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Abstract—Electromagnetic fields associated with the electric current
flowing along a horizontal conductor located over perfectly conducting
ground are estimated using electromagnetic fields pertinent to
acceleration of electric charges. It is shown that the electric and
magnetic fields that exist below a long overhead horizontal conductor
are nothing but the radiation fields generated by the acceleration of
charge at the point of injection of current into the horizontal conductor.

1. INTRODUCTION

The theory of voltage and current transmission along overhead power
lines is a subject that is very well established both in practice and
theory. Utilizing these theories one can easily calculate the electric
and magnetic fields in the vicinity of energized power lines. A
detailed account of the standard procedure to calculate the electric and
magnetic fields in the vicinity of power lines with complicated geometry
can be found for example in references [1, 2]. These are actually based
on the solution of Maxwell’s equations pertinent to the geometry under
consideration. One interesting aspect of Maxwell’s equations is that
a given solution can be interpret in many different ways with each
interpretation illustrating a certain aspect of the equations which may
not be that apparent when another interpretation is sought. The
goal of this paper is to interpret the electric and magnetic fields
generated by a power line or an overhead conductor in a way to bring
into focus certain aspects which were hidden when the problem was
solved with the standard procedure. Both the standard procedure
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as illustrated in references [1, 2] and the procedure illustrated in this
paper give identical results. Indeed, they are all solutions to the same
Maxwell’s equations. Actually, mastering any one of these techniques is
enough for someone to calculate the electromagnetic fields generated by
overhead power lines. However, each technique illustrates the richness
of the solutions of Maxwell’s equations and one may appreciate being
able to apply one technique more than another depending on the
problem under consideration and the physical insight that is being
sought.

As mentioned above the goal of this paper is to calculate the
electromagnetic fields generated by an overhead current carrying
conductor using a procedure that had not been described in the
literature previously. The new procedure will give results identical
to the standard procedure [1, 2], but the reader will get a different
insight into the physics of the problem that may not be that apparent
when using standard technique.
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Figure 1. Geometry relevant to the analysis of the electromagnetic
fields produced by a single conductor power line.

Consider a long uniform horizontal conductor (or a single
conductor power line) of radius a located at a height h meters above
a perfectly conducting ground. The geometry relevant to the problem
under consideration is given in Figure 1. In this figure A and B denote
the two ends of the conductor. Consider a section of the conductor,
which is located far away from both of its ends. The capacitance
per unit length, C (in F/m), and the inductance per unit length, L
(H/m), of this section of the conductor are given for h/a À 1 by (i.e.,
the electrical parameters corresponding to an infinitely long horizontal
conductor located over perfectly conducting ground)

C =
2πεo

log
[
2h

a

] (1)
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L =
µo

2π
log

[
2h

a

]
(2)

The impedance per unit length of the conductor, Z, is given by

Z =
1
2π

√
µo

εo
log

[
2h

a

]
(3)

In the above equations the parameter ‘a’ is the radius of the conductor.
Assume that a uniform current, fed into the conductor from the

end A, is flowing along the conductor. The standard procedure to
calculate the electric and magnetic fields produced by the current
flowing along the conductor is the following. Consider a point of
observation P located directly below the current carrying conductor
and situated at a height hp meters from ground level. The effect of
perfectly conducting ground on the electric and magnetic fields is taken
into account using image theory. The magnetic field (which is in the
azimuthal direction or in the y direction), B, at the point of observation
can be obtained using Amperes Law and the result is

B =
µoIh

π
(
h2 − h2

p

)ay (4)

This can also be written as

B =
Ih

πεo

(
h2 − h2

p

)
c2

ay (5)

Let us now calculate the electric field at the same point. If the
uniform current flowing in the conductor is I, then the voltage V of
the conductor can be calculated using V = IZ. That is

V =
I

2π

√
µo

εo
log

[
2h

a

]
(6)

