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Abstract—The model based on range and Doppler equations (RD
model) is the most precise model for SAR geolocation, and therefore
SAR geolocation based on this RD model has become more and
more popular. Unfortunately, the RD method requires iterative
solution, in most case, which is time-consuming and prone to poor
optimization due to observation errors of parameters. In face of the
huge mass of measured data from global SAR measurements, how
to improve processing speed while maintaining geolocation accuracy
is an important problem. This paper examines how to solve the
RD geolocation equations for single, interferometric, and stereo SAR.
First, the RD geolocation equations for the three kinds of systems
are abstracted into a unified equation form. Second, it is determined
that the RD geolocation equation can be approximated as a mapping
relationship using polynomials. Then a fast solution method for the
unified geolocation equation is proposed based on the Range Doppler
Polynomial Coefficient Model (RDPC). Third, the accuracy loss of
the RDPC model is analyzed, and the precision differences among
the three kinds of system are compared. Finally, several groups of
TerraSAR-X measured data for the three modes are processed using
the fast algorithm. The results show that the fast algorithm greatly
reduces the amount of calculation while the geolocation accuracy loss is
small. Performance evaluation demonstrates that the proposed method
is efficient and correct.

Received 1 May 2013, Accepted 22 June 2013, Scheduled 5 July 2013
* Corresponding author: Haifeng Huang (h haifeng@163.com).



814 Huang and Wang

1. INTRODUCTION

With the development of synthetic aperture radar technology,
spaceborne SAR has become one of the main means of high-precision
geolocation [1–3]. Spaceborne SAR geolocation technology includes
three modes: single SAR image geolocation [4], interferometric
SAR geolocation [5], and stereo SAR geolocation [6]. It exists
simultaneously in these three kinds of modes that one has to
solve the geolocation equations. The model based on range and
Doppler equations (the RD model) is the most precise model for
SAR geolocation and therefore has become more and more popular.
Unfortunately, in most case, the RD method requires iterative solution,
which is time-consuming and prone to poor optimization due to
observation errors of parameters and seriously depends on initial
value [7, 8]. For example, the distributed small satellites synthetic
aperture radar (DSS-SAR) geolocation is based on non-linear equation
and iterative solution is required. The observation errors of parameters
include errors on satellite position, velocity, baseline, phase, etc.. These
errors will slow iterative process and even the iterative process does not
converge [1, 5, 9].

Until now, global SAR measurements have accumulated a large
mass of data. For example, it has taken nearly two years to finish global
data processing for the SRTM task, for which the total volume of global
data is approximately 9.8 TB. In addition, the German Aerospace
Center (DLR) is currently using two TerraSAR-X and TanDEM-X
satellites to set up an interferometric measuring system in which they
fly in formation [5, 10]. The system is expected to complete global
DEM measurements meeting HRTI-3 standard in three years and
to obtain an amount of data greater than 350 TB. In face of this
huge mass of data from global SAR measurements, how to improve
processing speed while maintaining geolocation accuracy is a problem
which deserves to be taken into account.

The synthetic aperture radar imaging process essentially involves
performing a three-dimensional ground-point projection onto a 2D
image plane. In other words, it establishes a mapping relationship
between each object point and an image point. All kinds of SAR
geolocation technology are based on this mapping relation. At present,
three main models are used to describe the mapping relation model.

The first class of model is the equivalent-line central-projection
models based on photogrammetry theory. There are two types of
these models; the first one was proposed by Leberl [4, 11, 12]. Changes
of linear elements in the sensor’s exterior azimuthal elements are
considered, but not angle elements. Therefore, an SAR stereo model
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constructed on this basis experiences moderately large fluctuations in
parallax, as is also the case with airborne SAR because this model
is built in terms of the range equation of image points and the zero
Doppler condition. The second type is the mathematical model of flat-
range projective radar images proposed by Konecny and Schuhu [13].
In this model, changes in the exterior azimuthal elements of sensors
and terrain are considered, and the form of the equation is similar to
the photogrammetric collinearity equation. Although the model is easy
to use, it interprets an object with reference only to the characteristics
of traditional optical imaging, without taking into account the side-
looking projective characteristics of an SAR image. For this reason,
this type of model is used only as a simulation processing method for
optical images.

