
Progress In Electromagnetics Research, Vol. 140, 401–413, 2013

ANALYSIS OF TRANSIENT ELECTROMAGNETIC SCAT-
TERING USING THE MULTILEVEL TIME DOMAIN
FAST DIPOLE METHOD

J. Ding*, L. Yu, W. Xu, C. Gu, and Z. Li

College of Electronic and Information Engineering, Nanjing University
of Aeronautics and Astronautics, Nanjing 210016, China

Abstract—In this paper, a multilevel time domain fast dipole method
(TD-FDM) is proposed for solving time-domain magnetic field integral
equations. It is the extension of TD-FDM to the multilevel. This
proposed scheme starts by multilevel grouping. At each level, the
far-field interaction can be expanded through the Taylor series and
reconstructed via aggregation-translation-disaggregation procedure,
which reduces the memory requirement and the computational cost
of the marching-on in-time (MOT) method. Numerical results about
the electromagnetic scattering from perfect electric conductor (PEC)
objects are given to demonstrate the validity and efficiency of the
proposed scheme.

1. INTRODUCTION

Marching-on-in-time (MOT) schemes for solving time-domain integral-
equation (TDIE) [1–6] methods have been widely used to analyze
electromagnetic scattering from perfectly electric conducting (PEC)
objects. Compared with FDTD [7, 8], it only requires a discretization
of the scatterer surface. Unfortunately, the MOT scheme suffers from
tremendously high computational cost and memory requirement as the
electrical size of the scatterers increases. In the past decades, many fast
algorithms have been presented to reduce the memory requirement and
the computational complexity of the MOT method, such as the plane
wave time domain (PWTD) algorithm [9, 10], the multilevel PWTD
algorithm [11], and time domain adaptive integral equation method
(TD-AIM) [12, 13].

More recently, the time domain equivalent dipole moment (TD-
EDM) method [14, 15] has been developed to simplify and accelerate
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the computation of impedance matrix in the TDIE method. In the TD-
EDM method, the surface current distribution containing two adjacent
triangles is replaced by an infinitely small dipole with an equivalent
dipole moment. The major advantage is that the impedance matrix
element can be expressed using simplified form, which avoids the usual
double integrals and cuts down the matrix-filling time significantly.
However, the TD-EDM method does not change matrix vector product
operations and the memory requirement.

In this paper, a multilevel time domain fast dipole method (TD-
FDM) is proposed for solving the electromagnetic scattering from PEC
targets. The proposed scheme builds upon the authors’ previous work
TD-FDM reported in [16–19]. It is the extension of the single level
TD-FDM [16] to the multilevel. The algorithm starts by grouping in
multilevel fashion, the spatial basis functions into geometrically equal-
sized groups. At each level, if two groups qualify as far-field pair
and their parent groups do not qualify as far-field pair, the transient
field can be expanded through the Taylor series and reconstructed
via aggregation-translation-disaggregation procedure. Moreover, it can
reduce the solution time and the memory requirement.

This paper is organized as follows. Section 2 reviews the TD-EDM
method for solving time domain integral equation. Section 3 details the
principle and implementation of multilevel TD-FDM scheme. Section 4
gives several numerical results to demonstrate the validity of the
proposed method which is followed by our conclusions.

2. REVIEW OF THE TD-EDM METHOD

Consider a closed PEC body with surface S residing in free space,
excited by an incident electromagnetic field. This transient field will
result a surface current J(r, t) on S that generates a scattered field.
Enforcing the boundary conditions on the surface of the conductors,
the time-domain magnetic field integral equations (MFIE) formulation
is obtained

n̂× [
Hi(r, t) + Hs(r, t)

]
= J(r, t), (1)

where n̂ represents the outward normal vector to S. The surface
current density J(r, t) can be approximately expanded as

J(r, t) =
Ns∑

n=1

fn(r)In(t) =
Ns∑

n=1

fn(r)
Nt∑

j=1

In,jTj(t). (2)

