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Abstract—In a recent study, we proposed improved quasi-static
approximations for the electromagnetic field components excited by a
vertical electric dipole lying on the surface of a flat and homogeneous
lossy half-space. The present paper introduces an analytical approach
to derive analogous formulas for the case of the horizontal electric
dipole. The approach is based on the expansion of the integral
representations for the fields into power series of the ratio between
the wavenumbers in free-space and in the conducting medium. Later,
only the terms up to the second-order are retained, and term-by-term
analytical integration is performed. Numerical results demonstrate that
using the derived second-order approximations for the fields in place
of the zeroth-order ones allows to reduce the maximum relative error
in the calculation of the fields from about 23% down to less than 7%.

1. INTRODUCTION

The study of the electromagnetic fields from vertical and horizontal
electric dipole sources in presence of a plane conducting half-space has
attracted the interest of researchers for many years. This is proved by
the massive body of literature dedicated to the subject [1–17], and is
justified by the applicability in a variety of engineering fields, including
radio propagation and communication, exploration of the earth’s
subsurface structure, and even therapeutic heating and stimulation of
biological tissues. An exhaustive review of research relating to this
topic can be found in the classic monograph by Baños [1]. Many
of the papers that have been published present simple expressions
in the frequency-domain for the far-field, near-field and quasi-static
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field ranges. Due to the different mathematical approximations to be
used, case by case, to evaluate the integral representations for the
fields, these ranges have been treated separately. Contributions in this
direction are the expressions presented by Wait [2], Moore and Blair [3],
and Bannister [4, 5], which have been derived under the assumption
that the ratio between the wavenumbers in free-space (k0) and in the
conducting medium (k1) is small, a situation typically occurring when
the conduction current in the lossy half-space predominates over the
displacement current. Such zeroth-order formulas have been shown to
be in agreement when compared with one another, even if, as noticed
by Wait [2], they fail for poorly conducting media like, for instance, in
the cases of frozen ground or soil composed of igneous or metamorphic
rocks [18].

More recently, King [6–9] proposed improved expressions for the
time-harmonic fields due to a dipole source in presence of a plane
interface between two different media, which exhibit the following
advantages. First, they are valid in a wide frequency range, this
implying that, for each dipole configuration and orientation, the field
components in the far-, intermediate- and near-field frequency ranges
are described by a unique set of formulas. Second, if applied to
the air-ground interface, they are accurate subject to the condition
|τ2| = k2

0/|k2
1| ¿ 1 (that is |k1| ≥ 3k0), which is less restrictive than the

assumption |τ | ¿ 1 at the basis of the previously published formulas
on the same subject. This means theoretical possibility of application
in a greater number of situations. Significant efforts have been also
made to extend the theory developed for the homogeneous half-space
problem to the multi-layer case. The research findings in this area
of interest are summarized in the comprehensive books by Wait [19],
King, Owens and Wu [6], and Li [20].

The present paper focuses on the field of a horizontal electric
dipole (HED) lying on the surface of a homogeneous lossy ground. The
scope of the study is two-fold. First, to show that, in the quasi-static
limit, the relevant explicit expressions derived by King [6] effectively
coincide with the zeroth-order quasi-static field expressions [2, 4] valid
for highly conductive media (|τ | ¿ 1) and, as a consequence, in
the low-frequency range they do not constitute an improvement with
respect to the previous approaches. Next, the objective is to derive
second-order quasi-static approximations for the fields at the air-
ground interface, which can be used even if |τ2| is not small, as long
as |τ4| = k4

0/|k4
1| ¿ 1. This feature is what makes it possible to

enhance the accuracy of the result of the computation in situations
where the conductivity of the medium is low. Proceeding as done
in an analogous study concerning the vertical electric dipole [21], the
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field integrals are expanded into power series of τ . Next, the terms
up to the second-order are retained and cast into forms involving only
known tabulated Sommerfeld Integrals. Numerical results show that,
up to k0ρ = 0.25, the level of accuracy exhibited by the second-order
expressions is always higher than that pertaining to the zeroth-order
ones, to a greater extent for smaller values of the conductivity of the
half-space.

