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Abstract—The emission of electromagnetic radiation from charged
particles spiraling around magnetic fields is an important effect in
astrophysical and laboratory plasmas. In theoretical modeling, issues
still not fully resolved are, among others, the inclusion of the recoil
force on the relativistic electron motion and the detailed computation
of the radiation power spectrum. In this paper, the cyclotron radiation
emitted during the nonlinear interaction of relativistic electrons with
a plane electromagnetic wave in a uniform magnetic field is examined,
by analyzing the radiated power in both time and frequency domain.
The dynamics of the instantaneous radiation and the emitted power
spectrum from one particle, as well as from monoenergetic electron
ensembles (towards a picture of the radiation properties independent of
the initial conditions) is thoroughly studied. The analysis is performed
for several values of the wave amplitude, focusing near the threshold
for the onset of nonlinear chaos, in order to determine the alteration
of the radiation in the transition from regular to chaotic motion.

1. INTRODUCTION

An important factor in systems involving charged particle acceleration
by electromagnetic waves, especially for diagnostic measurements, is
the emitted radiation by the particles due to the acceleration induced
by the total acting electromagnetic force. Every charged particle,
when accelerated, emits electromagnetic radiation (the relevant theory
is analyzed sufficiently in [1–5]). The emitted radiation, apart from
revealing the dynamics of the particle motion through its power
spectrum, results to the appearance of an additional braking force on
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the particle motion, known as radiation reaction [6]. With respect
to the emission mechanism, the radiation is distinguished between
two types: (a) Bremsstrahlung, coming from the component of the
acceleration colinear with the particle velocity, and therefore relevant
to the ballistic part of the motion, (b) Cyclotron, coming from the
acceleration component perpendicular to the velocity, and therefore
connected to the rotating part of the motion.

The cyclotron radiation from energetic electrons that rotate
around a nearly static and homogeneous magnetic field is an
aspect that appears frequently in astrophysical plasmas, like
stellar winds ([7, 8] and references therein) or ionized atmospheric
layers [9, 10]. The power spectrum of the radiation, as a
measured quantity, gives valuable information for the plasma location,
composition and dynamic behavior. In the laboratory, the accurate
estimation of the electron-cyclotron radiation, beyond the conventional
modeling based on black-body emission, is important for the
assessment of the synchrotron radiation losses in accelerators [11] and
thermonuclear devices [12, 13]. Regarding the latter, the gross of the
radiated energy and the amount of its reabsorption by the ambient
plasma [14] determine the global efficiency of the projected electrical
power production.

The presence of an electromagnetic wave, as an additional force on
the magnetized electrons, has been proved to enhance the acceleration
when a resonance exists between the relativistic cyclotron motion
and the Doppler-shifted wave frequency [15–17]. In the specific
system, acceleration comes as a result of the overlapping of wave-
particle resonances of different order in phase space, and therefore
is of chaotic nature, contrary to the coherent acceleration achieved in
inhomogeneous plasmas by adjusting the electron-cyclotron resonance
layer [18]. Regarding the electron radiation, apart from the magnetic
field also the circular polarization of the electromagnetic wave drives
the electrons to fast rotating motions, therefore the emitted radiation
is dominantly cyclotron. The frequencies of the emitted radiation are
the same in which the electrons absorb electromagnetic waves due to
the cyclotron resonance effect.

In this paper, the cyclotron radiation emitted during the nonlinear
interaction of relativistic electrons with a uniform magnetic field
and a plane electromagnetic wave is analyzed in both time and
frequency domain. In time-domain, the study is the computation of
the instantaneous power of emitted radiation, which is proportional
to the acceleration and therefore its evolution is determined by the
Lorentz force acting on the particle. In the frequency domain, one
investigates the form of the radiation spectrum in comparison with the
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motion in the absence of external forcing, for electrons in all velocity
ranges. With respect to the above, an important issue is the self-
consistent computation of the electron motion, taking into account
the deceleration due to the radiation losses by including the higher-
order radiation reaction term in the equations of motion. Here we
do not deal with this issue, adopting the usual assumption that the
amount of radiation emitted by each electron is reabsorbed by the
other plasma electrons. The analysis is performed for many values of
the wave amplitude, near and far from the threshold of nonlinear chaos,
so that a clear picture is obtained for the alteration of the radiation
towards the dynamic transition from order to chaos.

The structure of the paper is as follows: In Section 2 the
Hamiltonian theory for the nonlinear interaction of relativistic
electrons with a plane electromagnetic wave in a magnetic field is
shortly reproduced, and in Section 3 the computation of the electron-
cyclotron radiated power in time and frequency domain is presented.
Then, in Section 4 the numerical results are shown, and finally in
Section 5 the results are summarized, the limitations of our model are
discussed and the issues prominent for future work are highlighted.

