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Abstract—This paper deals with the measurement of the magnetic
flux generated by the armature of electromagnetic rail launchers
linked with external pick-up loops. In particular we discuss possible
methods to experimentally evaluate measurement uncertainty when
the magnetic flux is obtained by numerical voltage integration. These
methods aim at an approximate identification of the correlation among
voltage samples introduced by the analog-to-digital converter, only
based on the available measurements without requiring additional
tests and instruments. An estimate of this correlation allows to
better evaluate the overall measurement uncertainty, thus providing
the applicability limits of the proposed inductive technique and
contributing to a better understanding of the current and force
distribution in the armature.

1. INTRODUCTION

The use of digital signal processing (DSP) algorithms to elaborate
measured data in modern instrumentation is growing as digital
instruments are becoming more accurate. The problem of a correct
uncertainty evaluation of the results provided by these algorithms is
therefore particularly important. A significant example is represented
by numerical integration, which is involved in many common
operations. This occurs, for example, when the rms or mean values of
a signal need to be computed starting from its samples [1, 2] or when
the Fourier spectrum is calculated via the Discrete Fourier Transform
algorithm [3, 4].

Voltage signal integration can be usefully employed also to
measure a time-varying magnetic flux linked to a circuit, from
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the measurement of the induced voltage on that circuit. This
technique was recently applied by the authors for characterization
of magnetic materials via inductive methods to investigate magnetic
accommodation of minor asymmetric loops [5] and to pulse current
measurements on an electromagnetic rail launcher, with the aim of
measuring the current distribution between the armature brushes [6–
9]. In more detail, in the specific case of the rail launcher a set of pick-
up loops was placed near the brushes and the voltage pulses induced
on the loops were acquired; the integration of these signals provided
the magnetic fluxes linked to the loops and from them the unknown
brush currents could be reconstructed. In such application, a correct
estimate of the flux uncertainty is essential to evaluate the uncertainty
of the reconstructed currents and to identify the conditions in which
this method can provide meaningful results.

Though the algorithm employed to integrate the voltage signal
can be extremely simple (in its simplest version it is just a sum),
the evaluation of the integrated signal uncertainty is not that
simple [10, 11], e.g., because of the critical role of correlation among
voltage samples in the uncertainty propagation through the integration
algorithm [12–14]. In fact, when the number of samples involved in the
integration is very high, a wrong estimate of the correlations among
them might lead to a significant error in the uncertainty evaluation
of the integrated signal. In this framework different approaches can
be found in the literature. In some cases it is assumed that when
the samples come from the same source as a temporal sequence they
are strongly correlated and the correlation between them plays a
fundamental role [13, 15], in other cases it is assumed that they can
be considered to be statistically independent of each other [16].

Besides being important for the flux uncertainty evaluation, a
correct correlation estimate is important also for the choice of the best
analog-to-digital converter (ADC) for the acquisition of a particular
voltage signal that needs to be integrated.

The aim of this paper is to provide valuable and convenient
methods to estimate the uncertainty propagation through the
integration algorithm, via an empirical evaluation of the correlation
among voltage samples. This allows to better identify the applicability
limits of numerical integration for magnetic flux measurements in
electromagnetic rail launchers. The proposed methods are only
based on the available measurements, without requiring additional
tests and instruments. In Section 2 a theoretical background of the
analyzed problem is reported. In Section 3 a theoretical analysis
of the uncertainty propagation is presented and simple expressions
taking into account the correlation are derived. Then, the proposed
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methods to experimentally identify the correlation are tested on the
electromagnetic launcher application described above and the results
are reported in Section 4.

2. THEORETICAL BACKGROUND

The electromagnetic driving equation in a rail launcher can be easily
derived from the two following Maxwell’s equations:

∇× E = −µ
∂H

∂t
(1)

∇×H = σE + σµ(v ×H) (2)

where the term σµ(v × H) in the second equation represents the
motional contribution due to the movement of the armature, being
v the armature velocity. By combining the two equations, we obtain:

∇2H = µσ
∂H

∂t
+ µσ(∇× v ×H) (3)

The nonlinear nature of the driving equation and the presence of
multi-physic phenomena, such as plasma formation, ablation, velocity-
skin effect require the use of very complex numerical models to
develop accurate simulations, nowadays still not available. This makes
the possibility to perform accurate measurements very important for
validation and improvement of numerical models. On the other hand,
due to the very critical environment the measurement itself is also a
great challenge.