Since the capacitance of the conductor is given by (1) the charge per
unit length, ρ, of the conductor is given by the product of V and C
which reduces to

ρ = I/c (7)

where c = 1/
√

εoµo is the speed of light in vacuum.
Now, the conductor is very long and, therefore, the electric field at

the point of observation P can be calculated by treating the conductor
as a uniform line charge. The resulting electric field, E, which is
directed along the z axis is given by

E = − Ih

π
(
h2 − h2

p

)
εoc

az (8)
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These expressions are identical to those presented in references [1, 2]
when the number of conductors in the power line is reduced to
one. First, observe that the magnetic field and the electric fields are
perpendicular to each other. Second, note that the ratio of the electric
field to the magnetic field is equal to the speed of light in free space.
In other words, the field components have all the characteristics of a
radiation field moving in free space. This is in agreement with the
TEM mode of propagation of waves along overhead horizontal power
lines.

Now, even though the current flowing along the conductor is
uniform, this current has to be injected into the horizontal conductor
at a certain point, i.e., the source point of the current. In our case
the source point is assumed to be at A. During this process of current
injection, electric charges undergo acceleration and this acceleration
of charges gives rise to a radiation field. The goal of this paper is to
show that the field components derived earlier can be re-interpreted as
radiation fields generated at the source of the uniform current. This
can be done conveniently with the electromagnetic field calculation
procedure introduced by Cooray and Cooray [3]. These authors have
utilized the electromagnetic fields generated by accelerating charges to
evaluate the electromagnetic fields of both lightning return strokes and
current pulses propagating along vertical and horizontal conductors.
This technique will be used in the present paper.

2. ELECTROMAGNETIC FIELDS OF ACCELERATING
CHARGES

The theory of electromagnetic fields generated by moving charges is
described in any standard text book on electromagnetic theory, and
it suffices to quote the results directly [4]. The geometry relevant to
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Figure 2. Definition of the parameters that appear in Equations (1)
and (2).
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the problem under consideration is depicted in Figure 2. A charged
particle is moving with speed u and acceleration u̇. We assume that
the direction of u does not change with time; that is, both u and u̇
are acting in the same direction. The electric field produced by this
charge at point P (with β = u

c and ar = r
r ) is given by

E =
q

4πεo

[
1

r2(1− β · ar)3
(ar − β)(1− β2)

]

ret

+
q

4πεo

[
1

cr(1− β · ar)3
[
ar × (ar × β̇)

]]

ret

(9)

B =
q

4πεoc

[
1

r2(1− β · ar)3
(β × ar)(1− β2)

]

ret

+
q

4πεoc2

[
1

(1− β · ar)3r

{
ar ×

[
ar × (ar × β̇)

]}]

ret

(10)

In the above equations the quantities inside the brackets are the
retarded quantities. Note that the expressions for E and B both consist
of two terms. The second term, which depends on the acceleration of
the charge, is the radiation field. The first term is called the velocity
field. Note also that the term for the velocity field becomes zero
when the speed of propagation of the charge is equal to the speed of
light. Cooray and Cooray [3] utilized these expressions to calculate the
electric and magnetic fields generated by current pulses moving along
conductors. Cooray and Cooray [5] utilized the same field expressions
to re-interpret the electric and magnetic fields of a short dipole. The
expressions derived by Cooray and Cooray [3, 5] will be utilized here
to calculate the electric and magnetic fields of a current carrying
horizontal conductor located over perfectly conducting ground.