2. FORMULATION OF THE ELECTRON MOTION

The physics problem under study is the nonlinear interaction of
relativistic electrons with a monochromatic plane electromagnetic
wave, with frequency ω0 and wave-number k̄, propagating in the
(x, z) plane at an angle ϑ with respect to a uniform magnetic field
B̄0 = B0ẑ [17, 19]. The wave is considered as right-handed circularly
polarized, whereas the background plasma is assumed to be cold. In
this framework, the wave dispersion relation reads [18]

tan2 ϑ = − P(N2 − C)(N2 −A)
(N2 − P)(SN2 − CA)

. (1)

In Eq. (1), N̄ = ck̄/ω0 is the refraction index, which is decomposed
to the Cartesian components Nx = N cosϑ and Nz = N sinϑ in the
direction perpendicular and parallel to the magnetic field, and P, C,
A, S are the Stix parameters for cold plasma dispersion.

The combined effect of the wave and the plasma magnetic field on
the electron is expressed via the vector potential Ā [19]

Ā = A0(cos ϑ sinϕx̂ + cosϕŷ − sinϑ sinϕẑ) + xB0ŷ, (2)
where A0 = E0/ω0 is the vector potential amplitude (E0 the amplitude
of the wave electric field), and ϕ is the wave phase, equal to

ϕ = k̄ · r̄ − ω0t = ω0

[
1
c
(Nxx + Nzz)− t

]
. (3)
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The Lagrangian function for the relativistic electron motion, expressed
in Cartesian coordinates (r̄ = xx̂ + yŷ + zẑ), is [20]

L = −mec
2

(
1− ẋ2 + ẏ2 + ż2

c2

)1/2

− qe(ẋAx + ẏAy + żAz). (4)

Using Eq. (4), the calculation of the canonical momenta πi (the
canonical coordinates are ξi = x, y, z) is straightforward

πi =
∂L

∂ξ̇i

= meξ̇i

(
1− ẋ2 + ẏ2 + ż2

c2

)−1/2

− qeAi. (5)

Putting Eqs. (4), (5) into the Liouville transformation relation of
the Lagrangian function, H = π̄ · ˙̄ξ−L, yields the Hamiltonian function
H of the system. By normalizing the Hamiltonian with mec

2 and the
time t with ω−1

c , and also using (2) to obtain the vector potential
components, the following expression for H is derived

H=
[
1+(πx+A0cosϑsinϕ)2+(πy+x+A0cosϕ)2+(πz−A0sinϑsinϕ)2

]1/2
. (6)

In (6), for the sake of simplicity, we use the same notations for the
physical and the normalized quantities. Therefore, the normalized
coordinates x, y and z are actually c−1ωcx, c−1ωcy and c−1ωcz, the
normalized momenta πx, πy and πz are similarly (mec)−1πx, (mec)−1πy

and (mec)−1πz and the normalized vector potential amplitude A0 is
m−1

e qeA0. In this context, normalizing also the wave frequency ω0

with ωc, the dimensionless phase ϕ is written as

ϕ = ω0 (Nxx + Nzz − t) . (7)

Notice here that, since the Hamiltonian does not depend explicitly on
the coordinate y, the canonical momentum πy is a constant of motion.

The Hamiltonian function of Eq. (6) is time-dependent because
the wave phase, as one can easily detect from (7), is an explicit
function of time. Non-autonomous dynamical systems are known to
be rigorous in analyzing (see, e.g., [20]), and for that reason it is
preferable to eliminate the presence of time by the means of a canonical
transformation. The corresponding generating function is

F = x′πx + y′πy +
(

z′ − t

Nz

)
πz, (8)

where, for simplicity reasons, the old canonical variables and
Hamiltonian are denoted as primed and the new ones as unprimed.
The canonical variables and the Hamiltonian function may be found
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from the transformation relations defined by the generating function

π′x =
∂F
∂x′

= πx,

x =
∂F
∂πx

= x′,

π′y =
∂F
∂y′

= πy,

y =
∂F
∂πy

= y′,

π′z =
∂F
∂z′

= πz,

z =
∂F
∂πz

= z′ − t

Nz
,

H = H ′ +
∂F
∂t

= γ − πz

Nz
.

(9)

In the above relations, γ is the relativistic Lorentz factor (and also the
normalized energy of the electron), given by γ = H ′, with H ′ as given
in (6), and ϕ the new (time-independent) wave phase as given in (7)
with the omission of the term −t.