Here, fn(r) is the RWG basis functions, Tj(t) = T (t− j∆t) (∆t is the
time step size) the temporal basis function, and the In,j the unknown
expansion coefficient.
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If the electric size of the RWG basis function is sufficiently small,
we can assume that the surface current distribution does not change.
Based on this assumption, when the observation point is far away
from the RWG element, the fields radiated by the current in an RWG
element can be approximated as the fields of an infinitely small dipole
with an equivalent moment as shown in Fig. 1. The dipole mn(t) can
be obtained by the integration of the surface current

mn(t) =
∫

T±n
Jn(r, t)dS = mn

Nt∑

j=1

In,jTj(t) = mnIn(t), (3)

where mn = ln(rc−
n − rc+

n ). ln is the length of the common edge, and
rc±
n are the centers of T±n . Referring to [14] and considering Eq. (3),

the radiated magnetic fields of the dipole mn(t) can be expressed as

Hs
n(r, t) =

1
4π

(mn ×R)
[

1
cR2

∂tIn(τ) +
1

R3
In(τ)

]
, (4)

where R = r − r′ and R = |R|. c is the speed of light in free space,
and τ = t−R/c denotes the retarded time.

Substituting Eq. (4) into Eq. (1) and applying a spatial Galerkin
testing procedure at ti = i∆t leads to a set of equations that can be
represented in matrix form as

Z0Ii = Vi −
i−1∑

j=0

Zi−jIj , (5)

+

−

+

−

+

ÿ

−

+

−

Figure 1. Configuration of the source and the testing functions.
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for 0 ≤ i ≤ Nt. Ii is a vector of the weights In,j . The matrix element
that satisfy the EDM assumption can be expressed as

[Zk]mn =
1
4π

(mm×n̂m)·(mn×R)
[

1
cR2

∂tTj(τ)+
1

R3
Tj(τ)

] ∣∣∣∣
t=k∆t

. (6)

Note that Eq. (6) does not evaluating the surface integrals, which
greatly simplifies the matrix element computation and makes matrix-
filling efficient.

3. THE MULTILEVEL TIME DOMAIN FAST DIPOLE
METHOD

3.1. Key Idea of the TD-FDM

To alleviate the computational bottleneck of the right-hand side (RHS)
in Eq. (5), we introduce the time domain fast dipole method (TD-
FDM). The first step of the TD-FDM is to distribute all the basis
functions into small equal-sized cubes. Each cube is called a group
and the side length of each group is D. If the two cubes are well
separated by βD (β ≥ 1), we assume they are a far-field pair. Now let
us consider a far-field group pair as shown in Fig. 2. The source group
Gi contains the equivalent dipole mn located at rn and the observation
group Gj contains the equivalent dipole mm located at rm. The centers
of the two groups are located at ri and rj , respectively. The vector R
connecting the two dipoles can be written by

R = rmj + rji − rni = Rm −Rn, (7)

where rji = rj − ri, rmj = rm − rj , rni = rn − ri, Rm = rmj + rji/2,
and Rn = rni − rji/2. The time signal In(t) can be divided into L
consecutive subsignals In,k(t), each subsignal duration is Ts = Mt∆t

Figure 2. Configuration of a far-field group pair.
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(LMt = Nt). In keeping with this division, the dipole mn(t) can be
expressed as

mn(t) = mnIn(t) = mn

L∑

k=1

In,k(t), (8)

where

In,k(t) =
kMt∑

j=(k−1)Mt+1

In,jTj(t). (9)

Then, the magnetic field Hs
n,k(r, t) in the observation associated with

the k-th time subsignal can be written as

Hs
n,k(r, t) =

1
4π

(mn ×R)
[

1
cR2

∂tIn,k(τ) +
1

R3
In,k(τ)

]
. (10)

The TD-FDM permits testing of the field n̂m×Hs
n,k(r, t) generated by

the dipole mn(t) as〈
mm, n̂m ×Hs

n,k(r, t)
〉

=
1
4π

(mm × n̂m) · (mn ×R)δ(t−R/c) ∗
[

∂t

cR2
+

1
R3

]
In,k(t), (11)

where ∗ denotes the temporal convolution. Referring to [17], we
consider δ(t−R/c) and expand R using the Taylor series as

δ(t−R/c) = δ(t− rm/c) ∗ δ(t− rc/c) ∗ δ(t− rn/c), (12)

where

rm =
[
r̂ji · rmj +

(rmj · rmj)− (r̂ji · rmj)2

2rji

]
, (13)

rn =
[
−r̂ji · rni +

(rni · rni)− (r̂ji · rni)2

2rji

]
. (14)