The second class of model is the RPC (Rational Polynomial
Coefficient) model. This model associates each ground-point coordinate
with its corresponding image-point coordinate using a ratio of
polynomials. Use of this model to replace the space optical model
has been generally accepted [14]. Zhang et al. [15] recently applied
this model to SAR geolocation. The main difficulty of the method is
the need to solve a large system of linear equations to compute the
parameters of the RPC model.

The third class of model is the RD (Range Doppler) model,
proposed by Brown [16] and Curlander [17], which contains two
equations: the range equation and the Doppler equation. The model
fully reflects the two-dimensional nature of SAR imaging. The range
equation describes the distance relationship between the radar and the
object point after pulse compression. The Doppler equation describes
the Doppler relationship between the radar and the object point at the
moment of azimuth focusing.

Because the RD model is characterized by rigor and high accuracy,
it is the most widely used. Single SAR image geolocation is
implemented through simultaneous equations, including earth-model
equations and RD equations. These equations do not have an
analytic solution, and therefore solving for the object-point position
requires complex iterative computations, so efficiency is low. Many
scholars have investigated this problem, including the extraction
and optimization of model parameters, coordinate transformations,
positioning error source analysis, and other aspects of the problem [18–
21]. Many international scientific research institutions, such as JPL,
DLR, and the Italian space agency, have developed their own SAR
image geolocation processing modules based on the RD model. The
RD model is also widely used in stereo SAR geolocation technology, in
which the system of simultaneous equations includes the two Doppler
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equations and the two range equations of the two images. The method
also requires complex iterative calculations [6, 22]. Similarly, InSAR
geolocation technology has also widely adopted the RD model. Various
forms of geolocation methods have been proposed based on the RD
model. To address the complexity of the iterative computations,
many researchers have proposed various approximation methods to
improve computational efficiency. Studies in the literature [23–25]
have investigated DEM reconstruction under the hypothesis of a flat
ground and side-looking radar, which entails a large reconstruction
error. A closed-form solution based on range spheres, Doppler cones,
and a phase hyperboloid has been presented in [26, 27]. However, the
deduction is based on monostatic equation hypothesis in that case. For
the bistatic equation case, such as SRTM and TanDEM-X mission, a
closed-form solution cannot be derived. The Integrated TanDEM-X
Processor [28, 29], a fast and efficient technique for SAR interferogram
geocoding which uses object-to-image transformation, is also based on
the RD model.

This paper examines how to solve the RD geolocation equations
rapidly for single, interferometric, and stereo SAR and is organized
as follows. The RD geolocation equations for the three kinds of
system are abstracted into a unified equation form in Section 2. Based
on proposals in the literature [30], a fast solution for the unified
geolocation equation is proposed in Section 3. Section 4 analyzes
the accuracy loss of the RDPC model and presents a comparison of
the differences in precision among the three models. To verify the
effectiveness of this method, the results of processing real TerraSAR-X
data were used in Section 5, and conclusions are drawn in the final
section.

2. UNIFIED RD GEOLOCATION EQUATIONS

Let Oe-XY Z be an Earth fixed-coordinate system, S1 the spatial
vector for the first satellite, S2 the spatial vector for the second
satellite, and P the spatial location of the ground-target point
vector. The Spatial geometry of Earth fixed-coordinate system is
shown in Figure 1. The geolocation equations for single, stereo,
and interferometric SAR can be abstracted into a unified geolocation
equation form as follows:

First range equation (master image range equation):
r1 = |P− S1| (1)

Master image Doppler equation:

V1 · (P− S1) = −λ

2
f1r1 (2)
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Figure 1. Spatial geometry of Earth fixed-coordinate system.