The above formulation provides us with the equations of the
electron motion, which determine the dynamics of the system. The
exact equations can be easily derived from the Hamiltonian function,
and are written in normalized form as follows

dx

dt
=

∂H

∂πx
=

πx

γ
+

A0 cosϑ sinϕ

γ
,

dy

dt
=

∂H

∂πy
=

πy

γ
+

x

γ
+

A0 cosϕ

γ
,

dz

dt
=

∂H

∂πz
=

πz

γ
− A0 sinϑ sinϕ

γ
− 1

Nz
,

dπx

dt
= −∂H

∂x
= ω0A0Nx

µ

γ
− πy

γ
− x

γ
− A0 cosϕ

γ
,

dπy

dt
= −∂H

∂y
= 0,

dπz

dt
= −∂H

∂z
= ω0A0Nz

µ

γ
,

(10)

in which the kinematic quantity µ is equal to µ = (πy + x) sin ϕ +
πz sinϑ cosϕ− πx cosϑ cosϕ.
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Some of the aspects of the electron dynamics that are stimulating
for the form of the cyclotron radiation are highlighted, on the basis of
the numerical solution of Eq. (10). The system parameters are relevant
to wave heating experiments of the night-time ionosphere at an altitude
130 km: The magnetic field is B0 = 3.5 · 10−5 T, giving a cyclotron
frequency ωc = 1.96π MHz, and the plasma density is ne = 102 cm−3,
so the plasma frequency is ωp = 0.564MHz. The wave frequency is
ω0 = 6π MHz, and the propagation angle is ϑ = 40◦. Many values of
the wave amplitude were used, for a normalized value A0 corresponds
to total power flux S = 30ω2

0A
2
0 (Wcm−2). The equations of motion

are integrated using a 4th-order Runge-Kutta scheme with constant
step ∆T = 0.01, the accuracy of which was checked by the calculation
error of the constant H = 1.5 (found to be of the order 10−9).

In this system, chaotic motions appear if A0 is larger than a critical
value A0c which depends on the other parameters (wave frequency and
propagation angle). A local estimate of A0c is found from the fact that
only for A0 > A0c is acceleration possible, as seen in Fig. 1(a) where
the mean energy of an ensemble of 10000 electrons with initial energy
γ0 = 2.5 (1.279 MeV) at t = 3000 (0.48ms) is plotted as a function of
A0. The energy remains almost constant for small A0, until a sudden
increase appears near A0c = 0.02 (a value Sc = 0.197Wcm−2 for the
power flux). The onset of chaos is similar with respect to the angle
of propagation: For fixed values of the other parameters, there is a
critical angle value over which chaos appears [17].

The interaction of electrons with a single wave is a system of two
degrees of freedom, so the dynamics can be visualized using Poincarè
surfaces of section. The intrinsic complexity of the phase space is
pictured in Fig. 1(b), where the surface of section (x, πx) is shown for
A0 = 0.1. This picture is built by following 50 electron orbits until
t = 3000, and the section points are taken stroboscopically every time
ω0Nzz is a multiple of 2π with the same direction of crossing (ż < 0).
The appearance of islands in the surface of section, which correspond
to phase-space trajectories of quasiperiodic orbits, occurs due to the
matching of the wave phase with the electron rotation at certain regions
of the phase space (for more details refer to [15, 17]). Electrons that
move in the vicinity of such regions are not accelerated significantly by
the wave, and could be characterized as “trapped” with respect to the
energetic electron population appearing in the chaotic regions.

The distribution of the particle energies is important since the
probability density function can be found as the solution of the Fokker-
Planck equation [17], depending on the dynamical characteristics of the
motion. In Fig. 1(c), the energy distribution function of an ensemble
of 10000 particles with initial energy γ0 = 2.5 is given for A0 = 0.1
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Figure 1. Visualizing the system dynamics for the parameters set
above. (a) Mean energy vs wave amplitude. (b) Poincarè surface of
section. (c) Energy distribution function. (d) Mean velocity vs time.

after t = 5000. The evolution of the system is clearly associated with
energy gain from the acceleration of the electrons. This behavior is
also seen in Fig. 1(d), where the normalized mean particle velocity is
shown as a function of time for the same parameters.

