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Abstract—This paper illustrates an explicit multiresolution time-
domain (MRTD) scheme based on Daubechies’ scaling functions with
a spherical grid for time-domain Maxwell’s equations. The stability
and dispersion property of the scheme are investigated and it is shown
that larger cells decrease the numerical phase error, which makes it
significantly lower than FDTD for low and medium discretizations.
Moreover, this technique is applied to the modeling of an air-filled
spherical resonator and the propagation of a radiating electric dipole in
spherical coordinates, numerical results demonstrate the effectiveness
of the proposed algorithm.

1. INTRODUCTION

The Multi-Resolution Time-Domain (MRTD) technique was first
published in 1996 by Krumpholz and Katehi [1], and has been
developed rapidly as an efficient numerical algorithm in the time-
domain like the long established Finite Difference Time-Domain
(FDTD) technique [2–16] and other time-domain methods [17–19].
With highly-linear dispersion performance, the MRTD scheme implies
that a low sampling rate in space can still provide for a relatively
small phase error in the numerical simulation of a wave propagation
problem, so it becomes possible that larger targets can be simulated
without sacrificing accuracy. This paper extends the MRTD concept
to spherical coordinates, and presents a MRTD algorithm for solving
Maxwell equations in spherical grids, considering that some problems
in antenna design and ultra-close-in coupling can be better solved in
spherical coordinates with azimuthal dependence.
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The initial works in [1] applied cubic spline Battle-Lemarie scaling
and wavelet functions in the spatial domain, while keeping rectangular-
pulse basis functions for the time domain. Then different wavelet
bases such as Haar, Coifman, Daubechies, and Cohen-Daubechies-
Feauveau (CDF) were introduced for the MRTD method. Since
the cubic spline Battle-Lemarie wavelet function is not compactly
supported in the spatial domain, it brings quantity of field coefficients
and makes the calculation complex. In order to reduce the number of
the considering items, a compactly supported wavelet can be used as
an alternative basis. So in this work, the compact support wavelet-
Daubechies with two vanishing moments (D2) [20, 21] is employed to
the spherical MRTD, the stability and dispersion characteristic of the
scheme is also analyzed and compared with that of the FDTD scheme.
Furthermore, the numerical simulations prove the applicability of the
spherical MRTD method.

2. MRTD FOR SPHERICAL GRID

For simplicity and compactness, a homogeneous medium is considered.
Faraday’s and Ampere’s laws in Maxwell’s equations are stated by

∇×E = −µ
∂H
∂t

, ∇×H = ε
∂E
∂t

(1)

The MRTD solution of Maxwell’s equations requires the
discretization of Eq. (1). In spherical coordinates, Eq. (1) can be
rewritten as

ε
∂Er

∂t
+ σEr =

1
r sin θ

[
∂ (sin θHϕ)

∂θ
− ∂Hθ

∂ϕ

]
(2)

ε
∂Eθ

∂t
+ σEθ =

1
r

[
1

sin θ

∂Hr

∂ϕ
− ∂ (rHϕ)

∂r

]
(3)

ε
∂Eϕ

∂t
+ σEϕ =

1
r

[
∂ (rHθ)

∂r
− ∂Hr

∂θ

]
(4)

−µ
∂Hr

∂t
− σmHr =

1
r sin θ

[
∂ (sin θEϕ)

∂θ
− ∂Eθ

∂ϕ

]
(5)

−µ
∂Hθ

∂t
− σmHθ =

1
r

[
1

sin θ

∂Er

∂ϕ
− ∂ (rEϕ)

∂r

]
(6)

−µ
∂Hϕ

∂t
− σmHϕ =

1
r

[
∂ (rEθ)

∂r
− ∂Er

∂θ

]
(7)

Also for the sake of simplicity and without loss of generality, the
electric and magnetic fields are expanded in terms of scaling functions
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only in space domain and pulse functions in time domain.