A critical issue is the accurate measurement of the current
distribution in the rail-armature system to estimate the thrust force on
the armature and the possible formation of ablation. In more detail,
the force can be expressed as:

F = maa =
∂Wm

∂x
− Fd − Fa (4)

where Fd and Fa are terms representing the drag force and forces due
to possible ablation effects, while Wm = Li2/2 is the magnetic energy.

Our approach to such a measurement task estimates the current
distribution via an inductive method measuring the magnetic flux
linked with proper pick-up loops. According to the Faraday-Lenz’s
law, the measured induced voltage is the derivative of the linked flux.
Thus, the measurement chain implies the integration of the measured
signal. Here, we present the results of an experimental analysis aimed
at evaluating the measurement uncertainty when the magnetic flux is
obtained by numerical voltage integration. Results show how the errors
of the A/D converter and the correlation profile among the acquired



246 Ferrero, Marracci, and Tellini

samples can play an important role in the estimation of the overall
measurement uncertainty.

3. UNCERTAINTY PROPAGATION THROUGH
INTEGRATION

The proposed measurement method is described in [8, 9] and is based
on the use of external pick-up loops, magnetically coupled to the
launcher circuit. The integration of the induced voltages along
the loops provides the corresponding linked fluxes, which are linear
combinations of the currents flowing in the armature brushes. If the
mutual inductances between the loops and the launcher circuit are
known, the currents flowing in the brushes can be calculated. The
model reads as:

[φ] = [M ][i] (5)
where [i] is the vector of the unknown brush currents, [φ] the vector
of the magnetic fluxes linked to the pick-up loops, and [M ] the mutual
inductance matrix between the loops and the launcher circuit. The
Faraday-Lenz’s law implies:

[v] = − d

dt
[φ] (6)

and [φ] is obtained by integration of the measured voltage. Let us
consider a voltage signal v(t) sampled with a sampling time Ts and
let us suppose, without loss of generality, that both v(t) and the
corresponding flux φ(t) linked to the circuit are zero at t = 0. If the
flux φ(nTs) = φn at the discrete time nTs is calculated by numerical
integration of the voltage samples v1, . . . , vn using the trapezoidal rule,
the following expression for φn is obtained:

φn = φn−1 +
vn + vn−1

2
Ts =

(
vn

2
+

n−1∑

i=1

vi

)
Ts (7)

If the signal v(t) is smooth enough so that a constant-second-derivative
approximation is valid in each sampling interval, an estimate of the
integration error associated with this algorithm can be calculated and
it is proportional to N−2, being N the number of samples in the given
time interval. In most practical conditions, the number of samples N
is high enough to ensure that this error is negligible compared to other
error or uncertainty sources, that will be discussed below. Therefore
there is no need to employ more complex integration algorithms or try
to compensate this error.

The most important uncertainty contribution on the flux φn is the
propagation of the uncertainties of the voltage samples through the
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integration algorithm. Let us consider again (7), here approximated
for sake of simplicity by:

φn =
n∑

i=1

viTs (8)

which is formally equivalent to rectangular numerical integration. Each
measured sample vi differs from the ideal voltage because of the non-
ideal behavior of the ADC. Calling u(vi) the uncertainty of each
voltage sample vi, the resulting uncertainty of φn depends on how u(vi)
propagates through the integration algorithm. This in turn depends
on the random or non-random nature of the effects that underlie this
uncertainty and their correlation among different samples.

Generally speaking, two uncertainty sources can be distinguished
in a voltage measurement: the non-ideal transfer characteristic of the
ADC and random noise including random analog noise at the ADC
input stage and quantization noise. The former produces a systematic
effect, though different for each voltage value and usually unknown; for
this reason it is taken into account in the converter specifications by
providing a general accuracy estimate. The latter, on the contrary,
produces a random effect and in a first approximation it can be
described as a white noise whose standard deviation is provided in
the converter specifications or it can be easily measured. For what
concerns the ADC accuracy, some correlation between samples close to
each other is likely to be present. Thus the following general expression
for uncertainty propagation should be employed to evaluate the flux
uncertainty [12]:

u (φn) =

√√√√√
n∑

i=1


u2 (vi) +

n∑

j=i+1

2ρiju (vi)u (vj)