3. ELECTROMAGNETIC FIELDS GENERATED BY A
CURRENT PULSE PROPAGATING WITH UNIFORM
VELOCITY AND WITHOUT ATTENUATION

The geometry under consideration is shown in Figure 3. A current
pulse originates at point S1 and travels with uniform speed u without
attenuation or dispersion towards S2. At S2, the current is terminated.
As shown by Cooray and Cooray [3, 5] the total electric field at
point P , generated by this process has five components. They are
as follows: (i) the radiation field generated from S1 during the
acceleration of charge when the current is initiated, (ii) the radiation
field generated from S2 during the charge deceleration as the current
is terminated, (iii) the electrostatic field generated by the negative
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Figure 3. Geometry used in deriving the electromagnetic fields of a
current channel.

charge accumulated at S1 when the positive charge travels towards S2,
(iv) the electrostatic field generated by the accumulation of positive
charge at S2, and (v) the velocity field generated as the current pulse
moves along the element. The magnetic field generated by the current
flow consists of three terms, namely, two radiation fields generated at
S1 and S2, and the velocity field generated as the current propagates
along the path. Let us now write down the expressions obtained by
Cooray and Cooray [3, 5] for these field components.

3.1. The Electric Radiation Field Generated from S1

Let us assume that the current pulse leaving S1 can be represented by
i(t). The radiation field generated due to the acceleration of charges
at point P is given by Cooray and Cooray [3, 5]

erad,S1 =
i(t− r1/c)u sin θ1

4πεoc2r1

1[
1− u cos θ1

c

]aθ1 (11)

3.2. The Electric Radiation Field Generated from S2

The radiation field generated due to the deceleration of charges at S2

is given by

erad,S2 = − i(t− r2/c)u sin θ2

4πεoc2r2

1[
1− u cos θ2

c

]aθ2 (12)
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3.3. The Static Field Generated by the Accumulation of
Charge at S1

The charge accumulation at S1 is equal to the integral of the current,
and the field component generated by the charges is given by

estat,S1 = −

t−r1/c∫
0

i(ξ)dξ

4πεor2
1

ar1 (13)

3.4. The Static Field Generated by the Accumulation of
Positive Charge at S2

The component of the static field generated by the accumulation of
positive charge at S2 is given by

estat,S1 =

t−l/u−r2/c∫
0

i(ξ)dξ

4πεor2
2

ar2 (14)

3.5. The Velocity Field Generated as the Current Pulse
Propagates along the Channel Element

The component attributable to the velocity field generated as the
current pulse propagates along the channel element can be written
as [3, 5]

evel =

l∫

0

i(t− ξ/u− r/c)
{

1− u2

c2

}

4πεor2
[
1− u

c
cos θ

]2

[ar

u
− az

c

]
dξ (15)

Since the vector ar varies along the channel the above equation
can be decomposed into components along vertical (z-direction) and
horizontal (ρ-direction) as follows:

evel =

l∫

0

i(t− ξ/u− r/c)
{

1− u2

c2

}

4πεor2
[
1− u

c
cos θ

]2

[
cos θaz

u
+

sin θaρ

u
− az

c

]
dξ (16)

3.6. Magnetic Radiation Field Generated from S1

The magnetic radiation field generated from S1 is given by

brad,S1 =
i(t− r1/c)u sin θ1

4πεoc3r1

1[
1− u cos θ1

c

]aϕ (17)

Note that the magnetic field is in the azimuthal direction.
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3.7. Magnetic Radiation Field Generated from S2

The magnetic radiation field generated from S2 is given by

brad,S2 = − i(t− r2/c)u sin θ2

4πεoc3r2

1[
1− u cos θ2

c

]aϕ (18)

3.8. Magnetic Velocity Field Generated as the Current
Pulse Propagate along the Channel Element

The velocity field generated as the current pulse propagate along the
channel element is given by

bvel =

l∫

0

i(t− ξ/u− r/c)
{

1− u2

c2

}
sin θ

4πεor2c2
[
1− u

c
cos θ

]2 aϕdl (19)

The field components given by Equations (11) to (19) provide a
complete description of the electric and magnetic fields generated
by the current pulse propagating with uniform velocity and without
attenuation. Now, let us consider the case of a current pulse moving
along the horizontal conductor depicted in Figure 1.