Er(v, t)=
+∞∑

i,j,k,n=−∞
Eφr, n

i+1/2,j,khn(t)φi+1/2(r)φj(θ)φk(ϕ) (8)

Eθ(v, t)=
+∞∑

i,j,k,n=−∞
Eφθ, n

i,j,k+1/2hn(t)φi(r)φj+1/2(θ)φk(ϕ) (9)

Eϕ(v, t)=
+∞∑

i,j,k,n=−∞
Eφϕ, n

i,j+1/2,khn(t)φi(r)φj(θ)φk+1/2(ϕ) (10)

Hr(v, t)=
+∞∑

i,j,k,n=−∞
H

φr,n+1/2
i,j+1/2,k+1/2hn+1/2(t)φi(r)φj+1/2(θ)φk+1/2(ϕ)(11)

Hθ(v, t)=
+∞∑

i,j,k,n=−∞
H

φz,n+1/2
i+1/2,j,k+1/2hn+1/2(t)φi+1/2(r)φj(θ)φk+1/2(ϕ)(12)

Hϕ(v, t)=
+∞∑

i,j,k,n=−∞
H

φϕ,n+1/2
i+1/2,j+1/2,khn+1/2(t)φi+1/2(r)φj+1/2(θ)φk(ϕ)(13)

where Eφκ, n
i,j,k and Hφκ, n

i,j,k , with κ = r, θ, ϕ, are the coefficients for the
fields expansions in terms of scaling functions. The indexes i, j, k and
n are the discrete space and time indices related to the space and time
coordinates via r = i∆r, θ = j∆θ, ϕ = k∆ϕ and t = n∆t, where ∆r,
∆θ, ∆ϕ and ∆t, represent the space and time discretization intervals
in r-, θ-, ϕ- and t-direction. The function h(t) is defined as Haar’s
scaling function, and φ (v) is Daubechies’ scaling function. Moreover,
the functions of hn(t) and φm(v) are defined by

hn(t) = h

(
t

∆t
− n

)
(14)

φm (x) = φ
( v

∆v
−m

)
, v = ρ, ϕ, z (15)

The Daubechies scaling function with two vanishing wavelet
moments (D2) is shown in Fig. 1.

Substituting (8)–(13) to (2)–(7) and applying Galerkin scheme
and wavelet function as following:

〈
hm(x),

∂hm′+1/2(x)
∂x

〉
= δm, m′ − δm, m′+1 (16)

〈
ϕm(x), ϕ′m(x)

〉
= δm, m′∆x (17)



580 Liu et al.

t

φ
(t
)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1. Daubechies scaling function with two vanishing moment.

〈
ϕm(x),

∂ϕm′+1/2(x)
∂x

〉
=

∑

l

a(l)δm+l, m′ (18)

As remarked by mathematicians [22], the shifted Daubechies D2 scaling
functions has approximate sampling properties. Therefore (15) is
modified to

φi

( x

∆x
− i + M1

)
= δk,0 (19)

where M1 =
∫ +∞
−∞ xφ (x)dx is the first-order moment of the scaling

function and δ is the Kronecker delta function. This property
yields a simple algorithm for inhomogeneous problems through the
local sampling of the field values regardless of the complexity of the
inhomogeneity [20]. The coefficients a (l) for 0 ≤ l ≤ 2 are shown in
Table 1 together with the first-order moment M1, and for l > 2, a (l)
are zeros due to the compact support of Daubechies’ scaling function.
The coefficients a (l) for l < 0 are given by the symmetry relation
a (−1− l) = −a (l).

As shown in Fig. 2, the unit cell of the MRTD scheme is similar
to the unit cell of the spherical Yee grid. However, due to the different

Table 1. The coefficients a(l) and the first-order moments M1.

l a(l)
0 1.22916661202745
1 −0.09374997764746
2 0.01041666418309

M1 0.6339743121
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Figure 2. A nonuniform spherical unit cell for the MRTD scheme.

field expansions, the field components in the two schemes are not
identical. Take Er as example, the component of which at point
((i+1/2)∆ρ, j∆θ, k∆ϕ, n∆t) is given by

Er ((i + 1/2) ∆r, j∆θ, k∆ϕ, n∆t)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Eρ (r, t) δ

(
r

∆r
− i− 1

2

)

·δ
(

θ

∆θ
− j

)
δ

(
ϕ

∆ϕ
− k

)
δ

(
t

∆t
− n

)
rdrdθdϕdt = Eφr,n

i+1/2,j,k (20)

This equation related to the total electric value is the sampling
value of this point, so we can obtain the MRTD equations based on
Daubechies scaling function as following:

Eφr,n+1
i+1/2,j,k =

2ε−σ∆t

2ε+σ∆t
Eφr,n

i+1/2,j,k +
2∆t

2ε+σ∆t

1
(i+1/2) ∆r sin (j∆θ)

×
{

1
∆θ

∑

l

a (l) sin [(j + l+1/2) ∆θ]Hφϕ, n+1/2
i+1/2,j+l+1/2,k

− 1
∆ϕ

∑

l

a (l)Hφθ, n+1/2
i+1/2,j,k+l+1/2

}
(21)