3. THEORY OF CYCLOTRON RADIATION

An electron that rotates around the dynamic lines of a magnetic
field emits electromagnetic radiation at the frequency of its rotation,
hence referred to as cyclotron radiation [2], which emanates from the
centripetal acceleration induced by the Lorentz force. The power of the
cyclotron radiation emitted by the electron at a certain time instant is
given by the Lienard formula [1, 2], which gives a valid description for
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both classical and relativistic electron velocities

PR =
q2
e

6πε0c3
γ6

[
c2a2 − |v̄ × ā|2

]
. (11)

In the Lienard formula, PR stands for the radiated power and v̄,
ā = dv̄/dt the velocity and acceleration vectors at the specific time
instant. By normalizing PR with c−1ε0q

2
eωc, v̄ with c and ā with cωc,

with the remaining quantities normalized in the same manner as in the
previous section, one obtains the dimensionless version of Eq. (11). In
the Cartesian coordinate system, this reads

PR =
γ6

6

[
a2

x+a2
y+a2

z−(vyaz−vzay)2−(vzax−vxaz)2−(vxay−vyax)
2
]
. (12)

Regarding the computation of PR using Eq. (12), there is a point
that should be noticed concerning the calculation of the velocity in
terms of the conjugate variables: The canonical transformation (8),
which was applied for the elimination of time from the Hamiltonian
function, is not compatible with the Lorentz transformation structure.
As a consequence, vx, vy, vz should be calculated using the
untransformed coordinate values. The latter issue does not prevent the
expression of the velocities via the transformed coordinates, however
this should be formulated consistently. In this spirit, by differentiating
Eq. (9) over time one obtains the (normalized) velocity components in
terms of x, y, z as follows

vx = ẋ,

vy = ẏ,

vz = ż +
1

Nz
.

(13)

The normalized acceleration components ax, ay, az are found by
taking the derivative over time of the physics relation p̄ = meγv̄, which
delivers the relativistic mechanical momentum vector, and normalizing
the momenta again by mec

dp̄

dt
=

d(γv̄)
dt

= γā + γ3(v̄ · ā)v̄. (14)

The Cartesian components of the time-derivative of the relativistic
momentum can be written in terms of the canonical coordinates and
their derivatives, following a differentiation of Eq. (5) over time and
using also (2) for the vector potential components and the relevant
relation for the wave phase

ṗx = π̇x + ω0A0 (Nxẋ + Nz ż) cos ϑ cos [ω0 (Nxx + Nzz)] ,
ṗy = π̇y + ẋ− ω0A0 (Nxẋ + Nz ż) sin [ω0 (Nxx + Nzz)] ,
ṗz = π̇z − ω0A0 (Nxẋ + Nz ż) sinϑ cos [ω0 (Nxx + Nzz)] .

(15)
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Having computed ˙̄p, the analysis of the vector Eq. (14) to
Cartesian components provides us with three relations which, if
reordered with respect to ax, ay, az, take the form of a linear
set of algebraic equations with unknown quantities the acceleration
components. The solution of this set is straightforward

ax =
(1 + γ2v2

y + γ2v2
z)ṗx − γ2vxvyṗy − γ2vxvz ṗz

γ(1 + γ2v2)
,

ay =
−γ2vxvyṗx + (1 + γ2v2

x + γ2v2
z)ṗy − γ2vyvz ṗz

γ(1 + γ2v2)
,

az =
−γ2vxvz ṗx − γ2vyvz ṗy + (1 + γ2v2

x + γ2v2
y)ṗz

γ(1 + γ2v2)
.

(16)

Based on Eqs. (12), (13), and (16) including (15), together with
the solution of the equations of motion coming from Eq. (10), the
computation of the radiated power in time domain is achieved.

The frequency spectrum of the emitted radiation constitutes a
powerful diagnostic for the identification of the plasma region under
observation, providing, among others, the spatial extent, the ionization
degree and the energetics of the system [1]. The obvious way to
compute the radiated power in frequency domain is to apply a Fourier
transform directly on the Lienard formula. However, since what is
measured in practice is the radiated energy in a defined frequency
band ∆ω over a specific solid angle ∆Ω around the observation point,
the calculation is formally performed by finding the emitted energy per
unit solid angle per unit frequency and integrating over all angles.

The emitted power per unit solid angle is a quantity that depends
on the location of the observation point. For an electron radiating
due to cyclotron motion and being observed from a distant point with
respect to its trajectory spiral, the observation unit vector can be
considered as independent of the orbit details, and therefore constant
in time. In this framework, the emitted power per unit solid angle by
a single electron, at past and future time instants, is given by [1, 2]

dPF
R

dΩ
=

q2
eω

2

16π3ε0c

∣∣∣∣
∫ +∞

−∞
r̂′ × r̂′ × v̄

c
exp

[
iω

(
t− r̂′ · r̄

c

)]
dt

∣∣∣∣
2

, (17)

where PF
R is the power of the cyclotron radiation in frequency domain,

actually the Fourier transform of PR, ω is the radiation frequency and
r̂′ is the unit vector in the direction of the observation point

r̂′ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ, (18)

with θ, φ the latitude and azimuth observation angle (see Fig. 2).
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Figure 2. Pictures from the theory of cyclotron radiation. (a) Proper
coordinate system for the computation of the power spectrum.
(b) Transition of the form of the spectrum from discrete to continuous
(synchrotron) with the velocity increase.