2. THEORY

Consider a HED of moment pejωt located on the surface of a
homogeneous, isotropic and lossy half-space. The EM parameters
of the medium are indicated in Fig. 1, and a cylindrical coordinate
system (ρ, ϕ, z) is introduced. The quasi-static approximations for
the EM field components generated on the surface of the medium
(z → 0+) were derived by Wait [2]. With the time-harmonic factor
ejωt suppressed for better clarity, they are given by

Eρ0 = −jωµ0p cosϕ

2πk2
1ρ

3

[
1 + (1 + jk1ρ) e−jk1ρ

]
, (1)

Eϕ0 =
jωµ0p sinϕ

2πk2
1ρ

3

[
−2 + (1 + jk1ρ) e−jk1ρ

]
, (2)

Ez0 =
jωµ0p cosϕ

2πρ
K1I1, (3)

Hρ0 =
p sinϕ

2πρ2

[
3K1I1 +

jk1ρ

2
(K0I1 −K1I0)

]
, (4)

Hϕ0 = −p cosϕ

2πρ2
K1I1, (5)
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Figure 1. Sketch of a horizontal electric dipole on a homogeneous
lossy medium.
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Hz0 = − p sinϕ

2πk2
1ρ

4

[
3− (

3 + 3jk1ρ− k2
1ρ

2
)
e−jk1ρ

]
, (6)

where the argument of the modified Bessel functions Iν(·) and Kν(·)
is jk1ρ/2, and

kn =
√

ω2µnεn − jωµnσn (7)

is the wavenumber in free-space (n = 0) or in the conducting medium
(n = 1). Equations (1)–(6) are valid when the distance between source
and field points is far less than a free-space wavelength (k0ρ ¿ 1), and
only if the material medium is much more dense than air (|k1| À k0).
The reason for the latter condition resides in the fact that (1)–(6)
have been obtained by analytically evaluating the complete integral
representations for the fields after setting k0=0 everywhere, thus
implicitly assuming k0 negligible even if compared to |k1|. Wait
noticed that this may not be true for poorly conducting media and, in
particular, when the ground is frozen [2].

Another, well-established, set of formulas for the same field
components, valid in the near-, intermediate-, and far-field frequency
ranges, has been proposed by King [6]. It can be easily verified that, in
the quasi-static limit k0ρ ¿ 1, expressions [6, 5.5.57–5.5.62] for the Eρ-,
Eϕ-, and Hz-fields reduce exactly to (1), (2), and (6), while expressions
[6, 5.5.59–5.5.61] for the remaining field components simplify into

Ez0 =
ωµ0p cosϕ

2πk1ρ2

[
1− j

(
1 +

3
2jk1ρ

)
e−jk1ρ

]
, (8)

Hρ0 =
p sinϕ

2πρ2

[
2

jk1ρ
− j

(
1 +

7
2jk1ρ

)
e−jk1ρ

]
, (9)

Hϕ0 =
p cosϕ

2πk1ρ3

[
j +

(
1 +

3
2jk1ρ

)
e−jk1ρ

]
, (10)

which are, in fact, the asymptotic expansions of (3)–(5) for |k1ρ| À 1.
The reader may convince himself on this point by simply substituting
the asymptotic behaviors of the modified Bessel functions

Iν ≈ 1√
πjk1ρ

[
e

jk1ρ
2

(
1− 4ν2 − 1

4jk1ρ

)
+(−1)νje−

jk1ρ
2

(
1+

4ν2 − 1
4jk1ρ

)]
,

Kν ≈
√

π

jk1ρ
e−

jk1ρ
2

[
1 +

4ν2 − 1
4jk1ρ

]
,

(11)

valid for large values of |k1ρ|, into (3)–(5). In light of this comparison, it
is concluded that formulation by King, limited to the sole low frequency
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range, is a special case of the zeroth-order formulation by Wait (1)–
(6), resulting from the hypothesis that the skin depth in the medium
is much smaller than the source-receiver distance. The present study is
aimed at deriving improved, second-order quasi-static approximations
for the fields of a HED, which can be used when the zeroth-order ones
fail, that is when the quantities τ = k0/k1 and τ2 are not negligible
with respect to unity. To this end, consider the complete integral
representations for the field components at z = 0 [22]