Ts (9)

being ρij the uncertainty correlation between the samples vi and vj .
For sake of simplicity let us suppose that the uncertainty u(v)

is constant for all samples. Thus, the two limit cases of (9)
for uncorrelated random noise (ρij = 0) or constant systematic
contribution (ρij = 1) are respectively:

uran (φn) =
√

nTsu (v)
usys (φn) = nTsu (v)

(10)

On the other hand, for the intermediate case of a typical voltage
measurement affected by both random and systematic effects, it is
reasonable to assume that closer samples have a higher correlation
than more distant ones. Thus, for an approximate estimate of the
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correlation coefficients ρij it is possible to define a constant correlation
distance d and to assume that ρ linearly varies from 1 to 0 as the
distance between the two samples goes from 0 to d + 1. The following
expression for the uncertainty of φn is then obtained:

uρ,lin (φn) =





√
n + n(n−1)(3d−n+2)

3(d+1) Tsu (v) n ≤ d + 1√
n + nd− d(d+2)

3 Tsu (v) n > d + 1
(11)

The uncertainty propagation (11) is compared to the two limit
cases (10) in Fig. 1.
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Figure 1. Propagations of the uncertainty u(v) through integration
according to (11) with d = 100 (solid line), compared to the limit
cases (10) (dashed lines).

The expression in (11) shows that when samples close to each
other are correlated, a further increase in the sampling frequency does
not produce any uncertainty decrease. Thus it is possible to state
that there is a practical maximum sampling frequency corresponding
to the minimum achievable uncertainty. An evaluation of this limit
is important for the choice of the converter, which usually implies a
trade-off between high sampling frequency and low accuracy.

4. INTEGRATION OF RAIL LAUNCHER PULSE
SIGNAL

The discussion presented in the previous section proved that a
wrong estimate of the correlation among voltage samples in numerical
integration can lead to significant under- or over-estimations of the
flux uncertainty. This represents a significant problem in the launcher
application described in the introduction because the flux uncertainty
strongly affects the uncertainty of the brush currents, reconstructed
from the flux measurements [7, 9].
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In this section, possible methods to estimate the correlation
among voltage samples are discussed and compared, applied to the
rail launcher pulse signals. In more details, these methods aim at
estimating the correlation distance d according to the uncertainty
propagation (11) derived in the previous section. Different methods
are presented, suitable to be applied in different conditions depending
on the available measurements.

The experimental setup is composed of a 765µF capacitor as
energy source, with 10 kV maximum applicable voltage. This capacitor
is connected through a coaxial cable to a rail launcher composed of
two parallel rails and a moving armature with thin brushes that close
the circuit between them; a set of pick-up loops is placed near the
launcher and the induced voltages on the loops are measured. More
details about this setup can be found in [8, 9]. The focus here is on the
measurement of the magnetic flux linked to the external pick-up loops,
obtained by integration of the induced voltages; however, the problem
of voltage integration arises also for other current transducers, such as
the Rogowski coil, which is one of the possible solutions adopted for
the rail launcher current measurement [17].

A typical voltage pulse measured on a loop is shown in Fig. 2,
together with the flux obtained by voltage integration. The voltage
signals were acquired by a 14-channel 12-bit oscilloscope (Yokogawa
DL750 ScopeCorder with 701250 analog voltage input module) with
107 samples-per-second sampling frequency, which is the maximum
allowed by the instrument. Each channel has its own ADC, therefore
the results provided by different channels are independent from each
other.
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Figure 2. Typical pulse signals: (a) voltage and (b) flux.

Each pulse was simultaneously acquired by 4 oscilloscope channels
and 20 pulses were repeated in proper conditions to ensure a good
reproducibility of the results. The channel offset and noise for each
signal were evaluated by acquiring 100 ms (106 samples) of zero-voltage
signal before and after the pulse. The offset measurement is needed to



250 Ferrero, Marracci, and Tellini

compensate it when integrating the signal; it was measured both before
and after the useful signal to verify that its value did not significantly
change during the whole observation time.