Eφθ,n+1
i,j+1/2,k =

2ε− σ∆t

2ε + σ∆t
Eφθ,n

i,j+1/2,k +
2∆t

2ε + σ∆t

1
i∆r

×
{

1
sin [(j + 1/2) ∆θ]∆ϕ

∑

l

a (l)Hφr, n+1/2
i,j+1/2,k+l+1/2

−
∑

l

a (l) (i + l + 1/2)H
φϕ, n+1/2
i+l+1/2,j+1/2,k

}
(22)
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Eφϕ,n+1
i,j,k+1/2 =

2ε− σ∆t

2ε + σ∆t
Eφϕ,n

i,j,k+1/2

+
2∆t

2ε + σ∆t

1
i∆r

[∑

l

a (l) (i + l+1/2)H
φθ, n+1/2
i+l+1/2,j,k+1/2

− 1
∆θ

∑

l

a (l)Hφr, n+1/2
i,j+l+1/2,k+1/2

]
(23)

H
φr,n+1/2
i,j+1/2,k+1/2 =

2µ− σm∆t

2µ + σm∆t
H

φr,n−1/2
i,j+1/2,k+1/2

− 2∆t

2µ + σm∆t

1
i∆r sin [(j + 1/2)∆θ]

×
{

1
∆θ

∑

l

a (l) sin [(j + l + 1) ∆θ] Eφϕ, n
i,j+l+1,k+1/2

− 1
∆ϕ

∑

l

a (l)Eφθ, n
i,j+1/2,k+l+1

}
(24)

H
φθ,n+1/2
i+1/2,j,k+1/2 =

2µ−σm∆t

2µ+σm∆t
H

φθ,n−1/2
i+1/2,j,k+1/2 −

2∆t

2µ+σm∆t

1
(i+1/2)∆r[

1
sin (j∆θ)∆ϕ

∑

l

a (l)Eφr, n
i+1/2,j,k+l+1

−
∑

l

a (l) (i + l + 1)Eφϕ, n
i+l+1,j,k+1/2

]
(25)

H
φϕ,n+1/2
i+1/2,j+1/2,k =

2µ−σm∆t

2µ+σm∆t
H

φϕ,n−1/2
i+1/2,j+1/2,k −

2∆t

2µ+σm∆t

1
(i+1/2)∆r[∑

l

a (l) (i + l + 1)Eφθ, n
i+l+1,j+1/2,k

− 1
∆θ

∑

l

a (l)Eφr, n
i+1/2,j+l+1,k

]
(26)

As shown in Fig. 3, assuming that the total meshes are Nr ×
(Nθ + 1)×(Nϕ + 1), due to the characteristic of the components in the
MRTD equations, when i = 0, 1, 2 or j = 0, 1, 2, Nθ−2, Nθ−1, Nθ

or k = 0, 1, 2, Nϕ − 2, Nϕ − 1, Nϕ, some of the E and H fields need
to be disposed particularly.

Firstly, observing Eq. (21), it is noted that when j = 0 or Nθ, the
value of Er is singular. And this problem can be solved via Ampere’s
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Figure 3. Area needs to be particularly treated (dark parts). (a) The
r-θ-plane. (b) The r-ϕ-plane.

law [23]: ∮

L

H · dl =
∫∫

s

(
ε

∂

∂t
E + σE

)
· ds (27)

where the contour L is the circle defined by j = 1/2 or Nθ − 1/2.
Taking the integral of (27), we can get the formula for updating Er at
j = 0

Eφr, n+1
i+1/2,0,k =

2ε− σ∆t

2ε + σ∆t
Eφr, n

i+1/2,0,k

+
sin (∆θ/2)∆ϕ∆t

(2ε + σ∆t) (i + 1/2) ∆r [1− cos (∆θ/2)]π

∑

j

H
φϕ,n+1/2
i+1/2,1/2,k (28)

At j = Nθ, the formula is

Eφr, n+1
i+1/2,Nθ,k =

2ε− σ∆t

2ε + σ∆t
Eφr, n

i+1/2,Nθ,k

− sin (∆θ/2) ∆ϕ∆t

(2ε + σ∆t) (i + 1/2) ∆r [1− cos (∆θ/2)]π

∑

j

H
φϕ,n+1/2
i+1/2,Nθ−1/2,k (29)

Moreover, when j = 1, 2, Nθ − 2, Nθ − 1, Nθ or k = 0, 1, 2, Nϕ − 2,
Nϕ−1, Nϕ, Er should be treated particularly. Taking the spatial point
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((i + 1/2)∆r,∆θ, 0) as example, the updating equation of Er is