Eρ0 =
jωµ0p cosϕ

2πk2
1

(
Pa− 1

ρ
Qa

)
, Hρ0 =

p sinϕ

2π

(
−1

2
Pb+

1
k2

1ρ
Qb

)
,

Eϕ0 =
jωµ0p sinϕ

2π

(
Pc− 1

k2
1ρ

Qa

)
, Hϕ0 =

p cosϕ

2π

(
1
2
Pd− 1

k2
1ρ

Qb

)
,

Ez0 =
jωµ0p cosϕ

4πk2
1

Qd, Hz0 =
p sinϕ

2π
Qc,

(12)

where the Pm’s and Qm’s are, respectively, the J0- and J1-Hankel
transforms defined as follows

Pa =
∫ ∞

0

u0u1

u0 + τ2u1
J0(λρ)λdλ Qa =

∫ ∞

0

1
u0 + τ2u1

J1(λρ)λ2dλ,

Pb =
∫ ∞

0

u0 − u1

u0 + u1
J0(λρ)λdλ Qb =

∫ ∞

0

u0 − u1

u0 + τ2u1
J1(λρ)λ2dλ,

Pc =
∫ ∞

0

1
u0 + u1

J0(λρ)λdλ Qc =
∫ ∞

0

1
u0 + u1

J1(λρ)λ2dλ,

Pd =
∫ ∞

0

u0 − τ2u1

u0 + τ2u1
J0(λρ)λdλ

Qd =
1
τ2

∫ ∞

0

u0 − τ2u1

u0 + τ2u1
J1(λρ)λ2dλ,

(13)

being Jn(·) the nth-order Bessel function, and un =
√

λ2 − k2
n. Next,

substituting the power series expansions
1

u0 + u1
=

u0 − u1

k2
1(1− τ2)

=
1 + τ2

k2
1

(u0 − u1) +O (
τ4

)
, (14)

1
u0 + τ2u1

=
1
u0
− τ2 u1

u2
0

+O (
τ4

)
, (15)

into (13) provides the expressions

Pa =
∫ ∞

0

(
u1 − τ2 u2

1

u0

)
J0(λρ)λdλ +O (

τ4
)
, (16)

Pb =
1 + τ2

k2
1

∫ ∞

0
(u0 − u1)2J0(λρ)λdλ +O (

τ4
)
, (17)
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Pc =
1 + τ2

k2
1

∫ ∞

0
(u0 − u1)J0(λρ)λdλ +O (

τ4
)
, (18)

Pd =
∫ ∞

0

(
1− 2τ2 u1

u0

)
J0(λρ)λdλ +O (

τ4
)
, (19)

Qa =
∫ ∞

0

(
1
u0
− τ2 u1

u2
0

)
J1(λρ)λ2dλ +O (

τ4
)
, (20)

Qb =
∫ ∞

0

[
1− u1

u0

(
1 + τ2

)
+ τ2 u2

1

u2
0

]
J1(λρ)λ2dλ +O (

τ4
)
, (21)

Qc =
1 + τ2

k2
1

∫ ∞

0
(u0 − u1)J1(λρ)λ2dλ +O (

τ4
)
, (22)

Qd =
1
τ2

∫ ∞

0

(
1− 2τ2 u1

u0
+ 2τ4 u2

1

u2
0

)
J1(λρ)λ2dλ +O (

τ4
)
, (23)

in the last of which, because of the factor 1/τ2 outside the integral, the
expansion (15) has been conveniently made explicit up to the fourth-
order term, as follows