Second range equation:

(x2 − x)2 + (y2 − y)2

A2
+

(z2 − z)2

B2
= 1 (3)

where r1, f1, and V1 are the slant range, the Doppler centroid, and the
velocity vector of the first satellite, and (x, y, z) represents the three-
dimensional coordinates of P. The first two equations for the three
kinds of geolocation system are the same, i.e., the first slant-range
equation and the Doppler equation of the master image. However, the
second slant-range equation has different meanings for all three kinds
of geolocation system. In the case of interferometric and stereo SAR
geolocation systems, Equation (3) represents the slant-range equation
of the target and the second satellite:

S2 = [x2, y2, z2]T (4)

A = B = r2 = r1 +
λ

2π
· 1
k
· φ (for InSAR) (5)

A = B = r2 = r1 + ∆r (for stereo SAR) (6)

where r2 is the slant range of the second satellite, and ∆r, φ are
the differences of the range and the interferometric phase respectively,
k = 2 for monostatic case and k = 1 for bistatic case.

For the case of single SAR geolocation, Equation (3) denotes the
slant-range equation for the target and the earth-ellipsoid double focus:

[x2, y2, z2]T = [0, 0, 0]T (7)
A = Re + h, B = Rp (8)

where Re, Rp are Earth’s equatorial radius and polar radius
respectively and h is the target elevation.
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To illustrate the principle of geolocation, the above equations
are presented in a simplified form. In fact, there are many complex
situations in the actual system. Taking for example the TanDEM-X
mission, the second slant-range equation has the form of two radical
sign, and a closed-form solution cannot be derived by literature [26, 27].
Therefore the equations require an iterative solution. Therefore, it is
necessary to improve the processing speed and to look for a faster
processing method.

3. FAST ALGORITHM FOR RD GEOLOCATION
EQUATIONS

3.1. The Unified Fast Algorithm Based on RDPC Model

In fact, Equations (1)–(3) represent the mapping relationship between
two three-dimensional spaces:

F: (a, r, ξ) → (x, y, z) (9)

where a, r are the azimuth and range coordinates of the master SAR
image, and ξ has a different meaning in all three cases. In the single
SAR case, ξ represents the elevation h of the 2D image coordinates
(a, r); in the InSAR case, ξ represents the interferometric phase φ;
and in the stereo SAR case, ξ represents the slant-range difference
between the two images. (x, y, z) represents the three-dimensional
coordinates P = [x, y, z]T of the ground-scattering unit corresponding
to pixel (a, r).

Analysis shows that the mapping relationship described above,
under certain approximate conditions, has the following characteristics:

1. When a, r is fixed, the mapping relationship (ξ → P(ξ) =
[x(ξ), y(ξ), z(ξ)]T ) can be approximated by the order-m polynomial
Pm(ξ) = [px(ξ), py(ξ), pz(ξ)]T .

2. In the local area, the spatial variability of the space geometric
model is smaller, or in other words, the order-m polynomials Pm(ξ)
have small differences between nearby pixels.

The approximate conditions noted above will be described further
in Section 4. Assuming that the above characteristics hold, then rapid
geolocation will be possible. Based on these two approximations,
the main task of fast geolocation is how to obtain the polynomial
expression corresponding to each pixel of the SAR image. The basic
concept of the fast algorithm for the unified system of RD equations
is given below:

First, calculate the polynomial corresponding to the coarse pixel
points of the SAR image. Assume that a, r are independent variables
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and that ξ is the function value. After coarse sampling of a, r by
a factor of k along the azimuth and a factor of l over the range,
superimpose n fixed deviations ∆ξi (i = 1, 2, . . . , n) on ξ. A set of
parameter vectors {a, r, ξ(a, r) + ∆ξi, P = (xi, yi, zi)} (i = 1, 2, . . . , n)
can be obtained by solving Equations (1)–(3). Then an order-m
(m < n) polynomial (px(ξ), py(ξ), pz(ξ)) for each coarse grid point
can be constructed.

Second, order-m polynomials (px(ξ), py(ξ), pz(ξ)) can be com-
puted for every pixel by bilinear interpolation of the coarse grid points.

Finally, the three-dimensional coordinates of every pixel can
be computed by substituting the value of ξ into its corresponding
polynomial (px(ξ), py(ξ), pz(ξ)).