Eφr,n+1
i+1/2,1,0 =

2ε− σ∆t

2ε + σ∆t
Eφr,n

i+1/2,1,0 +
2∆t

2ε + σ∆t

1
(i + 1/2) ∆r sin (∆θ)

×





1
∆θ




a (0)
(
sin ((1 + 0+1/2)∆θ) H

φϕ, n+1/2
i+1/2,1+0+1/2,0

− sin ((1− 1+1/2)∆θ) H
φϕ, n+1/2
i+1/2,1−1+1/2,0

)

+a (1)
(
sin ((1 + 1+1/2) ∆θ) H

φϕ, n+1/2
i+1/2,1+1+1/2,0

+sin ((1− 2+1/2)∆θ) H
φϕ, n+1/2
i+1/2,−(1−2+1/2),Nϕ/2

)

+a (2)
(
sin ((1 + 2+1/2) ∆θ) H

φϕ, n+1/2
i+1/2,1+2,0

+sin ((1− 3+1/2)∆θ) H
φϕ, n+1/2
i+1/2,−(1−3+1/2),Nϕ/2

)




− 1
∆ϕ




a (0)
(
H

φθ, n+1/2
i+1/2,1,0+1/2 −H

φθ, n+1/2
i+1/2,1,Nϕ+1/2

)

+a (1)
(
H

φθ, n+1/2
i+1/2,1,1+1/2 −H

φθ, n+1/2
i+1/2,1,Nϕ−1/2

)

+a (2)
(
H

φθ, n+1/2
i+1/2,1,2+1/2 −H

φθ, n+1/2
i+1/2,1,Nϕ−3/2

)








(30)

that is

Eφr,n+1
i+1/2,1,0 =

2ε− σ∆t

2ε + σ∆t
Eφr,n

i+1/2,1,0 +
2∆t

2ε + σ∆t

1
(i + 1/2)∆r sin (∆θ)

×





1
∆θ




a (0)
(
sin

(
3
2∆θ

)
H

φϕ, n+1/2
i+1/2,3/2,0 − sin

(
1
2∆θ

)
H

φϕ, n+1/2
i+1/2,1/2,0

)

+a (1)
(
sin

(
5
2∆θ

)
H

φϕ, n+1/2
i+1/2,5/2,0 − sin

(
1
2∆θ

)
H

φϕ, n+1/2
i+1/2,1/2,Nϕ/2

)

+a (2)
(
sin

(
7
2∆θ

)
H

φϕ, n+1/2
i+1/2,7/2,0 − sin

(
3
2∆θ

)
H

φϕ, n+1/2
i+1/2,3/2,Nϕ/2

)




− 1
∆ϕ




a (0)
(
H

φθ, n+1/2
i+1/2,1,1/2 −H

φθ, n+1/2
i+1/2,1,Nϕ+1/2

)

+a (1)
(
H

φθ, n+1/2
i+1/2,1,3/2 −H

φθ, n+1/2
i+1/2,1,Nϕ−1/2

)

+a (2)
(
H

φθ, n+1/2
i+1/2,1,5/2 −H

φθ, n+1/2
i+1/2,1,Nϕ−3/2

)








(31)

Next, observing Eq. (22), it is obvious that when i = 0, the value
of Eθ is also singular. A simple method to treat this problem is let
Eθ = 0, which is feasible if the origin of the coordinate system is
occupied by a perfect conductor. Another possible way is transform
the Eθ fields at i = 0 to Cartesian coordinates, and then transform
back to spherical coordinates.
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Furthermore, when i = 1, 2 or k = 0, 1, 2, Nϕ − 2, Nϕ − 1,
Nϕ, Eθ should be treated particularly. Taking the spatial point
(∆r, (j + 1/2)∆θ, 0) as example, the updating equation of Eθ is

Eφθ,n+1
1,j+1/2,0 =

2ε− σ∆t

2ε + σ∆t
Eφθ,n

1,j+1/2,0 +
2∆t

2ε + σ∆t

1
∆r

×





1
sin [(j + 1/2) ∆θ]∆ϕ




a (0)
(
H

φr, n+1/2
1,j+1/2,1/2 −H

φr, n+1/2
1,j+1/2,Nϕ+1/2

)

+a (1)
(
H

φr, n+1/2
1,j+1/2,3/2 −H

φr, n+1/2
1,j+1/2,Nϕ−1/2

)

+a (2)
(
H

φr, n+1/2
1,j+1/2,5/2 −H

φr, n+1/2
1,j+1/2,Nϕ−3/2

)