1
u0 + τ2u1

=
1
u0
− τ2 u1

u2
0

+ τ4 u2
1

u3
0

+O (
τ6

)
. (24)

As well known, asymptotic power series can be integrated termwise
without additional restrictions or specific conditions on the validity
of the result [23, p. 153, No. 8.31]. This means that the asymptotic
expansions for the Pm’s and Qm’s can be directly obtained from the
term-by-term integration of the right-hand sides of (16)–(23). Hence,
with the J0- and J1-transforms in (16)–(23) decomposed into sums of
integrals, each term can be reduced to a known tabulated Sommerfeld
Integral. The only exception is the second-order contribution to Qa

which, in the form appearing in (20), cannot be analytically evaluated.
To overcome this problem, the asymptotic approximation

1
u2

0

=
1

λ2 − τ2k2
1

=
1
λ2

+O (
τ2

)
(25)

is suitably introduced in (20) so as to obtain

Qa =
∫ ∞

0

1
u0

J1(λρ)λ2dλ− τ2

∫ ∞

0
u1J1(λρ)dλ +O (

τ4
)
. (26)

Use of the identity [24]

λJ1(λρ) = −∂J0(λρ)
∂ρ

(27)
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and the relation [2]

u2
nJν(λρ) = −

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− ν2

ρ2
+ k2

n

)
Jν(λρ), (28)

allows to rewrite the two terms in (26) as∫ ∞

0

1
u0

J1(λρ)λ2dλ = − ∂

∂ρ

∫ ∞

0

1
u0

J0(λρ)λdλ, (29)
∫ ∞

0
u1J1(λρ)dλ = −(∇2

t −
1
ρ2

+ k2
1)

∫ ∞

0

1
u1

J1(λρ)dλ, (30)

with

∇2
t =

∂2

∂ρ2
+

1
ρ

∂

∂ρ
, (31)

and where the interchange of derivative and integral is justified in
virtue of the continuous dominated convergence theorem [21]. The
method to decompose Qa into the sum of simpler terms, and apply (27)
and (28) to each of them, can be repeated for the remaining integrals
in (16)–(23). It yields

Pa = − (∇2
t + k2

1

) (
S1 − τ2S0

)
+O (

τ4
)
, (32)

Pb = −2
(
1 + τ2

)

k2
1

(∇2
t + k2

0

) (∇2
t + k2

1

)
S01 +O (

τ4
)
, (33)

Pc =
1 + τ2

k2
1

[(∇2
t + k2

1

)
S1 −

(∇2
t + k2

0

)
S0

]
+O (

τ4
)
, (34)

Pd = 2τ2
(∇2

t + k2
1

)
S01 +O (

τ4
)
, (35)

Qa = −∂S0

∂ρ
+ τ2

(
∇2

t −
1
ρ2

+ k2
1

)
Ŝ1 +O (

τ4
)
, (36)

Qb =
∂

∂ρ
(∇2

t + k2
1)

[
− (

1 + τ2
)
S01 + τ2Ŝ0

]
+O (

τ4
)
, (37)

Qc = −1 + τ2

k2
1

∂

∂ρ

[(∇2
t + k2

1

)
S1 −

(∇2
t + k2

0

)
S0

]
+O (

τ4
)
, (38)

Qd = 2
∂

∂ρ

(∇2
t + k2

1

) (
−S01 + τ2Ŝ0

)
+O (

τ4
)
, (39)

with

Sn =
∫ ∞

0

1
un

J0(λρ)λdλ, n = 0, 1, (40)

S01 =
∫ ∞

0

1
u0u1

J0(λρ)λdλ, (41)
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Ŝ0 =
∫ ∞

0

1
u2

0

J0(λρ)λdλ, (42)