3.2. Fast Algorithm for InSAR Geolocation

In the case of InSAR geolocation, ξ represents the interferometric phase
φ. The fast algorithm can be divided into the following four steps:

Step 1: Resample the absolute phase φ(a, r), which was generated
by unwrapping and by a factor of k along the azimuth and a factor of
l over the range to obtain the absolute interferogram φ(ac, rc) for the
coarse grid position.

Step 2: Assuming a phase deviation of ∆φ (the absolute phase
changes to φ(ac, rc) + ∆φ) for each pixel φ(ac, rc) of the resampled
interferogram, a set of parameter vectors {ac, rc, φ(ac, rc) + ∆φ, P =
(x, y, z)} can be obtained by solving Equations (1)–(3) and (5).
This group of vectors can accurately describe the interferometric
mapping geometry of pixel (ac, rc). Taking an order-three polynomial
(n = 4) as an example, and repeating the procedure for the four
different phase deviations (∆φ1, ∆φ2, ∆φ3, ∆φ4) yields their four
corresponding groups of geometric parameter vectors, which represent
the conversion from the absolute phase to the ground targets Pi =
(xi, yi, zi), i = {1, 2, 3, 4}. From the four groups of geometric
parameter vectors, three cubic polynomials (px(φ), py(φ), pz(φ)) were
constructed to describe the dependence of the 3-D coordinates P =
(x, y, z) on the absolute phase φ. This process can be defined as follows:


1 φ(ac, rc)+∆φ1 (φ(ac, rc)+∆φ1)
2 (φ(ac, rc)+∆φ1)

3

1 φ(ac, rc)+∆φ2 (φ(ac, rc)+∆φ2)
2 (φ(ac, rc)+∆φ2)

3

1 φ(ac, rc)+∆φ3 (φ(ac, rc)+∆φ3)
2 (φ(ac, rc)+∆φ3)

3

1 φ(ac, rc)+∆φ4 (φ(ac, rc)+∆φ4)
2 (φ(ac, rc)+∆φ4)

3






c0x c0y c0z

c1x c1y c1z

c2x c2y c2z

c3x c3y c3z




=




x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4


 (10)
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Then

px(φ)=c0x + c1xφ + c2xφ2 + c3xφ3, (11)
py(φ)=c0y + c1yφ + c2yφ

2 + c3yφ
3, (12)

pz(φ)=c0z + c1zφ + c2zφ
2 + c3zφ

3. (13)

The selection principle for the phase bias of (∆φ1, ∆φ2, ∆φ3, ∆φ4) as
defined above is to take four equal portions of the points in the range
of the interferometric phase in a sampling unit, in which there are k
pixels in the azimuth direction and l pixels in the range direction. The
maximum and minimum values of the interferometric phase can be
computed from the four corner points of the sampling unit:

φi max=max(φ(aci, rcj), φ(ac(i+1), rcj), φ(aci, rc(j+1)), φ(ac(i+1), rc(j+1))) (14)
φi min=min(φ(aci, rcj), φ(ac(i+1), rcj), φ(aci, rc(j+1)), φ(ac(i+1), rc(j+1))) (15)

wherein i and j are the azimuth and range coordinates of absolute
interferogram after coarse sampling in step 1.

Then the phase bias ∆φm can be computed as follows:

∆φm =
{
m·(φi max−φi min)/4, if φ(aci, rcj) ≤ (φi max + φi min)/2
−m · (φi max − φi min)/4, if φ(aci, rcj) > (φi max + φi min)/2

,

m = {1, 2, 3, 4} (16)

Step 3: Once the polynomials for each grid point (ac, rc) have
been determined, the polynomials (p′x(φ), p′y(φ), p′z(φ)) for each sample
of the original interferogram can be obtained. For each sample, the
polynomials are constructed by applying bilinear interpolation to the
polynomials (px(φ)j , py(φ)j , pz(φ)j , j = {0, 1, 2, 3}) from the adjacent
resampling grid:

p′x(φ) = bilinear([px(φ)j , j = {0, 1, 2, 3}]), (17)
p′y(φ) = bilinear([py(φ)j , j = {0, 1, 2, 3}]), (18)

p′z(φ) = bilinear([pz(φ)j , j = {0, 1, 2, 3}]). (19)