After having removed their offsets, all voltage signals were
integrated in the time interval from 0 to 1.3ms (assumed as the end of
the transient), thus 80 flux measurements were obtained (20 for each
channel). The final values at t = 1.3ms are shown in Fig. 3. The
choice of the end of the transient for this analysis is particularly useful
because the true value of the flux is known to be zero for physical
reasons (there is no more current producing a magnetic field).
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Figure 3. Final flux values at t = 1.3ms for the 4 channels; 20 values
are plotted for each channel.

From this figure it can be seen that the differences among the
20 fluxes of the same channel are much smaller than the differences
among fluxes of different channels and the difference with respect to
zero, meaning that systematic uncertainty sources introduced by the
ADCs are dominant over the random effects due to both noise and a
not perfect repeatability of the voltage pulse.

According to the oscilloscope specifications in the selected range
(±10V), the voltage measurement is characterized by a ±100mV
accuracy, while the least significant bit (LSB) amplitude is 13.33 mV.
In order to estimate the noise level for each channel and each signal,
the standard deviation of the voltage samples in the 100ms before
and after the pulse (2 · 106 samples) was calculated and it resulted
to be about 10 mV for all signals and all channels. Since there is no
reason to assume any correlation among noise on different samples,
the uncertainty unoise(v) propagates through the integration algorithm
according to the first expression in (10):

unoise (φn) =
√

nTsunoise (v) (12)
leading to unoise(φ) = 0.11 µWb at t = 1.3 ms, which is similar
to the experimental standard deviations of the 20 measurements of
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each channel shown in Fig. 3, that vary from 0.11µWb to 0.18µWb
depending on the channel.

On the other hand, as far as the ADC accuracy is considered, the
equivalent uncertainty uacc(v) can be evaluated assuming a rectangular
probability distribution and thus it results uacc(v) = 100 mV/

√
3 =

57.7mV. For the propagation of this uncertainty the expression in (11)
can be used:

uacc (φn) =





√
n + n(n−1)(3d−n+2)

3(d+1) Tsuacc (v) n ≤ d + 1√
n + nd− d(d+2)

3 Tsuacc (v) n > d + 1
(13)

thus the distance d over which the voltage samples are correlated needs
to be evaluated.

A possible approach for this evaluation is to undersample
the voltage signals and recalculate the fluxes starting from these
undersampled signals. In particular, being the new sampling time
T ∗s = kTs (with k integer value), the variation of the final flux value
vs. k can be analyzed. This is shown in Fig. 4(a) for a single signal. If
the systematic uncertainty sources acting on k consecutive samples are
completely (or highly) correlated to each other, no difference should be
seen in the final flux value when the voltage signal is undersampled by
a factor k, except for an increased effect of noise propagation described
by:

unoise (φundersampled) =
√

kunoise (φoriginal) (14)

In this case, the flux variations are greater than what expected from
the increased noise effect according to (14) even for very small values
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Figure 4. Final flux values at t = 1.3ms (solid lines) when the voltage
signals are sampled with a sampling time T ∗s = kTs, compared to the
expected uncertainty of the flux values due to noise propagation alone
(dashed lines) calculated according to (14). (a) Undersampling of a
single signal. (a) Average of 20 undersampled signals acquired by the
same channel.
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of k. Therefore it seems that only very few samples are correlated
(about 3).

It is worth to note that the main spectral components of the
voltage pulses are in the range from 0.5 kHz to 10 kHz; although higher
frequencies are also present in the spectrum, their amplitudes decrease
vs. frequency and over 100 kHz they are below both the LSB value
and the noise level of the employed oscilloscope. This means that the
signal can be undersampled with an undersampling factor up to 50
(starting from a 107 samples-per-second sampling frequency) without
the appearance of aliasing effects, thus the above analysis is justified.

The advantage of this approach is that it requires only one
signal and thus it can be applied when it is not possible to acquire
repeatable signals several times. However, if several signals with good
repeatability are available as in this case, the above analysis can be
repeated considering the average of all the signals acquired by the
same channel, as shown in Fig. 4(b). This allows to better recognize
the random nature of the flux variations vs. k. In fact, if they are
random, the average of 20 signals decreases the standard deviation
by

√
20, whereas the standard deviation would not be decreased if

a systematic contribution were present. Also this analysis seems to
confirm the results already obtained.