Ŝ1 =
∫ ∞

0

1
u1

J1(λρ)dλ, (43)

and where the identity [2]
∫ ∞

0
J0(λρ)λdλ = 0 (44)

has been accounted for. It should be observed that strictly the integral
in (44) is divergent. As argued in [2], the equality above can be made
rigorous by simply replacing the left-hand side with the quantity

lim
ζ→0+

∫ ∞

0
e−unζJ0(λρ)λdλ = −

[
∂

∂ζ

∫ ∞

0

e−unζ

un
J0(λρ)λdλ

]

ζ=0

, (45)

which is identically null according to [25, p. 9, No. 23]. The transforms
on the right-hand side of (40)–(43) are well known Sommerfeld
Integrals, tabulated in [25]. Thus, applying formulas [25, p. 7, No. 4],
[25, p. 8, No. 17], [25, p. 11, No. 45], and [25, p. 18, No. 3], respectively,
provides

Sn =
e−jknρ

ρ
(46)

S01 = K0 (αρ) I0 (βρ) , (47)

Ŝ0 = K0 (jk0ρ) , (48)

Ŝ1 =
1− e−jk1ρ

jk1ρ
, (49)

with

α =
1
2
j (k1 + k0) , β =

1
2
j (k1 − k0) . (50)

After substituting (46)–(49) into (32)–(39), and performing all the
derivatives, it is found that

Pa =
1
ρ3

{[
k2

0ρ
2+

(
1+jk0ρ−k2

0ρ
2
)
τ2

]
e−jk0ρ−(1+jk1ρ)e−jk1ρ

}
,(51)

Pb = − 1
ρ2

[4K1I1+jk1ρ (K0I1−K1I0)+jk0ρ (K0I1+K1I0)] , (52)

Pc =
1

k2
1ρ

3

[(
1 + τ2

) (−1− jk0ρ + 2k2
0ρ

2
)
e−jk0ρ

+
(
1 + jk1ρ + jk0ρτ + τ2

)
e−jk1ρ

]
, (53)
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Pd = k2
0 (K0I0 + K1I1) , (54)

Qa = − 1
ρ2

[
jk0ρτ − (1 + jk0ρ) e−jk0ρ + τ2e−jk1ρ

]
, (55)

Qb =
k2

1

ρ

[
K1I1 +

jk0ρ

2
(K0I1 + K1I0)− jk0ρτ2K̃1

]
, (56)

Qc = − 1
k2

1ρ
4

[(
1 + τ2

) (
3 + 3jk0ρ− k2

0ρ
2
)
e−jk0ρ

− (
3− k2

0ρ
2 + 3jk1ρ− k2

1ρ
2 + 3jk0ρτ + 3τ2

)
e−jk1ρ

]
, (57)

Qd =
k2

1

ρ

{
(1−τ2)[2K1I1+jk0ρ (K0I1+K1I0)]−2jk0ρτ2K̃1

}
, (58)

where only the terms on the order up to τ2 have been retained. In the
expressions above, Kn and In denote the nth-order modified Bessel
functions calculated at αρ and βρ, respectively, while the ∼ symbol
above K1 denotes calculation at jk0ρ. Finally, substitution of (51)–
(58) into (12) provides

Eρ0 =
jωµ0p cosϕ

2πk2
1ρ

3

[
jk0ρτ +

(
1 + jk0ρ− k2

0ρ
2
) (−1 + τ2

)
e−jk0ρ

− (
1 + jk1ρ− τ2

)
e−jk1ρ

]
, (59)

Eϕ0 =
jωµ0p sinϕ

2πk2
1ρ

3

{
jk0ρτ +

[(
2 + τ2

) (−1− jk0ρ + k2
0ρ

2
)

+k2
0ρ

2τ2
]
e−jk0ρ +

(
1 + jk1ρ + jk0ρτ + 2τ2

)
e−jk1ρ

}
, (60)

Ez0 =
jωµ0p cosϕ

4πρ

{
(1− τ2) [2K1I1 + jk0ρ (K0I1 + K1I0)]

−2jk0ρτ2K̃1

}
, (61)