Starting from Eq. (17), normalization of the solid angle Ω with
4π and of all the other quantities similarly to the previous derivations
leads to a dimensionless relation for the radiated power

dPF
R

dΩ
=

ω2

4π2

∣∣∣∣
∫ +∞

−∞
r̂′ × r̂′ × v̄ exp

[
iω

(
t− r̂′ · r̄)] dt

∣∣∣∣
2

. (19)

In Eq. (19), the exponent t−r̂′·r̄ represents the principle of determinism
in the fact that the radiation requires an amount of time to cover the
distance between the electron and the observer, since it propagates
with a finite velocity (at maximum equal to c). The complex integral
of (19), symbolized with Ī from this point on, is actually the factor
forming the details of the frequency spectrum of the emitted radiation.
Ī is a vector that has real and imaginary parts, which are given by

<(Ī) + i=(Ī) =
∫ +∞

−∞

(V r̂′ − v̄
)
exp [ω (t−R)] dt. (20)

In the process of obtaining Eq. (20) from (19), the vector identity
r̂′× r̂′× v̄ = (r̂′ · v̄)r̂′− v̄ was used, and the projections of the electron
position and velocity vectors onto the direction of observation were
introduced as R = r̂′ · r̄ and V = dR/dt = r̂′ · v̄. The parameters R, V
are expressed in the Cartesian system as

R = x sin θ cosφ + y sin θ sinφ + z cos θ,

V = vx sin θ cosφ + vy sin θ sinφ + vz cos θ.
(21)



Progress In Electromagnetics Research B, Vol. 52, 2013 127

Inserting Eqs. (18) and (21) into Eq. (20) leads to a form of
the six components of Ī that depends only on kinematic variables.
This implies that the numerical computation of Ī may be performed
with Riemann summation of the involved quantities along the electron
orbits. A much faster method to evaluate the integrals is by using a
fast (discrete) Fourier transform [21], which is partially allowed by the
form of the integrated function. In order to conform with the method,
the exponent must be strictly of the form ωt, so the part −ωR must
vanish. This is achieved by a change in the integration variable t
according to the transformation

t′ = t−R,

dt′ = (1− V)dt.
(22)

The choice of the symbol t′ for the new integration variable has been
based on its physics meaning as the system time measured by the
observer. In terms of t′, the integral Ī takes the Fourier form and its
numerical evaluation is easy. The real part of the integral is

<(Ix) =
∫ +∞

−∞

V sin θ cosφ− vx

1− V

∣∣∣∣
t=t′+R

cosωt′dt′,

<(Iy) =
∫ +∞

−∞

V sin θ sinφ− vy

1− V

∣∣∣∣
t=t′+R

cosωt′dt′,

<(Iz) =
∫ +∞

−∞

V cos θ − vz

1− V

∣∣∣∣
t=t′+R

cosωt′dt′,

(23)

and for the imaginary part what changes is the term sinωt′ instead of
cosωt′. In Eq. (23), the values of the integrand are calculated at the
time instant t that corresponds, through (22), to the desired t′ value.

For the motion of a magnetized electron in the presence of an
electromagnetic wave, the spectrum of the emitted radiation has a
lot of similarities with the spectrum of the pure cyclotron motion,
since the rotational part is more energetic than the motion along the
magnetic field. The dependence of the spectrum on the electron energy
is visualized in Fig. 2(b). For small electron energy (β = v/c ¿ 1),
the electric field of the radiation oscillates with frequency equal to the
cyclotron frequency, therefore the spectrum consists of only one line
at ω = ωc. As v increases, contributions from the higher harmonics
start to appear, and for velocities near c the lines are so close that the
spectrum is practically continuous. This behavior is owed to the fact
that, within the relativistic theory, a rotating electron emits radiation
at all frequency harmonics nωc/γ with amplitude proportional to
βn [1]. This means that as the electron velocity increases, the spectral
lines at higher frequency appear more enhanced.
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Another typical characteristic of the emission received at an
observation point is the Doppler shift of the spectral lines [1, 2]. This
happens because the period of oscillations in the wave frame is different
than the one in the observer frame due to the relativistic time dilation.
This frequency shift is demonstrated if Eq. (20) is expressed in terms
of the Fourier transform of the integrand function