−




a (0)
(

3
2H

φϕ, n+1/2
3/2,j+1/2,0 − 1

2H
φϕ, n+1/2
1/2,j+1/2,0

)

+a (1)
(

5
2H

φϕ, n+1/2
5/2,j+1/2,0 − 3

2H
φϕ, n+1/2
1/2,j+1/2,Nϕ

)

+a (2)
(

7
2H

φϕ, n+1/2
7/2,j+1/2,0 − 5

2H
φϕ, n+1/2
5/2,j+1/2,Nϕ

)








(32)

Referring to Eq. (23), the treatment of Eϕ at i = 0 or j = 0,
Nθ is the same with Eθ. And when i = 1, 2 or j = 1, 2, Nθ − 2,
Nθ − 1, Eθ also should be treated particularly. Taking the spatial
point (∆r, ∆θ, (k + 1/2)∆ϕ) as example, the updating equation of Eϕ

is

Eφϕ,n+1
1,1,k+1/2 =

2ε− σ∆t

2ε + σ∆t
Eφϕ,n

1,1,k+1/2 +
2∆t

2ε + σ∆t

1
∆r

×








a (0)
(

3
2H

φθ, n+1/2
3/2,1,k+1/2 − 1

2H
φθ, n+1/2
1/2,1,k+1/2

)

+a (1)
(

5
2H

φθ, n+1/2
5/2,1,k+1/2 − 1

2H
φθ, n+1/2
1/2,1,k+1/2−Nϕ/2

)

+a (2)
(

7
2H

φθ, n+1/2
7/2,1,k+1/2 − 3

2H
φθ, n+1/2
3/2,1,k+1/2−Nϕ/2

)




− 1
∆θ




a (0)
(
H

φr, n+1/2
1,3/2,k+1/2 −H

φr, n+1/2
1,1/2,k+1/2

)

+a (1)
(
H

φr, n+1/2
1,5/2,k+1/2 −H

φr, n+1/2
1,1/2,k+1/2−Nϕ/2

)

+a (2)
(
H

φr, n+1/2
1,7/2,k+1/2 −H

φr, n+1/2
1,3/2,k+1/2−Nϕ/2

)








(33)

The treatment of the H fields at the proposed special points is
similar with the E fields, and can be obtained by duality.
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3. STABILITY AND DISPERSION ANALYSIS

3.1. Stability Analysis

In this section, it is assumed throughout the stability and dispersion
analysis that the E and H fields are expanded only in terms of scaling
functions (S-MRTD) in space domain [24]. Following the procedure
of [1], the MRTD equations for the 2-D TM mode can be written as

H
n+1/2
r,i,j+1/2 −H

n−1/2
r,i,j+1/2

∆t
=−

∑
l

a (l) sin [(j+l+1)∆θ]E n
ϕ,i,j+l+1

µi∆r sin[(j + 1/2) ∆θ]
(34)

H
n+1/2
θ,i+1/2,j −H

n−1/2
θ,i+1/2,j

∆t
=

∑
l

a (l) (i + l + 1)En
ϕ,i+l+1,j

µ (i + 1/2) ∆r
(35)

En+1
ϕ,i,j − En

ϕ,i,j

∆t
=

1
i∆r

[∑

l

a (l) (i + l+1/2)H
n+1/2
θ,i+l+1/2,j

− 1
∆θ

∑

l

a (l)Hn+1/2
r, i,j+l+1/2

]
(36)

Following the stability analysis described in [25], the finite-
difference approximations of the time derivatives on the left-hand side
of the equations can be written as an eigenvalue problem

H
n+1/2
r,i,j+1/2 −H

n−1/2
r,i,j+1/2

∆t
= λHn

r,i,j+1/2 (37)

H
n+1/2
θ,i+1/2,j −H

n−1/2
θ,i+1/2,j

∆t
= λHn

θ,i+1/2,j (38)

En+1
ϕ,i,j − En

ϕ,i,j

∆t
= λE

n+1/2
ϕ,i,j (39)

In order to avoid instability during normal time stepping, the
imaginary part of λ, Im(λ), must satisfy

− 2
∆t

≤ Im(λ) ≤ 2
∆t

(40)

Assuming that the medium of the calculating space is homoge-
neous, lossless and non-magnetic, so any monochromatic plane wave
can be indicated by the referred form [26]

Hr,I,J = Hr0 exp [−j(krI∆r + kθJ∆r∆θ)]
Hθ,I,J = Hθ0 exp [−j(krI∆r + kθJ∆r∆θ)]
Eϕ,I,J = Eϕ0 exp [−j(krI∆r + kθJ∆r∆θ)]
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Substituting these expressions to (37)–(39) and applying Euler’s
identity, we get