Hρ0 =
p sinϕ

2πρ2

[
3K1I1 +

jk1ρ

2
(K0I1 −K1I0) + jk0ρ (K0I1 + K1I0)

−jk0ρτ2K̃1

]
, (62)

Hϕ0 = −p cosϕ

2πρ2

[
K1I1 +

jk0ρ

2
(K0I1 + K1I0)− jk0ρτ2K̃1

−k2
0ρ

2

2
(K0I0 + K1I1)

]
, (63)
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Hz0 = − p sinϕ

2πk2
1ρ

4

[(
1 + τ2

) (
3 + 3jk0ρ− k2

0ρ
2
)
e−jk0ρ

− (
3− k2

0ρ
2 + 3jk1ρ− k2

1ρ
2 + 3jk0ρτ + 3τ2

)
e−jk1ρ

]
. (64)

In the quasi-static limit k0ρ ¿ 1 the function K̃1 may be replaced with
its asymptotic behavior for small arguments [24, 26, 27]

K̃1
∼= 1

jk0ρ
, (65)

while e−jk0ρ approaches unity. As a consequence, Equations (59)–(64)
simplify into

Eρ0 =
jωµ0p cosϕ

2πk2
1ρ

3

[
−1−(1+jk1ρ) e−jk1ρ+τ2

(
1+e−jk1ρ

)]
, (66)

Eϕ0 =
jωµ0p sinϕ

2πk2
1ρ

3

[
−2+(1+jk1ρ)e−jk1ρ+τ2

(
−1+2e−jk1ρ

)]
, (67)

Ez0 =
jωµ0p cosϕ

2πρ

[
(1− τ2)K1I1 − τ2

]
, (68)

Hρ0 =
p sinϕ

2πρ2

[
3K1I1 +

jk1ρ

2
(K0I1 −K1I0)− τ2

]
, (69)

Hϕ0 =
p cosϕ

2πρ2

(−K1I1 + τ2
)
, (70)

Hz0 = − p sinϕ

2πk2
1ρ

4

[
3−(

3+3jk1ρ−k2
1ρ

2
)
e−jk1ρ+3τ2

(
1−e−jk1ρ

)]
. (71)

The zeroth-order approximations for the fields (1)–(6) may be obtained
directly from (66)–(71) by setting τ=0.

3. DISCUSSION

In order to verify the validity and highlight the advantages of the
proposed approximate formulas, in this section the zeroth- and second-
order quasi-static approximations for the fields are used to calculate the
magnitudes of the transverse EM field components produced by a unit-
moment HED at a point 30 m away from it. The source and observation
points are located on the surface of a medium with ε1=10 ε0, while the
radial position of the observation point and the dipole axis are 45
degrees apart from each other (ϕ = π/4). As in the previous work
focused on the field of a VED [21], the conductivity σ1 of the half-
space is taken as a parameter and assumed to be equal to 0.01, 0.1,
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and 1mS/m. Permafrost, igneous and metamorphic rocks [18] are
examples of materials with conductivity on these orders of magnitude.

Figures 2–5 show the relative percent error that originates from
comparing the results provided by the quasi-static expressions for the
transverse fields with those arising from the numerical evaluation of
the integrals in (13), plotted versus frequency. The highly accurate
numerical evaluation of the field integrals is obtained through the
quasi-analytical procedure described in [28, 29], which has been proven
to ensure at least 13 digits of precision. According to this procedure,
application of the Cauchy’s residue theorem allows to write

∫ ∞

0
f(λ)Jν(λρ)λν+1dλ ∼= j(−1)n

L∑

l=1

rlλ
ν
l Kν(λlρ), (72)

the left-hand side of which is any of the Hankel transforms in (13). In
the above equation f(λ) is an even function, while the λl’s and rl’s are
the coefficients of the rational approximation

f(λ) ∼=
L∑

l=1

rl

2λl

[
1

λ + jλl
− 1

λ− jλl

]
, < [λl] > 0. (73)