Ī =
∫ ∞

−∞

{
FT

(V r̂′ − v̄
) ∫ ∞

−∞
exp

[
it

(
ω − ωṘ − ω′

)]
dt

}
dω′, (24)

which, by using the exponential representation of the δ-function, yields

Ī =
∫ ∞

−∞
FT

(V r̂′ − v̄
)
δ
[
ω′ − ω (1− V)

]
dω′. (25)

(25) implies that the position of the spectral lines is determined by
the delta function inside the integral, which allows for nonzero values
of Ī only for frequencies ω∗ = ω(1 − V). The latter verifies that the
spectrum lines are upshifted from the expected ones by a factor ωV.

In applying the above formulation as a numerical computation
scheme, one should consider few practical issues. First, the infinite-
limit integrals emanating from Ī are calculated over a finite-time
interval starting from t = 0, however this is typically handled by
the fast Fourier transform algorithm. Second, the change of the
integration variable (22), when computing the power density in (19)
from a time sample, creates an unequally-spaced t′-sample, since it is
∆t′ ≈ (1− V)∆t. This inconsistency is resolved with the creation of a
new, equally-spaced sample by laying a grid of equally-spaced values
of t′ and interpolate the integrand values onto that grid before the use
of the discrete Fourier transform method.

4. NUMERICAL RESULTS

In this section, numerical results from the computation of the cyclotron
radiation by magnetized electrons interacting with an (external)
electromagnetic wave are shown. The numerical scheme used, which
has been presented in the previous sections, consists of the orbit
data computation from the Hamiltonian model in Eq. (10), and,
based on this data, the calculation of the instantaneous radiation
power from Eq. (12) and the determination of the power spectrum
from (19). The study begins by analyzing the time evolution of the
instantaneous power from one particle, followed by a more general view,
independent of the initial conditions. in terms of the mean power over a
monoenergetic electron ensemble. Afterwards, the study moves to the
frequency domain by considering the power spectrum of the radiation
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emitted during the electron motion at different observation directions.
The above are repeated for many values of the wave amplitude, over
and under the threshold to chaos, in order to examine the radiation
behavior during the transition from ordered to chaotic motion.

The electron orbit data has been computed for the values of ω0,
B0, ne, ϑ and H already mentioned in Section 2. The amplitude A0,
dynamically viewed as a perturbation strength, has been assigned in
the range [0, 0.5]. The canonical equations were integrated for electrons
of the same initial energy γ0 (or velocity β0) and the following initial
conditions: x0 chosen randomly within the energetic-permissible region
of the (x, πx) phase subspace, using a Parks-Miller random number
generator [21], y0, z0 set equal to zero, πx0 found from (6) for the
corresponding values of A0 and x0, the constant of motion πy0 set 0.03
and πz0 calculated from (9). It should be stated that the quantities
by which we normalize the electron kinetic energy and the radiated
energy are very different, with the first being of order ∼ 1020 greater
(this should be considered in case comparisons are attempted).

The time signal of the radiation from a single particle, as
calculated from the Lienard formula using numerical values for the
velocity and acceleration, is shown in Fig. 3 for different values of the
wave amplitude. For A0 < A0c (see Section 2 for the definition of A0c),
the problem is much close to a cyclotron motion around the magnetic
lines, in which case PR is nearly constant over time. This is reproduced
in Fig. 3(a), where PR vs t is plotted for A0 = 0.02. A quick description
can be given in terms of the Lienard formula, which is simplified to

PR =
γ6a2

6
(
1− v2 sin2 χ

)
, (26)

with χ the angle between v̄ and ā. The power oscillates throughout the
orbit, depending on the velocity, acceleration and the orbit curvature,
quantities all constant in cyclotron motion. For A0 > A0c, PR begins
to vary slightly because the electron motion starts to diverge from
simple gyration as the threshold to chaos is crossed, and this is seen
in Fig. 3(b). In Section 2 it was shown that, for the specific values of
the system parameters, the perturbation threshold for the initiation of
stochastic acceleration is A0c ∼ 0.02. Therefore, and since PR ∝ a2, the
radiated power follows a behavior similar to that of the acceleration.