Step 4: For each original interferogram sample (a, r), the cor-
responding 3-D coordinates (x(a, r), y(a, r), z(a, r)) can be obtained
by substituting the absolute interferometric phase φ(a, r) into Equa-
tions (17)–(19): 




x(a, r) = p′x(φ(a, r))
y(a, r) = p′y(φ(a, r))

z(a, r) = p′z(φ(a, r))
(20)

Note that the iterative method of solving the 3-D equation systems
has been replaced by a polynomial approximation, which is much faster
to compute.
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3.3. Fast Algorithm for Stereo SAR Geolocation

For the case of stereo SAR geolocation, ξ represents the slant-
range difference ∆r between the two images. Because the slant-
range difference ∆r and the interferometric phase φ differ only by a
proportional coefficient, the algorithm steps for stereo SAR geolocation
are the same as those for InSAR geolocation. The selection principle
for determining the bias of ∆r is to take equal portions of the points in
the range of ∆r in a sampling unit, and in this unit, it can be computed
using the range coordinates of the two SAR images.

3.4. Fast Algorithm for Single SAR Geolocation

For the case of single SAR, ξ represents the elevation h of the 2D image
coordinates (a, r). The algorithm steps for single SAR geolocation are
similar to those for InSAR geolocation. The selection principle for
determining the bias of ∆h is to take equal portions of the points
in the range of the elevation within a sampling unit. Because of the
need for maximum and minimum operations to determine sampling-
unit elevation, a large amount of calculation is required. In fact, hi can
be uniformly distributed over the elevation range (−500m, 9000m) at
various points on the earth. Take a second-order polynomial as an
example: h1 = −500m, h2 = 4250 m, h3 = 9000 m. Experimental
results show that the accuracy of the two principles is acceptable.

4. ACCURACY LOSS ANALYSIS OF RDPC MODEL

The mapping relationship (9) can be approximated by the order-m
polynomial, which is mentioned above. The first-order error transfer
coefficient of the slant range r2 can then be derived as follows [27]:

∂P
∂r2

≈ − r2

B⊥ cosΦ1

(
P̂× v̂

)
(21)

where B⊥ is effective baseline, Φ1 the angle included by P and the
cross-track plane, P̂ the unit vector of P, and v̂ the satellite S1 speed
unit vector.

It is also possible to determine that:
∂2P
∂r2

2

≈ − 1
B⊥ cosΦ1

(
P̂× v̂

)
− r2

2

r1 (B⊥ cosΦ1)
2

[
P̂−

(
P̂ · v̂

)
v̂
]

(22)

∂3P
∂r3

2

≈ − 3r2

r1(B⊥ cosΦ1)2
[
P̂−(P̂ · v̂)v̂

]
+

r3
2

r2
1 (B⊥ cosΦ1)

3

(
P̂×v̂

)
(23)

∂4P
∂r4

2

≈ r4
2 − 3r2

1(B⊥ cosΦ1)2

r3
1(B⊥ cosΦ1)4

[
P̂− (P̂ · v̂)v̂

]
(24)
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The error caused by use of the polynomial approximation can be
analyzed as follows. According to the Taylor expansion remainder
theorem, when the function P(ξ) is approximated by an order-m
polynomial in the interval [ξa, ξb] including ξi i = {0, 1, . . . , m},
ζ ∈ (ξa, ξb) exists s.t. the approximate error in point ξ ∈ [ξa, ξb] is

E(P(ξ); ξ) = P(ξ)−Pm(ξ) =
ω(ξ)

(m + 1)!
∂m+1P
∂ξm+1

|ξ=ζ (25)

where ω(ξ) =
m∏

i=0
(ξ − ξi).

Precisely determining E(P(ξ); ξ) is more complex; an upper limit
on the error, a polynomial approximation in the worst case, can be
expressed as:

E (P(ξ); ξ) ≤ max
(

ω(ξ)
(m + 1)!