Figure 2 depicts percent errors resulting from the computation of
the magnitude of Eρ, and zeroth-order curves are marked with points
to be discerned from the second-order ones. It can be noticed that for
σ1=0.01mS/m the error generated by the zeroth-order approximation
approaches 10% for most of the frequencies in the 0 ≤ k0ρ ≤ 0.25
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Figure 2. Relative errors of the zeroth-order (lines and points) and
second-order (lines) quasi-static expressions for Eρ as compared to the
exact results. Errors are plotted versus frequency with varying σ1.
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range, while the error due to the improved formula (66) is always less
than 1%.

As σ1 increases, the gap between the relative errors generated by
the two formulations becomes narrower and narrower, up to cancel
out for σ1 ≥1mS/m. Analogous considerations can be drawn from the
analysis of Figs. 3, 4, and 5, which illustrate, respectively, the relative
percent error that originates from using the quasi-static expressions
for the Eϕ-, Hρ-, and Hϕ-fields. Improved expressions for these field
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Figure 3. Relative errors of the zeroth-order (lines and points) and
second-order (lines) quasi-static expressions for Eϕ as compared to the
exact results. Errors are plotted versus frequency with varying σ1.
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Figure 4. Relative errors of the zeroth-order (lines and points) and
second-order (lines) quasi-static expressions for Hρ as compared to the
exact results. Errors are plotted versus frequency with varying σ1.
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Figure 5. Relative errors of the zeroth-order (lines and points) and
second-order (lines) quasi-static expressions for Hϕ as compared to the
exact results. Errors are plotted versus frequency with varying σ1.
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Figure 6. Amplitude-frequency spectra of the zeroth- and second-
order quasi-static expressions for Eρ (blue color) and Eϕ (red color),
compared to the exact solutions.

components permit to maintain the relative error in the 0 ≤ k0ρ ≤ 0.25
range well below the threshold of 7%, while previously published
formulas would produce, in the same interval, errors up to more than
9% (Eϕ), 20% (Hρ), and 23% (Hϕ).

To better appreciate the difference in accuracy exhibited by the
zeroth- and second-order quasi-static approximations, plots of the
magnitudes of the transverse EM field components, resulting from
either using the two approaches or numerically evaluating the field
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Figure 7. Amplitude-frequency spectra of the zeroth- and second-
order quasi-static expressions for Hρ (blue color) and Hϕ (red color),
compared to the exact solutions.

integrals, are presented in Figs. 6 and 7. Fig. 6 shows the amplitude-
frequency spectra of Eρ (blue color) and Eϕ (red color), assuming
ρ = 30 m and σ1 = 0.1mS/m. What is pointed out is the absence
of discrepancy between the second-order accurate and the numerical
outcomes related to the Eρ-field. As to the Eϕ-field, the second-order
quasi-static approximation is seen to be slightly more accurate than
the zeroth-order one. On the other hand, with the same assumptions
for ρ and σ1 as in the previous example, Fig. 7 depicts the trends of the
amplitudes of Hρ and Hϕ against frequency. As can be seen from the
plotted curves, only the second-order accurate trends reproduce with
acceptable accuracy the exact solutions (the maximum percent error
is, for the two components, less than 6% and 3%), while the zeroth-
order spectra diverge from the exact ones, starting to diverge at very
low frequencies.

4. CONCLUSION

This paper presents second-order quasi-static approximations for the
radial distributions of the EM field components produced by a HED on
the surface of a homogeneous lossy half-space. The complete integral
expressions for the fields are expanded into power series of the ratio
between the wavenumbers in free-space and in the material half-space.
Then, the lower-order terms of the expansions are reduced to known
tabulated Sommerfeld Integrals. Numerical simulations show that, in
the quasi-static frequency range and beyond, the derived improved
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expressions for the fields exhibit better accuracy than the previously
published zeroth-order approximations, to a greater extent for smaller
values of the medium conductivity.
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