Here, rc = rji = |rji| is the distance between the two group centers
and r̂ji = rji/rji. For the amplitude approximation of Eq. (11), 1/Rα

for α > 0 can also be expanded using the Taylor series as
1

Rα
=

1
rα
ij

[
1− α

(
r̂ji · rmj

rij
+

r̂ij · rni

rij

)]
=

1
rα
ij

[
x(α)

m + x(α)
n

]
. (15)

With these definitions, substituting Eqs. (7), (12) and (15) into
Eq. (11), we can obtain

〈mm, n̂m ×Hs
n,k(r, t)〉

=
[
x(3)

m (m′
m ×Rm)δ(τm)

]†
∗

[
δ(τc)
4πr3

c

]
∗ [mnδ(τn)] ∗ In,k(t)
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+
[
(m′

m ×Rm)δ(τm)
]† ∗

[
δ(τc)
4πr3

c

]
∗

[
x(3)

n mnδ(τn)
]
∗ In,k(t)

+
[
x(3)

m m′
mδ(τm)

]†
∗

[
δ(τc)
4πr3

c

]
∗ [(mn ×Rn)δ(τn)] ∗ In,k(t)

+
[
m′

mδ(τm)
]† ∗

[
δ(τc)
4πr3

c

]
∗

[
x(3)

n (mn ×Rn)δ(τn)
]
∗ In,k(t)

+
[
x(2)

m (m′
m ×Rm)δ(τm)

]†
∗

[
∂tδ(τc)
4πcr2

c

]
∗ [mnδ(τn)] ∗ In,k(t)

+
[
(m′

m ×Rm)δ(τm)
]† ∗

[
∂tδ(τc)
4πcr2

c

]
∗

[
x(2)

n mnδ(τn)
]
∗ In,k(t)

+
[
x(2)

m m′
mδ(τm)

]†
∗

[
∂tδ(τc)
4πcr2

c

]
∗ [(mn ×Rn)δ(τn)] ∗ In,k(t)

+
[
m′

mδ(τm)
]† ∗

[
∂tδ(τc)
4πcr2

c

]
∗

[
x(2)

n (mn ×Rn)δ(τn)
]
∗ In,k(t), (16)

where m′
m = mm × n̂m, τm = t − rm/c, τc = t − rc/c, τn = t − rn/c.

The superscript † denotes a transpose.
It can be observed that there are eight terms in Eq. (16) and each

term has three convolutions. Corresponding to three convolutions, the
calculation of each term can be divided into three steps: aggregation;
translation; disaggregation. It achieves the separation of the m-th
dipole and the n-th dipole. Assuming that there are Ni and Nj

unknowns in group Gi and group Gj , the computational complexity of
the interactions between Gi and Gj can be reduced from O(NiNj) to
O(Ni + Nj).

3.2. Implementation of the Multilevel TD-FDM

To implement the multilevel TD-FDM to accelerate the matrix vector
products of the RHS in Eq. (5), the algorithm starts by grouping in a
multilevel fashion. The whole scatterer must be enclosed in a fictitious
cubical box and divided into several equal-sized cubes, which forms
the lowest level (level 1). Each cube is then recursively subdivided
into eight smaller cubes until the highest level (level lmax). In this
way, we finish our multilevel grouping procedure from level 1 to lmax.

For the simplicity of discussion, a two-dimension sketch is used
to present the general theory of the multilevel TD-FDM. In Fig. 3,
let us take a two level TD-FDM as an example to illustrate how the
multilevel TD-FDM works. Each group at level l named parent group is
divided into four subgroups named child group and the whole structure
is further divided into 36 subgroups.
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Figure 3. Configuration of the multilevel TD-FDM.

At level (l+1), the computation of interactions between the source
group and its near-field groups can be accelerated through the TD-
FDM scheme, while this interactions require the direct calculation
using the MOT scheme at level l. Then the near-field group pairs
at level (l+1) can be again divided into four smaller subgroups, which
generates the new far-field group pairs. Until the highest level, all the
near-region interactions should be calculated directly using the MOT
scheme.