)
·max

(
∂m+1P
∂ξm+1

|ξ=ζ

)
(26)

For the three kinds of geolocation systems, accuracy analysis of
the fast algorithm is described respectively as follows, which make use
of polynomial approximation error equation.

In the case of InSAR, ξ , φ, and φ = 4π
λ (r2 − r1), and therefore:

∂kP
∂φk

=
(

λ

4π

)k ∂kP
∂rk

2

(27)

Substituting Equations (24) and (27) and the corresponding parameter
(B⊥ ≈ 103 m) of TerraSAR-X in Section 5 into Equation (26) and
setting m = 3 for example gives:

E(P(φ); φ) ≤ |φa − φb|4
4!

·
(

λ

4π

)4

· r4
2

r3
1(B⊥ cosΦ1)4

≤ |φa − φb|4
4!

· 10−13 (28)

where |P̂× v̂| ≤ 1 and |P̂−
(
P̂ · v̂

)
v̂| ≤ 1 are used.

Assuming that E(P(φ);φ) ≤ 0.01, |φa − φb| ≤ 103 is a
conservative estimate from Equation (28), and this condition is easy
to meet.

In the case of stereo SAR, ξ , ∆rand ∆r = r2−r1, and therefore:

∂kP
∂∆rk

=
∂kP
∂rk

2

(29)

Substituting Equations (24) and (29) and the corresponding
parameter (B⊥ ≈ 175 km) of TerraSAR-X in Section 5 into
Equation (26) and taking m = 3 for example gives:

E(P(∆r);∆r)≤ |∆ra−∆rb|4
4!

· r4
2

r3
1(B⊥ cosΦ1)4

≤ |∆ra −∆rb|4
4!

· 10−15 (30)
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and this condition is also easily fulfilled. The baseline length of stereo
SAR is much greater than that of InSAR, and therefore its polynomial
approximation error is much less than that of InSAR.

In the case of single SAR geolocation, ξ , h. According to
Equations (27) and (28), h = r2 −Re, and therefore:

∂kP
∂hk

=
∂kP
∂rk

2

(31)

Substituting Equations (23) and (31) and the corresponding
parameter of TerraSAR-X in Section 5 into Equation (26) and taking
m = 2 for example:

E(P(h);h) ≤ |ha − hb|3
3!

· 2r3
2

r2
1(B⊥ cosΦ1)3

≤ |ha − hb|3
3!

· 10−11 (32)

This condition is also easy to achieve. The baseline length of single
SAR is equal to the distance between the satellite and the center of the
Earth, which is much greater than that of stereo SAR, and therefore
its second-order polynomial approximation error is acceptable.

5. EXPERIMENTS AND RESULT ANALYSES

To test the effectiveness of this proposed fast geolocation method, it
was used to process real data.

5.1. Experiments and Result Analyses for InSAR
Geolocation

The data used are from the pairs of TerraSAR-X repeat-pass images
obtained on April 23, 2008, and May 5, 2008. The effective baseline
is equal to about 103 meters. The center position of the images
is at latitude 39.52◦N and longitude 96.55◦E, which is the location
of a mountain range in Gansu Province, China. A data size of
3200 × 2100 pixels was selected. The minimum elevation value is
equal to 2250 meters, while the maximum elevation value is equal to
2872 meters. The data-processing results are shown in Figure 2.

Figure 2(a) shows the master SAR amplitude images for the
selection region. The interferograms after processing (removal of
flat-Earth phase, phase filtering and unwrapping) are shown in
Figures 2(b), 2(c), and 2(d). The point-by-point DEM reconstruction
results after the absolute interferometric phase was acquired are shown
in Figure 2(e).

To evaluate algorithm performance for different sampling
intervals, sampling intervals of azimuth (k)× range (l) = {5×5, 10×10,
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(a) (b) (c)

(d) (e)

Figure 2. TerraSAR-X repeat-pass data-InSAR processing results.
(a) TerraSAR-X SAR amplitude images. (b) Interferogram after the
SAR image registration. (c) Interferogram after the removal of the flat-
Earth phase. (d) Interferogram after phase filtering and unwrapping.
(e) DEM reconstruction results obtained using the conventional point-
by-point iterative method.

