median

S-DSA −21.5036 6.7538 −33.4334 −19.3358

E2-DSA −24.6933 4.2943 −32.6903 −25.8875

ACS −22.2482 4.5013 −32.3133 −21.3762

BSA −23.1325 4.2970 −32.1408 −24.4438

EPSDE −19.4702 5.9493 −31.8883 −16.2445

GSA −22.8905 1.8213 −24.8898 −23.5310

DERND −17.7545 2.6231 −24.3769 −16.9840

CK −14.6113 1.7005 −22.1947 −14.4060

SADE −16.2070 1.2932 −18.7705 −16.4255

JADE −15.7014 1.0930 −18.4688 −15.5797

CLPSO −14.3385 0.6390 −16.6294 −14.2788

ABC −12.7516 0.7458 −15.1482 −12.7759

CMAES 15.3954 21.8090 −14.3321 12.1527

PSO −12.7375 0.5976 −13.9626 −12.7660

JDE −8.0792 1.4484 −12.1239 −7.5831

Examining the Figures 2–4, it is seen that S-DSA, in comparison to
the other algorithms, achieved better minimized side lobes and the
greatest directivity.

5. CONCLUSIONS

This paper includes solutions to 3 different circular antenna array
design problems using 15 different evolutionary search algorithms. 30
trials were solved for each problem by using different initial populations
in order to avoid negativities of the stochastic natures of evolutionary
search algorithms. Results were analyzed by using the well known
statistical parameters of Mean, Standard Deviation of Mean, Best
Solution and Median Value of the Solutions. Simulation results
show that results found by S-DSA are statistically better than those
produced by using ABC, ACS, BSA, CK, CLPSO, CMAES, DE, E2-
DSA, EPSDE, GSA, JADE, JDE, PSO and SADE.
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