From the above discussion, at each level all group pairs
(α(l), α′(l)) (α(l) ∈ R(l)) require to perform the aggregation-
translation-disaggregation procedure. Here R(l) is a set of groups at
level l, in which α(l) satisfies the condition that α(l) and α′(l) are far-
field pair and their parent group α(l − 1) and α′(l − 1) do not qualify
as far-field pair. Then the multilevel TD-FDM can be expressed as the
sums of near-field evaluation and far-field evaluation
i−1∑

j=0

Zi−jIj =
i−1∑

j=0

Zα(lmax),α′(lmax)
i−j I

α′(lmax)
j +

lmax∑

l=1

8∑

p=1

∑

α(l)∈R(l)

Mp,(l)
m δ(τm)∗Tp,(l)δ(τc)∗

∑

α′(l)

Mp,(l)
n δ(τn)∗In,k(t)|t=i∆t,(17)

where Mp,(l)
m , Tp,(l) and Mp,(l)

n for 1 ≤ p ≤ 8 denote eight aggregation-
translation-disaggregation operation in Eq. (16).

In our practical implementation, the appropriate subsignal
duration must be defined first. Because the distance between the
closest far-field pair vary at different levels, the fundamental subsignal
duration are also different at each level. The level l subsignal duration
T

(l)
s can be defined as

T (l)
s = M

(l)
t ∆t =

(⌊
βD(l)
c∆t

⌋
− 1

)
∆t. (18)

Here, D(l) is the size of the level l group, and β is the threshold.
The larger β is, the more costly and accurate the algorithm becomes.
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After T
(l)
s has been defined, the level l far-field evaluation of Eq. (17)

is divided into 3 steps: aggregation, translation and disaggregation.
(1) Aggregation: For each pair (α(l), α′(l)) (α(l) ∈ R(l)), level l

outgoing rays V
(l)
1 (t) generated by subsignals of the duration T

(l)
s (l)

are constructed every M
(l)
t time steps. This contribution aggregating

the signal from the n-th equivalent dipole to the level l group center
O

(l)
i can be obtained by the rightmost convolution of Eq. (17)

V
(l)
1 (t) =

[
Mp,(l)

n δ(t− rn/c)
]
∗ In,k(t). (19)

(2) Translation: Once outgoing rays V
(l)
1 (t) aggregated for each

far-field pair, outgoing rays are immediately translated from the level
l group center O

(l)
i to the level l group center O

(l)
j . Each outgoing ray

is converted to an incoming ray by the middle convolution of Eq. (17)

V
(l)
2 (t) =

[
Tp,(l)δ(t− rc/c)

]
∗ V

(l)
1 (t), (20)

where Tp,(l)δ(t− rc/c) is termed the translation operator, and V
(l)
2 (t)

represents level l incoming rays.
(3) Disaggregation: Finally at each time step, the field at the

observer can be formed by the left convolution of Eq. (17)

V
(l)
3 (t) =

[
Mp,(l)

m δ(t− rm/c)
]
∗ V

(l)
2 (t). (21)

This process disaggregates the incoming rays from the level l group
center O

(l)
j to the m-th equivalent dipole. This process involves a very

similar operation to the aggregation process.
Like the single level TD-FDM, there are three temporal

convolutions. Each convolution operation is nothing but a time shift.
These convolutions do not require using fast Fourier transforms and it
can be carried out in the time domain.

4. NUMERICAL RESULTS

This section provides several numerical results that serve both to
validate the multilevel TD-FDM and to demonstrate its efficiency.
All simulations are performed on a shared memory workstation
equipped with Intel(R) Xeon(R) Dual CPU W5580 3.2 GHz (only
one core is used) and 28 GB of RAM. In our implementation, we
use the generalized minimal residual (GMRES) iterative solver for
each time step and choose the identical residual error ≤ 10−6. The
temporal basic function T (t) is constructed using third order Lagrange
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interpolation [20]. All examples herein are calculated by the 2-level
TD-FDM and the threshold is chosen β = 3. With the number
of level increasing, the group size and the error of the Taylor series
approximation will also increase, so it requires the larger β [18].

