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Abstract—In this paper, applications of the discrete Green’s function
(DGF) in the three-dimensional finite-difference time-domain (FDTD)
method are presented. The FDTD method on disjoint domains was
developed employing DGF to couple the FDTD domains as well as
to compute the electromagnetic field outside these domains. Hence,
source and scatterer are simulated in separate domains and updating
of vacuum cells, being of little interest from a user point of view, can
be avoided. In the developed method, the field radiated by an FDTD
domain is computed as a convolution of DGF with equivalent current
sources measured over two displaced Huygens surfaces. Therefore,
the computed electromagnetic field is compatible with the FDTD
grid and can be applied as an incident wave in a coupled total-
field/scattered-field domain. In the developed method, the DGF
waveforms are truncated using the Hann’s window and windowing
parameters assuring accuracy of computations are pointed out. The
error of the field computations varies between −90 dB and −40 dB
depending on the DGF length and excitation waveform. However, if
the DGF length is equal to the number of iterations in a simulation,
the presented DGF-based techniques return the same results as the
direct FDTD method.

1. INTRODUCTION

Recently, the discrete Green’s function (DGF) [1–4] has been proven
to be an efficient tool facilitating the finite-difference time-domain
(FDTD) method [5–11]. DGF is a response of the FDTD grid to the
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Kronecker delta current source. It is directly derived from the FDTD
update equations, thus the FDTD method and its integral discrete
formulation based on DGF can be perfectly coupled [12]. Consequently,
DGF has proven useful for FDTD simulations of antennas with savings
in runtime and memory usage [12–15].

DGF incorporates numerical artifacts inherent in the use of the
discrete computational domain, i.e., numerical dispersion, anisotropy
and limitation of the time-step size due to the stability constraint. The
continuous Green’s function (CGF) does not exhibit these properties,
thus its applicability in the FDTD method is questionable. The
problem of mismatch between directly sampled continuous solutions
of Maxwell’s equations and the FDTD grid is vitally important for
the total-field/scattered-field (TFSF) simulations [5]. For instance,
non-physical reflections approaching 10% of an incident plane wave
were reported when an analytic source was exciting the FDTD
grid [16, 17]. Whereas injection of the plane wave into the FDTD
grid was extensively studied in the literature, the problem of arbitrary
excitation of the TFSF domain was rather marginally investigated.
However, Schneider et al. [18] have already noticed that DGF can be
employed to inject the field into the TFSF domain without any errors.

The field radiated from an FDTD domain can also be computed
using CGF which is inconsistent with the electromagnetic theory on
a grid [19–23]. FDTD simulations on disjoint domains [24, 25] are an
example of application which requires DGF to couple FDTD domains.
It is shown below that the application of CGF in the time-marching
procedure of the FDTD method may lead to noncasual or inaccurate
results.

The objective of this paper is to demonstrate the three-
dimensional (3-D) DGF applications for coupling FDTD domains as
well as for computing the electromagnetic field outside these domains.
To the best of the author’s knowledge, the coupling of FDTD domains
with the use of DGF has only been presented in two dimensions up
to now. In the presented method, the 3-D FDTD domains can be
associated with simulated objects, whilst the interaction between them
is modeled with the use of DGF. Therefore, the number of updated
cells in the computational domain can be reduced and vacuum cells,
being of little interest from a user point of view, can be excluded
from the update procedure. Moreover, DGF allows to decompose an
FDTD domain for execution of computations on distributed-memory
parallel computing architectures. The proposed DGF applications
are examined in several numerical tests showing accuracy of (i) the
field radiated from an FDTD domain to a single observation point,
(ii) unilateral coupling between FDTD domains and (iii) bilateral
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coupling between FDTD domains with half-wavelength dipole antennas
inside.

This paper is organized as follows. The ideas of the FDTD
method on disjoint domains and DGF computations are presented in
Section 2. In Section 3, the drawbacks of the CGF application in the
time-marching procedure of the FDTD method are demonstrated and
discussed. In Section 4, the results of numerical tests are presented.
Finally, the conclusions are given in Section 5.