As A0 increases, the radiated power fluctuates more intensively,
remaining though confined in a range that gradually expands with A0.
It is obvious that the larger A0 becomes, the larger should be the power
during the orbit. This is shown in Fig. 3(c), where PR is plotted vs t
for A0 = 0.1. After sufficient time (over 1500), the radiation starts to
increase irregularly and presents variations larger than before, and this
behavior intensifies for larger A0. The explanation lies in the fact that
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Figure 3. Time signal of the instantaneous power emission by one
electron for four different values of the wave amplitude. (a) A0 = 0.02.
(b) A0 = 0.05. (c) A0 = 0.1. (d) A0 = 0.5.

for A0 À A0c the wave-electron interaction becomes much stronger,
resulting to a significant augmentation in electron acceleration. In
addition, the fluctuations of the power tend to occur at an increasingly
organized fashion, becoming isolated at distinguishable time intervals.
For large amplitude, like A0 = 0.5 in Fig. 3(d), one could actually say
that the main volume of radiation is emitted at certain time fractions,
with small pauses during which the radiation power remains constant
at a relatively small value. In an effort to connect all these facts
with the electron orbit, one could say that the power of each pulse
is characteristic of the wave-electron interaction intensity.

The above provide the main aspects of the emitted power from
a single electron in time domain. The choice of initial conditions
may give rise to different results, but should not affect the qualitative
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Figure 4. Time signal of the instantaneous power emission by one
electron for A0 = 0.2 and two different sets of initial conditions.

properties. This is verified in Fig. 4, where a comparison is made
between two initial condition sets, randomly different in πx0, for
A0 = 0.2. The form of the two signals is very similar, apart
from the periodicity of the power variation and the total emission.
Such differences emanate from the inhomogeneity of the phase space
with respect to the electron dynamics, which distinguish the orbits
in trapped and unbounded depending on the initial conditions.
Consequently, for making more general considerations on the emitted
radiation, independent of the particle orbit details, the transition to
an average of the above results over the phase space is obligatory.

In this spirit, the mean value of the instantaneous power over an
ensemble of 1000 electrons with γ0 = 2.5 is evaluated. The use of 〈PR〉
annihilates the differences arising from the inhomogeneity of the phase
space, for it is the average over many electrons with random initial
conditions. In Fig. 5 we show the result for three different values of
A0, near and over the threshold A0c. Similarly to the considerations
made above for one particle, for small values of A0 the power starts
fluctuating around its constant value, and as A0 overcomes A0c chaotic
motions start to form a majority in phase space and PR increases with
time. This becomes more evident from Fig. 5(b) for A0 = 0.5. The
fluctuations in the results owe their presence to the finite number of test
particles used (a larger ensemble would yield a more confined curve).

Going now to the frequency domain, the form of the angular
power spectrum of the cyclotron radiation from a magnetized electron
interacting with a radio-frequency wave is given in Fig. 6, in two



132 Tsironis

(a) (b)
t

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

<
P

R
>

t

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000

 0 = 0.02

0 = 0.05

 0 = 0.5

A

A

A

<
P R

>

Figure 5. Average power emission vs time of 1000 electrons with the
same initial energy for three different values of the wave amplitude.

0

F R
dP

  /d
Ω

θ=70

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.5  1  1.5  2
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  1  2  3  4  5
γ ω *

φ=50o

o

(a) (b)

 θ=50

φ=70o

o

F R
dP

  /d
Ω

0γ ω *

Figure 6. Angular power spectrum of the cyclotron radiation from an
electron of initial velocity β0 = 0.4 interacting with a radio-frequency
wave of amplitude A0 = 0.05, at two different observation directions
(a) θ = 70◦, φ = 50◦ and (b) θ = 50◦, φ = 70◦.

different observation directions: (a) θ = 70◦, φ = 50◦, and (b) θ =
50◦, φ = 70◦. For the specific computation, the wave amplitude is
A0 = 0.05, the electron initial velocity is β0 = 0.4 and the rest of the
parameters and initial conditions are specified in the way mentioned
already in the beginning of this section. Notice that, for convenience,
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the spectrum is expressed in terms of the canonical frequencies ω∗
instead of the Doppler-shifted ones. In both cases, the spectrum
appears similar to the typical picture of the cyclotron radiation for this
velocity. However, a comparison of the two cases shows that the spectra
are much different: In the first direction only the fundamental mode is
observed, whereas along the second one significant contributions from
higher harmonics are seen. This effect implies that the angular power
spectrum has a sensitive dependence on the observation direction.