4. ELECTROMAGNETIC FIELDS GENERATED BY A
CURRENT PULSE PROPAGATING ALONG A
HORIZONTAL CONDUCTOR

The geometry relevant to the analysis is shown in Figure 1. At time
t = 0 a current pulse (step current pulse in the case of uniform current)
is injected into the end A of the horizontal conductor. We assume that
the current pulse propagates with speed of light along the conductor.
The goal is to evaluate the electric field at the point of observation
marked P shown in Figure 1. As mentioned in the introduction, this
point of observation is located directly below the horizontal conductor
and at a height hp from ground level. The traditional way to get the
electromagnetic fields at point P is to divide the horizontal conductor
into elementary dipoles and summing up the contribution from each
dipole taking into account the corresponding delays. However, as one
can see in the sections to follow the application of field equations
derived in the previous section to the problem will provide a simple
and physically intuitive way to write down the equations that describe
the electromagnetic field.
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Now, the injection of the current into the horizontal conductor
causes charges to accelerate and this results in a radiation field.
Moreover, in order to satisfy conservation of charge one has to assume
that an amount of charge equal to the integral of the current but of
opposite polarity will be accumulated at the source of the current (i.e.,
at the point of injection). This charge will generate an electrostatic
field. There will be no velocity fields because the speed of propagation
of the current pulse is equal to the speed of light. Let us first write
down an expression for the radiation electric field at the point of
observation. This can easily be done with the equations presented
earlier. For convenience let us resolve this field into two components
in the direction z and x (the direction of the axes are shown in
Figure 1). Let us denote by erad,z,r(t), erad,z,i(t), erad,x,r(t) and
erad,x,i(t) the components of the radiation fields produced in the z
direction (subscript z) and in the x direction (subscript x) direction by
the real (subscript r) and the image currents (subscript i) respectively.
These components are given directly from (11) and can be written as

erad,z,r(t) = − i(t− rr/c) sin θr cos θr

4πεocrr

1
[1− cos θr]

az (20)

erad,z,i(t) = − i(t− ri/c) sin θi cos θi

4πεocri

1
[1− cos θi]

az (21)

erad,x,r(t) = − i(t− rr/c) sin θr sin θr

4πεocrr

1
[1− cos θr]

ax (22)

erad,x,i(t) =
i(t− ri/c) sin θi sin θi

4πεocri

1
[1− cos θi]

ax (23)

where ax, az are unit vectors directed in x and z directions.
The magnetic radiation field components produced by the

initiation of the real and the image currents are in the y direction
and they are given by

brad,y,r(t) =
i(t− rr/c) sin θr

4πεoc2rr

1
[1− cos θr]

ay (24)

brad,y,i(t) =
i(t− ri/c) sin θi

4πεocri

1
[1− cos θi]

ay (25)

Note that in the above equations

cos θr = D
/√

(h− hp)2 + D2 (26)

sin θr = (h− hp)
/√

(h− hp)2 + D2 (27)

cos θi = D
/√

(h + hp)2 + D2 (28)
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sin θi = (h + hp)
/√

(h + hp)2 + D2 (29)

where D is the horizontal distance from the point of injection to the
point of observation.

Now let us consider the static electric field generated by the
accumulation of charge at the point of current injection. The charge
that is being left behind at the point of injection at any given time is

Q(t) = −
t∫

0

i(τ)dτ (30)

Once this charge is given the z and x components of the static electric
field at point P can easily be written down using Coulombs law. These
field components are

esta,z,r(t) = −Q(t− rr/c) sin θr

4πεocr2
r

az (31)

esta,z,i(t) = −Q(t− ri/c) sin θi

4πεocr2
i

az (32)

esta,x,r(t) =
Q(t− rr/c) cos θr

4πεocr2
r

ax (33)

esta,x,i(t) = −Q(t− ri/c) cos θi

4πεocr2
i

ax (34)