In the first example, we consider a square plate with dimension
6.0m×6.0m×0.1 m. The surface of the scatterer is discretized in terms
of 31458 RWG basis functions. The incident wave is a Gaussian plane
wave parameterized as Ei(r, t) = p̂ 4

T0
√

π
exp[− 16

T 2
0
(ct − ct0 − r · k̂)2].

Here T0 = 4 lm is the pulsewidth of the Gaussian impulse, ct0 = 6 lm
is the time delay, k̂ = −ẑ denotes the travel direction of the incident
wave, and p̂ = −x̂ is a unit vector of its polarization. The size of
level lmax group is 0.3 m, the time step size is 166.6 ps, and Nt = 4000.
Both CPU time and memory requirement of each method are listed in
Table 1. The current density for x direction observed at the point (0 m,
0m, 0m) computed using both the TD-FDM and the multilevel TD-
FDM are compared in Fig. 4. The back-scattered far field signal for x
direction are compared in Fig. 5. The results are in good agreement
with each other.

Figure 4. The current density at
(0m, 0 m, 0 m).

Figure 5. Back-scattered far
field response.

Next, to further verify the validity of the multilevel TD-FDM,
scattering from a PEC pencil target is analyzed. The pencil consisted
of a 3 m long cylinder with radius 0.1 m, and a tip extending
0.173m pointing toward +x direction. The object is discretized
into 31947 RWG basis functions. The incident wave is a modulated
Gaussian plane wave parameterized as Ei(r, t) = p̂ exp[− 1

2σ2 (τ0 −
8σ)2] cos(2πf0τ0). Here f0 = 800 MHz is the center frequency,
fbw = 300 MHz is the bandwidth of the signal, σ = 6/(2πfbw), and
τ0 = t − r · k̂/c. The size of level lmax group is 0.09 m, the time step
size is 50 ps, and Nt = 8000. The RCS was computed for φ = 0◦,
and θ between 0◦ and 360◦. The bistatic RCS patterns at 700MHz,
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Table 1. Comparison of CPU time and memory cost.

Example 1
Method CPU Time RAM

TD-FDM 7h 48m 19.1GB
Multilevel TD-FDM 4h 26m 9.8GB

Example 2
Method CPU Time RAM

TD-FDM 14h 32 m 19.2GB
Multilevel TD-FDM 9h 37m 13.7GB

Example 3
Method CPU Time RAM

TD-FDM − −
Multilevel TD-FDM 8h 02m 18.9GB

800MHz, and 900 MHz obtained by the multilevel TD-FDM agree well
with TD-FDM as shown in Figs. 6–8.

The last example considers a 22-by-22 array of conducting cube
with side length of 0.3 m. The array is discretized into 78408 RWG
basis functions. The incident wave is a modulated Gaussian pulse with
p̂ = −x̂, k̂ = −ẑ, f0 = 250 MHz, fbw = 100 MHz, and σ = 6/(2πfbw).
Due to the limit of memory, the target cannot be calculated by the
TD-FDM. The size of level lmax group is 0.3m, ∆t = 666.6 ps, and
Nt = 1000. The CPU time and memory requirement are listed in
Table 1. The current density for x direction observed at the points
(1.5m, 1.8 m, 0.0 m) and (4.5 m, 0.0 m, 0.0 m) are shown in Figs. 9
and 10.

Figure 6. Comparison of the
bistatic RCS at 700 MHz.

Figure 7. Comparison of the
bistatic RCS at 800MHz.
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Figure 8. Comparison of the bistatic RCS at 900 MHz.
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Figure 9. The current density at
(1.5m, 1.8 m, 0.0 m).
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Figure 10. The current density
at (4.5 m, 0.0 m, 0.0 m).

5. CONCLUSIONS

In this paper, the multilevel TD-FDM is proposed to solve the MFIE
for the electromagnetic scattering from the PEC targets. All the far-
region computation at each level are speeded up by the TD-FDM, and
the near-region interaction at the highest level are computed by the
MOT scheme. Compared with the single level TD-FDM, both the
memory requirement and CPU time are reduced. Numerical results
demonstrate the validity and efficiency of our method. Further more,
the multilevel TD-FDM can be easily extended to solve volume integral
equation for isotropic media.
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