In this sense, to use the angular power spectrum for the accurate
estimation of the electron emission is not completely justified and may
be misleading. One should then resort to the standard implementation
of the power spectrum, which, in the frequency domain, is to express
the emitted energy per unit frequency as a function of the frequency.
From this scope, the power spectrum may be computed by integrating
numerically the angular power density over all directions of observation

PF
R =

∫ 2π

0

∫ π

0

dPF
R

dΩ
sin θdθdφ. (27)

The power spectrum of the cyclotron radiation, integrated over
all angles, is visualized in Fig. 7 for four combinations of A0, β0:
(a) A0 = 0.1, β0 = 0.05, (b) A0 = 0.02, β0 = 0.4, (c) A0 = 0.1,
β0 = 0.4, and (d) A0 = 0.1, β0 = 0.9. As in the previous figure, in all
cases the spectrum has a lot of similarities with the radiation pattern
shown in Fig. 2. In case (a), where the electron is non-relativistic,
the spectrum is discrete and contains only the fundamental harmonic,
whereas in case (c), for the same A0 and the electron being mildly-
relativistic, except from the fundamental there is measurable excitation
also from many of the higher harmonics. Notice that the spectral lines
do not appear at the expected positions nωc/γ, since the frequency axis
ticking is performed approximately, based only on the initial energy of
the electron, and thus not taking into account the energy variation
along the orbit.

In the spectrum of Fig. 7(c), the major difference with the typical
cyclotron form is that the power corresponding to each harmonic does
not follow the scaling βn. This is due to the additional force of the
external wave acting on the plasma, which is altering the rotation of the
electrons with respect to the one induced solely by the magnetic field.
A visualization of this comes with the comparison of cases (b) and (c),
relevant to a small and large value of A0 for a weakly-relativistic
electron. In case (d) the electron is relativistic, the lines are very dense
and the spectrum becomes similar to the form indicative of synchrotron
radiation, with any differences owed again to the external wave.
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Figure 7. Power spectrum of the cyclotron radiation from a
wave-driven magnetized electron for four different cases of the wave
amplitude and the initial electron velocity.

5. CONCLUSION

Radio-frequency electromagnetic waves are the major force behind
electron acceleration in the interplanetary plasma, whereas they are
also used for plasma heating and current drive in thermonuclear fusion.
In their turn, accelerated electrons emit radiation which provides
a diagnostic for the plasma dynamics and generates an additional
braking force known as radiation reaction. The improvement of the
modeling of electron-cyclotron radiation, beyond the current state-of-
the-art which is based on the assumptions of black-body emission and
complete self-absorption by the plasma electrons, is crucial for the
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accurate estimation of the synchrotron losses in applications.
In this paper, the cyclotron radiation by magnetized relativistic

electrons driven by a plane radio-frequency wave has been studied in
time and frequency domain. The particle orbits are calculated by
solving the canonical equations of motion and the radiation in time
and frequency domain is computed based on this data. In time-
domain, the analysis has been done on the total power of emitted
radiation, whereas in the frequency domain the radiation spectrum for
electrons in all velocity ranges has been calculated from the microscopic
orbits, using a novel algorithm on the basis of fast Fourier integral
computation method. Since, in this problem, the orbits are chaotic
after a threshold value for the external wave amplitude (acting as a
dynamic perturbation), the computation has been performed for many
values of the wave amplitude near and beyond that threshold.

The main results are the following: the instantaneous power is
proportional to the acceleration, therefore it depends on the statistical
properties of the Lorentz force. The electrons emit important
quantities of radiation only for amplitudes over the threshold to chaos.
The spectrum resembles to the one of cyclotron radiation: for lower
energy only few harmonics appear, whereas for relativistic energies
the spectrum takes the synchrotron form. The spectrum is computed
very fast in terms of a novel algorithm, based on the fast Fourier
transform, instead of the usual summation on the particle orbits. It is
advisable that the form of the spectrum might be importantly modified
depending on the modification of the energy along the electron orbit.

In order to reckon properly the results of this paper for
the treatment of problems in fusion plasmas, like, e.g., the
assessment of current drive efficiency in high-temperature plasmas
(see, e.g., [22]), some limitations in the currently available model must
be overcome. Primarily, a realistic toroidal magnetic geometry must
be introduced [23]. This has as a consequence the complication of
the mathematical expression for the vector potential amplitude of
the wave, beyond the expression given in Eq. (2), and the need for
reformulation of the Hamiltonian model. An alternative treatment
may be based on Newton’s equation of motion, which is considered in
our current work.

Other important upgrades for our model should be the use of
Maxwellian distribution for the electron initial energy, the inclusion
of bremsstrahlung losses and the self-consistent computation of the
electron motion, taking into account the deceleration due to the energy
losses by radiation. In the equations of motion, the effect of the
radiation should be reflected to a higher-order radiation reaction term
(Abraham-Lorentz-Dirac force). For weakly-relativistic electrons the
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relevant task is straightforward, however at larger energies a mass
renormalization technique is required (details may be found in [6]).
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