λ2 =

{
1

∆r

[
2∑

i′=0

a
(
i′
)
sin

(
kr∆r

(
i′ +

1
2

))]}2

+





2
∆r∆θ




2∑

j′=0

a
(
j′

)
sin

(
kθ

∆r∆θ

2

(
j′ +

1
2

))






2

(41)

In (41), λ is a pure imaginary, which is bounded for any wave
vector k = (kr, kθ)

−2c

(
2∑

i′=0

a
(
i′
)
)(

1
(∆r)2

+
4

(∆r∆θ)2

) 1
2

≤ Im(λ)

≤ 2c

(
2∑

i′=0

a
(
i′
)
)(

1
(∆r)2

+
4

(∆r∆θ)2

) 1
2

(42)

where c = 1/
√

µε is the speed of the light.
Numerical stability is maintained for every spatial mode only when

the range of eigenvalues given by (42) is contained entirely within the
stable range of time-differentiation eigenvalues given by (40). Since
both ranges are symmetrical around zero, it is adequate to set the
upper bound of (42) to be smaller or equal to (40), giving

∆t ≤ S

c
√

1
(∆r)2

+ 4
(∆r∆θ)2

(43)

where
S =

1[
2∑

i′=0

a (i′)
] ≈ 0.8727 (44)

It is known that

∆tFDTD ≤ 1

c
√

1
(∆r)2

+ 4
(∆r∆θ)2

(45)

Equations (43)–(45) show that for the same discretization size
it is not advantageous to choose time step at the stability limit for
MRTD scheme compared with that for the FDTD scheme. However,
as introduced in the next section, this can be largely compensated by
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the better dispersion performance given by MRTD (for large cells).
The stability analysis can be generalized easily to three dimensions

∆t ≤ S

c
√

1
∆r2 + 4

(∆r∆θ)2
+ 4

(∆r∆ϕ sin∆θ)2

(46)

3.2. Dispersion Analysis

In this section, the numerical dispersion of the MRTD scheme is
investigated and compared to that of the standard FDTD. The
dispersion relation was obtained by substituting a time-harmonic
trial solution into the update equations and numerically solving the
resulting nonlinear equation

[
1

c∆t
sin

(
ω∆t

2

)]2

=

{
1

∆r

[
2∑

i′=0

a
(
i′
)
sin

(
kr

(
i′ +

1
2

)
∆r

)]}2

+





1
r′∆θ




2∑

j′=0

a
(
j′

)
sin

(
kθr

′
(

j′ +
1
2

)
∆θ

)






2

+

{
1

r′∆ϕ sin∆θ

[
2∑

k′=0

a
(
k′

)
sin

(
kϕr′∆ϕ

(
k′ +

1
2

)
sin∆θ

)]}2

(47)

where ω corresponds to the wave angular frequency, r′ to the radial
location and kr,θ,ϕ to the r, θ, ϕ-components of the numerical wave
vector respectively. Apparently, the equation above shows that the
numerical dispersion of MRTD has the relationships with the time-step,
cell size, wave frequency, radial location and propagation direction.
Since it is difficult to treat the 3-D dispersion case, for the sake of easily
illustrating, a 2-D case in the θ-ϕ-plane is discussed. Assuming that
the Courant-Friedrichs-Lewy number (CFLN) c∆t/δ = p, ω∆t = Ω
and r′∆θ = r′∆ϕ sin∆θ = δ, then Eq. (47) can be rewritten as

Ω = 2 arcsin





p

√√√√√√√√√

[
2∑

j′=0

a (j′) sin
(
kθδ

(
j′ + 1

2

))
]2

+
[

2∑
k′=0

a (k′) sin
(
kϕδ

(
k′ + 1

2

))]2





(48)

To satisfy the stability requirements, p has to be smaller than
0.6171 (= 0.8727/

√
2) for the 2-D simulations.

In Fig. 4, the normalized frequency Ω is plotted with respect to
the normalized wavenumber X = |k|δ for a value of p = 0.1, where k is
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Figure 4. Dispersion diagram.

the wave vector (kθ, kϕ). For wave propagation in (1, 0) direction, we
have used kϕ = 1 and kz = 0. Similarly, for wave propagation in (1, 1)
direction, we have used kϕ = kz = 1. This figure illustrates the highly
linear dispersion characteristic of the MRTD based on Daubechies
wavelet in comparison with the dispersion characteristics of FDTD
schemes, which implies that the MRTD scheme can keep a better
accuracy when there are less grid points.