To further verify these results, the standard deviation of all
channel fluxes can be analyzed. Fig. 5(a) shows the expected final
flux uncertainty as a function of the correlation distance d calculated
according to (13). It can be seen that the value corresponding to the
experimental standard deviation (1.2µWb) is reached for d between 2
and 3, confirming that at most 3 or 4 samples are correlated. As a final
confirmation, the standard deviation of all the final flux values can be
analyzed vs. the undersampling factor k; it is expected to remain
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deviation of the experimental data vs. the undersampling factor k.
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approximately constant for k smaller than d because of the correlation
among samples, whereas it increases for higher k. This is shown in
Fig. 5(b); it can be seen that the standard deviation appears to be
approximately constant for k up to 3.

This last method provides the best estimate of the flux uncertainty
because it can directly evaluate the systematic effects on each channel,
based on the comparison among measurements obtained by several
independent channels. However, such approach is often unfeasible
because of the impossibility to acquire the same signal by several
channels simultaneously or the impossibility to create repeatable
signals. This method was employed here to verify that the analysis
based on undersampling a single signal can provide sufficiently accurate
results and it allows to obtain an estimate of the correlation of
systematic uncertainty sources even when only one signal is available.

In conclusion, it seems that the employed sampling frequency is
close to the practical maximum value over which no further decrease
of the flux uncertainty is possible because of correlation. Therefore the
choice of this converter should represent a good trade-off between high
sampling frequency and low accuracy.

To verify this statement and to test the proposed methods also
when some correlation among samples is actually present, the above
results are compared to the results obtained by acquiring the same
signals using a 8-bit oscilloscope (LeCroy WavePro 725Zi) with 109

samples-per-second sampling frequency. In this case the number of
samples is 100 times greater, but the accuracy is worse (242 mV instead
of 100 mV). The standard deviations of the 20 final flux values of
the same channel are about 1.9µWb, whereas the global standard
deviation of all signals is 3.3µWb.

The effects of undersampling are shown in Figs. 6 and 7, with the
same meaning of Figs. 4 and 5. They all show a correlation distance
d between 200 and 400. Considering that the sampling frequency
is 100 times the previous sampling frequency, the d values obtained
with the two oscilloscopes correspond approximately to the same time
interval. Although it is in general meaningless to compare correlation
distances of signals acquired by different ADCs, the agreement between
the two results can be justified in this case by the similar accuracy
of the two converters. In conclusion, the increase of the sampling
frequency has not produced a decrease in the final flux uncertainty; on
the contrary, the flux uncertainty has increased because of the worse
converter accuracy.

As a final remark, it can be noted that the physical constraint
of zero flux at the end of the transient can be employed to obtain
a better estimate of the flux value during the whole transient and
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Figure 7. Uncertainty of the final flux values due to the propagation
of systematic uncertainty sources. (a) Expected uncertainty vs. the
correlation length d calculated according to (13). (b) Standard
deviation of the experimental data vs. the undersampling factor k.

decrease its uncertainty. In fact the flux can be calculated also
integrating the voltage signal backwards from the end of the transient.
Having two different flux values, φn,for and φn,back, each one with its
own uncertainty, it is then possible to calculate a weighted average
according to the well known formula:

φn =
1

1
u2(φn,for)

+ 1
u2(φn,back)

(
φn,for

u2 (φn,for)
+

φn,back

u2 (φn,back)

)
(15)

whose uncertainty is:

u (φn) =

√√√√ 1
1

u2(φn,for)
+ 1

u2(φn,back)
(16)
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where:
u (φn,back) = u (φN−n+1,for) (17)

5. CONCLUSIONS

The problem of uncertainty propagation through numerical integration
of voltage signals was discussed, applied to magnetic flux measurements
in electromagnetic rail launchers. A correct evaluation of the overall
flux measurement uncertainty is important to provide the applicability
limits of the proposed inductive technique aimed at evaluating the
current and force distribution in the rail launchers armature.

In this problem the correlation among samples due to systematic
uncertainty sources introduced by the ADC plays a very important
role. Therefore, possible approaches to estimate this correlation were
proposed and compared. The applicability of each approach was
discussed, depending on the availability of repeatable signals and
independent measurements.

All the proposed methods provided results in agreement with each
other, both in case of negligible correlation and in case of significant
correlation among a great number of samples.
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