20 × 20} were used. Using the point-by-point InSAR geolocation
result as a reference value, the fast InSAR geolocation performance
for different sampling intervals is shown in Table 1. The geolocation
was performed on a PC with an Intel Core2 Quad 2.33-GHz CPU and
2GB memory and using the IDL programming language.

From Table 1, it can be seen that the computation time of the fast

Table 1. InSAR fast geolocation algorithm performance.

Sampling

interval (pixels)
Runtime (s)

Mean square root of

loss of precision (m)

X Y Z

∗1× 1 432 0 0 0

5×5 91 0.0134854 0.0061031 0.0091964

10×10 38 0.0296664 0.0137296 0.0203317

20×20 22 0.0808111 0.0377027 0.0554211

30×30 16 0.1865631 0.0713718 0.1258080

∗ 1× 1 denotes no resampling, i.e., the point-by-point InSAR geolocation was
applied.
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algorithm decreases as the sampling interval increases, while the loss of
precision also decreases. In practice, an appropriate sampling interval
and an appropriate polynomial order would be selected according
to the accuracy requirements or the computation time limits. For
example, the loss of precision is difficult to accept for HRTI-3 standard
which requires precision in meters when sampling interval is added to
30× 30. Thus, the maximum time savings for InSAR geolocation can
be realized, while still meeting accuracy requirements.

From Table 1, it is evident that the actual loss of precision of
InSAR geolocation is greater than the approximate cubic polynomial
error obtained using the theoretical analysis presented in Section 4.
There are two reasons for this. First, the previous theoretical analysis
was based on the polynomial approximation error obtained using a
Taylor expansion. However, in actual processing, the polynomial is
obtained by fitting the data, so the approximation error is greater than
that of a Taylor expansion. Second, the polynomials of the resampled
coarse grid points are obtained by fitting, but the polynomials of
most of the pixels were derived from the polynomial interpolation
of the coarse grid points. This inevitably further degraded accuracy.
Although the actual accuracy is lower than the theoretical accuracy, it
still meets the requirements of the intended application.

5.2. Experiments and Result Analyses for Stereo SAR
Geolocation

The data used are from the pairs of TerraSAR-X repeat-pass images
obtained on November 28, 2008, and December 4, 2008. The effective
baseline is equal to about 175 kilometers. The center position of
the images is at latitude 47.18◦N and longitude 7.69◦E, which is the
location of a mountain in Switzerland. A data size of 1500×1000 pixels
was selected. The minimum elevation value is equal to 550 meters,
while the maximum elevation value is equal to 821 meters. The data-
processing results are shown in Figure 3.

Figures 3(a) and (b) show the master and slave SAR amplitude
images for the selection region. The stereo SAR geolocation results
obtained using the fast geolocation method are shown in Figure 3(c).

Similarly, using the point-by-point stereo SAR geolocation results
as a reference value, the fast stereo SAR geolocation performance for
different sampling intervals is shown in Table 2. These results also
show that the fast algorithm has the advantages of high efficiency
and constant accuracy. The fast algorithm efficiency is improved very
limited when sampling interval is added to 50×50. Comparing Table 1
with Table 2, it can be seen that in the same coarse sampling interval,
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Figure 3. TerraSAR-X repeat-pass data-stereo SAR processing re-
sults. (a) TerraSAR-X SAR master amplitude images. (b) TerraSAR-
X SAR slave amplitude images. (c) Stereo SAR geolocation results
obtained using the fast geolocation method.

Table 2. Stereo SAR fast geolocation algorithm performance.