Equations (20) to (34) describe completely the electromagnetic field
at the point of observation produced by the propagating current pulse
along the horizontal wire. Now, let us consider a point of observation
which is located in such a way that D À h where h is the height of
the wire. Under this approximation one can write

cos θr = 1− (h− hp)2

2D2
(35)

cos θi = 1− (h + hp)2

2D2
(36)

sin θr =
(h− hp)

D
(37)

sin θi =
(h + hp)

D
(38)

Substituting these in the equations obtained previously we find

erad,z,r(t) = − i(t−D/c)
2πεoc

1
[h− hp]

az (39)
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erad,z,i(t) = − i(t−D/c)
2πεoc

1
[h + hp]

az (40)

erad,x,r(t) = − i(t−D/c)
2πεocD

ax (41)

erad,x,i(t) =
i(t−D/c)
2πεocD

ax (42)

esta,z,r(t) = −Q(t−D/c)
4πεoD2

(h− hp)
D

az (43)

esta,z,i(t) = −Q(t−D/c)
4πεoD2

(h + hp)
D

az (44)

esta,x,r(t) =
Q(t−D/c)

4πεoD2

{
1− (h− hp)2

2D2

}
ax (45)

esta,x,i(t) = −Q(t−D/c)
4πεoD2

{
1− (h + hp)2

2D2

}
ax (46)

Now summing up the contributions from the image current and the
real current we obtain for the total radiation field and the static field
in the z direction as

erad,z(t) = − i(t−D/c)
2πεoc

2h[
h2 − h2

p

]az (47)

esta,z(t) = −Q(t−D/c)
2πεoD2

(h)
D

az (48)

The corresponding components in the x direction are

esta,x(t) = −Q(t−D/c)
2πεoD4

hhpax (49)

Note that the static field decreases very rapidly with distance compared
to the radiation field. If we select the distance in such a way so that
the static field can be neglected in comparison to the radiation field,
the electric and magnetic field at point P will become

erad,z(t) = − i(t−D/c)
πεoc

h[
h2 − h2

p

]az (50)

brad,y(t) = +
i(t−D/c)

πεoc2

h[
h2 − h2

p

]ay (51)

Observe that under the above assumptions, the fields do not depend
on the distance to the source. Note also that both the electric and
magnetic fields are radiation and their directions are perpendicular to
each other. This demonstrates the TEM nature of the transmission
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line fields and their radiation nature. The Equations (50) and (51) are
valid for any current pulse. If the current is uniform with amplitude
I0 the resulting radiation field at the point of observation becomes

erad,z(t) = − I0

πεoc

h[
h2 − h2

p

]az (52)

brad,y(t) = +
I0

πεoc2

h[
h2 − h2

p

]ay (53)

Note that the above equations describe the fields produced by the
termination A. That is, we have assumed that the termination B is
located at infinity and that it will not generate any fields at the point
of observation, i.e., it is an infinitely long conductor. These radiation
fields are identical to the expressions for the field components given
by Equations (5) and (8) which are also derived for an infinitely long
conductor. This demonstrates the nature of these field components
and the reason why they resemble radiation fields.

In demonstrating the above fact we have assumed that the end
B of the line is located at infinity. At this end of the line the current
is terminated. This is accompanied by deceleration of electric charges
and it will generate a radiation field. Moreover, the accumulation
of charge at the line end will give rise to a static electric field too.
However, if the point B is far away from the point of observation
neither the static field nor the radiation field will contribute to the field
at the point of observation. Note that unlike the radiation field from
A which contained a term of the form (1.0− cos θ) in the denominator
which made it possible for this field term to sustain as the distance to
the point of observation is increased, the radiation field from point B
will contain a term of the form (1.0 + cos θ) in the denominator and
consequently attenuate as the distance to the point of observation is
increased.

5. CONCLUSIONS

The electric and magnetic fields associated with a current flowing along
a horizontal conductor located over perfectly conducting ground can
be interpreted as the radiation fields generated by the acceleration
of electrical charges at the point of injection of the current into the
horizontal conductor.
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