In order to permit determination of k for any wave-propagation
direction, here we define

k = (kr, kθ, kϕ) = k0 (cosα, sinα cosβ, sinα sinβ)
where (α, β) is the azimuth angle in spherical coordinates. Following
the procedure of [25], the Eq. (47) can be written as

ω2

c2
= (k0 cosα)2

[
2∑

i′=0

a (i′) sin
(
k0

(
i′ + 1

2

)
∆r cosα

)]2

(
k0∆r cos α

2

)2

+ (k0 sinα cosβ)2

[
2∑

j′=0

a (j′) sin
(
k0ρ

′ (j′ + 1
2

)
∆θ sinα cosβ

)
]2

(
k0ρ′∆θ sin α cos β

2

)2

+ (k0 sinα sinβ)2

[
2∑

j′=0

a(k′) sin
(
k0ρ

′(k′+ 1
2

)
∆ϕ sin∆θ sinα sinβ

)
]2

(
k0ρ′∆ϕ sin ∆θ sin α sin β

2

)2 (49)
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since k = ω/vp = 2π/λ0, where vp is numerical phase velocity and λ0

is the free-space wavelength, the Eq. (49) can be rewritten as

(vp

c

)2
=

[
2∑

i′=0

a (i′) sin
(

2π(i′+ 1
2)∆r cos α

λ0

)]2

(
π∆r cos α

λ0

)2 cos2 α

+

[
2∑

j′=0

a (j′) sin
(

2πρ′(j′+ 1
2)∆θ sin α cos β

λ0

)]2

(
πρ′∆θ sin α cos β

λ0

)2 sin2 α cos2 β

+

[
2∑

j′=0

a(k′) sin
(
2πρ′ sin∆θ sin α sin β(k′+ 1

2)∆ϕ

λ0

)]2

(
πρ′ sin∆θ sin α sin β

λ0

)2 sin2 α sin2 β (50)

Also for the sake of easily illustrating, here we also discuss the 2-D
case mentioned above, then the Eq. (50) can be written as

(vp

c

)2
=

[
2∑

i′=0

a (i′) sin
(

2πδ
λ0

cosβ
(
i′ + 1

2

))]2

(
πδ
λ0

)2 cos2 β

+

[
2∑

j′=0

a (j′) sin
(

2πδ
λ0

sinβ
(
j′ + 1

2

))
]2

(
πδ
λ0

)2 sin2 β (51)

Figure 5 illustrates the variation of vp in MRTD and FDTD
methods with propagation direction α. Here, two different grid-
sampling densities λ0/δ are examined for MRTD: λ0/δ = 2 points
per λ0 and λ0/δ = 3, two λ0/δ for FDTD: λ0/δ = 3 andλ0/δ = 15.
From this figure, it is can be easily seen that the MRTD can keep a
higher accuracy with the same grid-sampling density than that of the
FDTD, which also validates the conclusion above.

4. NUMERICAL RESULTS

To validate the benefits of the high linear dispersion characteristics
of the proposed scheme, as Table 2 shows, the simulations results of
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Figure 5. Variation of the numerical phase velocity with wave-
propagation angle for 2-D MRTD and FDTD grids. (a) Illustrated
by polar coordinates. (b) Illustrated by cartesian coordinates.

the resonant frequencies for an air-filled spherical resonator are given
here. The radius of the cavity resonator is r = 1m. Its theoretical
resonant frequencies are readily available [27]. In the simulation using
Yee’s FDTD scheme, the computational domain was discretized using
the grid with ∆ρ = 3.125 cm, ∆θ = π/48 and ∆ϕ = π/24, leading to a
mesh of 32× 96× 48 gird points. For the MRTD scheme, a grid with
∆ρ = 12.5 cm, ∆θ = π/12, ∆ϕ = π/6 and with a mesh of 8× 24× 12
gird points, was chosen. Note that the time discretization interval
∆t = 4.421 × 10−13 s was chosen to be identical for both schemes
in order to exploit the linearity of the dispersion characteristics for
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Table 2. Simulation results.