Sampling

interval (pixels)
Runtime (s)

Mean square root of

loss of precision (m)

X Y Z

∗1×1 294 0 0 0

5× 5 57 0.0080212 0.0019805 0.0033649

10× 10 21 0.0080283 0.0019822 0.0033679

20× 20 13 0.0080425 0.0019858 0.0033739

50× 50 12 0.0120953 0.0046485 0.0083915

∗ 1× 1 denotes no resampling, i.e., the point-by-point stereo SAR geolocation was
applied.

the stereo SAR fast algorithm error is smaller than that of InSAR,
which is in good agreement with the analysis in Section 4.

5.3. Experiments and Result Analyses for Single SAR
Geolocation

The data used are from TerraSAR-X SAR images obtained on April 23,
2008. The center position of the images is at latitude 39.28◦ and
longitude 96.58◦. The area consists of several ridges, and the average
elevation is about 4190 meters. A data size of 4500 × 3500 pixels
was selected. The data-processing results are shown in Figure 4.
Figure 4(a) shows the SAR amplitude images. The choosed DEM
data of SRTM is shown in Figure 4(b). The point-by-point results of
single SAR geolocation is shown in Figure 4(c).

Similarly, using the point-by-point single SAR geolocation result
as a reference value, the fast single SAR geolocation performance for
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Figure 4. TerraSAR-X data-single SAR geolocation processing
results. (a) TerraSAR-X SAR amplitude images. (b) DEM data of
SRTM. (c) The point-by-point results of single SAR geolocation.

different sampling intervals is shown in Table 3. These results also show
that the fast algorithm offers advantages of high efficiency and constant
accuracy. The fast algorithm efficiency is improved very limited when
sampling interval is added to 100 × 100. Comparing Table 2 with
Table 3, it is clear that in the same coarse sampling interval, the single
SAR fast algorithm error is smaller than that of stereo SAR, which is
in good agreement with the analysis presented in Section 4.

Table 3. Single SAR fast geolocation algorithm performance.

Sampling

interval (pixels)
Runtime (s)

Mean square root of

loss of precision (m)

X Y Z

∗1× 1 1581 0 0 0

10× 10 264 0.0002774 0.0000519 0.0002063

30× 30 81 0.0002827 0.0000862 0.0002611

50× 50 46 0.0003724 0.0001254 0.0003078

100× 100 45 0.0012836 0.0008589 0.0009173

∗ 1× 1 denotes no resampling, i.e., the point-by-point single SAR geolocation was
applied.

In summary, experimental results for three kinds of systems
show that the fast geolocation algorithm greatly reduces the amount
of calculation required while maintaining high geolocation accuracy.
Therefore, the effectiveness and correctness of the proposed method
have been validated.
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6. CONCLUSION

A unified fast solution for the single/interferometric/stereo SAR
geolocation equations is proposed in this paper, which is based on the
RDPC model. The fast algorithm using polynomial approximation
solves the RD equation quickly and robustly, while the geolocation
accuracy loss is small. For the three kinds of SAR geolocation system,
geolocation equations represent the stable mapping relationship, which
has no singularity and can be approximated by polynomials. The
fast algorithm is general for the three cases. Loss on accuracy and
speed of the algorithm must be a trade-off during actual use. In
addition, accuracy of solution of the fast algorithm is also subject to the
impact parameter errors, which is the same as that of RD method.

Several groups of TerraSAR-X measured data have been processed
using the fast algorithm in the three cases. Experimental results show
that the fast geolocation algorithm offers comprehensive advantages of
high efficiency and constant accuracy. Compared with the point-by-
point iterative algorithm, for the case of single SAR image geolocation,
the fast algorithm efficiency is improved by approximately 40 times,
and the loss of precision is in the 10−4 order of magnitude. In the case
of stereo SAR geolocation, the fast algorithm efficiency is improved by
approximately 20 times, and the loss of precision is close to 10−2 m.
In the case of InSAR geolocation, the fast algorithm efficiency is
improved by approximately 20 times, and the loss of precision is close
to 10−1 m. The loss of precision can be accepted for HRTI-3 standard
that requires precision in meters. Therefore this method for SAR global
observation data processing can play an important role in further SAR
research. Future studies will address fast-algorithm efficiency, further
enhancements, more in-depth error analysis, and other topics.
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