Analytic
values

MRTD FDTD
Computed

values
Relative
errors

Computed
values

Relative
errors

131.01 MHz 131.01MHz 0 130.76MHz −0.191%
292.06 MHz 292.43MHz 0.127% 292.01MHz −0.017%
444.85 MHz 444.95MHz 0.023% 444.33MHz −0.117%
596.16 MHz 597.39MHz 0.206% 595.87MHz −0.049%

No. of
iterations

65536 65536

CPU time/s 33.23 1129.84

MRTD. The excitation pulse is a Gaussian pulse which is defined as

Ei (t) = exp [−4π (t− t0)/τ ]2 (52)

where t0 = τ = 2.0 ns. Compared with the FDTD method, the total
number of grid points is reduced by a factor of 64, and the execution
time for the analysis was reduced by a factor of 34 for MRTD method.
In addition, note that for the MRTD scheme, the relative error of the
resonant frequencies is positive which corresponds to an overestimation
of the resonant frequencies. For FDTD scheme, the relative error of the
resonant frequencies is negative corresponding to an underestimation
of the resonant frequencies. This is exactly what has to be expected
from the dispersion diagrams (see Figs. 4–5).

Since the use of Daubechies basis functions does not allow localized
boundary conditions, as Fig. 6 shows, here we apply the image
technique to the perfect electric conductor (PEC) boundary [1].

PEC

E

Original Fields Image Fields
     

H

PEC

Original Fields Image Fields

(a) (b) 

Figure 6. Original and image fields of the MRTD lattice with respect
to PEC boundary.
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Next, a 3-D spherical case in free space about the field radiated
from a electric dipole source is simulated with FDTD and MRTD
schemes. Following the procedure of [28], the perfectly matched layer
(PML) can be easily derived for the proposed spherical MRTD grids
(not shown for saving space). The computational domain for both
FDTD and MRTD approaches is discretized using a (Nr, Nθ, Nϕ) =
(28, 10, 20) cell lattice with eight-cell-thick PML terminate the grid in
r direction, and the PML region is terminated with a PEC wall. The
source is a radiating electric dipole located at the grid point (3, 5, 0),
and is characterized by

p (t) = 10−10 exp [− (t− 3T )/T ]2 (53)

where T = 2.0 ns. It is easily demonstrated that such a dipole produces
an electric field in time domain

E(r, t)=
µ0

4πr

{
er

[
c

r

∂

∂t
+

c2

r2

]
2 cos θ+eθ

[
∂2

∂t2
+

c

r

∂

∂t
+

c2

r2

]
sin θ

}
p
(
t− c

r

)

(54)
and the electric dipole source can be employed in the MRTD as
following

Eφθ,n+1
3,5+1/2,0 = Eφθ,n

3,5+1/2,0 −
∆t

9ε0∆r3∆θ∆ϕ sin (5.5∆θ)

(
dp

dt

)n+1/2

(55)

First, we use an uniform cell discretization size in the r direction
∆r = 6 cm, a time discretization interval ∆t = 6.949 × 10−12 s for
both MRTD and FDTD schemes, and a receiver located at the grid
point (13, 5, 0). As shown in Fig. 7, the curves for MRTD and FDTD
methods are both in excellent agreement with the analytical curve.
Then we use another uniform cell discretization size in the r direction
∆r = 30 cm, and a time discretization interval ∆t = 3.476×10−11 s for
both MRTD and FDTD schemes. For simplicity, the receiver is also
located at (13, 5, 0). As Fig. 8(a) shows, we can see that the curve
for FDTD method is absolutely distortional, which implies that the
grid-sampling density is too low for the FDTD technique. However, as
illustrated in Fig. 8(b), unlike the FDTD scheme, the curve for MRTD
scheme can be still in good agreement with the analytical curve. The
results visibly validate the conclusion in Section 3. Moreover, it is
noticed that in Fig. 8(b) there is little oscillation for the Eθ field in the
MRTD simulation, the residual field can be attributed to three major
sources: discretization error of the sphere model, numerical dispersion
effect due to the high grid curvature in the simulation region, and the
PML reflection.
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Figure 7. Analytical solution for the electric dipole versus 3-D
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Figure 8. Analytical solution versus FDTD and MRTD solutions.
(a) Analytical solution for the electric dipole versus 3-D spherical-grid
FDTD solutions. (b) Analytical solution for the electric dipole versus
3-D spherical-grid MRTD solutions.

5. CONCLUSION

This paper has developed an MRTD algorithm based on Daubechies’
scaling functions with a spherical grid. The stability and dispersion
property of the scheme is also investigated. It is shown that the
larger cells can decrease the numerical phase error with the scheme,
which makes it significantly lower than FDTD for low and medium
discretizations. Furthermore, numerical verifications are presented to
demonstrate the validity of the proposed method, and it is indicated
that at the acceptable accuracy level, the proposed method can greatly
save the CPU memory and computational time compared with the
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conventional FDTD method. MRTD codes are then developed based
on the time-domain versions of the equations.
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