2. DGF APPLICATIONS IN THE FDTD METHOD

The ideas behind the proposed DGF applications facilitating the
FDTD method are presented in Fig. 1. The radiated field
computations (Fig. 1(a)) are necessary in the FDTD solver on disjoint
domains because a user may occasionally want to inspect time-
domain waveforms of the field outside these domains. Moreover,
the radiated field computations replace the standard near-to-far field
transformation [5] in the FDTD solver on disjoint domains. An extra
advantage here is that the code of the radiated field computations can
easily be extended in order to excite a coupled TFSF domain (see
Fig. 1(b)). Hence, the unilateral coupling between weakly coupled
FDTD domains can be simulated. Currently, commercial FDTD
solvers allow running two-stage simulations with the source of radiation
simulated at the first stage and multiple simulations of the irradiation
at the second stage [26]. Hence, many different objects weakly
coupled with the source of radiation can be simulated with savings
in the runtime and memory usage [27]. The DGF propagator allows
transferring the electromagnetic field to observation points outside
the computational domain from cells in close proximity to the source
of radiation. Therefore, the DGF-based computations of unilateral
coupling between FDTD domains can also be applied to compute an
incident wave for such two-stage FDTD simulations of irradiation.
Extension of this algorithm towards a simulation of strongly coupled
objects results in the FDTD method on disjoint domains [28]. In this
method, the TFSF surfaces of excitations are placed inside the Huygens
boxes and the interaction between domains is bilateral.

In the computational techniques shown in Fig. 1, the source of
radiation (e.g., antenna) and the scatterer are placed in separate
FDTD domains terminated by the perfectly matched layers (PMLs).
Although DGF can also provide a global absorbing boundary condition
(ABC) in the FDTD method, computational efficiency of global ABCs
is very low in comparison to PMLs. The developed techniques are
consistent with the equivalence theorem in the discrete domain [29, 30].
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(b)(a)

Figure 1. Implementations of (a) the radiated field computations for
a single FDTD domain and (b) the FDTD method on disjoint domains
with the unilateral coupling.

Each Huygens box comprises of two surfaces, separated by a half-cell
distance, placed in close proximity to the simulated object. Outer
and inner surfaces of the Huygens box respectively correspond to the
electric and magnetic equivalent current sources (refer to Fig. 1(a)).
In the FDTD method on disjoint domains with bilateral coupling, the
inner surface of the Huygens box is also a part of the TFSF box [28].

The electromagnetic field is computed outside a radiating domain
as a convolution of current sources J, M and dyadic DGF [12]:
[

E|nijk
ηH|nijk

]
=

∑

n′i′j′k′

[
Gee|n−n′

i−i′j−j′k−k′ Geh|n−n′
i−i′j−j′k−k′

Ghe|n−n′
i−i′j−j′k−k′ Ghh|n−n′

i−i′j−j′k−k′

][
ηJeq|n′i′j′k′

Meq|n′i′j′k′

]
(1)

where:

Jeq|nijk = (sxsysz)−1c∆tJ|nijk (2)
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Meq|nijk = (sxsysz)−1c∆tM|nijk (3)

where: sp = c∆t/∆p is the Courant number, c denotes the speed of
light, ∆t is the time-step size, ∆p is the discretization-step size along
the p-direction (p = x, y, z) and n is the time index.

The analytic closed-form expression for the Gee,xz component of
dyadic DGF takes the following form in infinite free space for the cell
(i, j, k) [4]:

Gee,xz|ni+ 1
2
jk

=
n−2∑

m=ni

(
n + m

2m + 2

)
gxz|mijk (4)

where:

gxz|mijk = −(−1)m+i+j+k
∑

α+β+γ=m
α>αxβ>βxγ>γx

(
m

αβγ

)

×
(

2α + 1
α + i + 1

)(
2β

β + j

)(
2γ + 1
γ + k

)
s2α+2
x s2β+1

y s2γ+2
z (5)

where: ni = αx + βx + γx, αx = max(−i − 1, i), βx = |j|, γx =
max(−k, k − 1). Formulas for other components of dyadic DGF are
not presented here for the sake of brevity.

Computation of the electromagnetic field outside the FDTD
domain requires to generate DGF waveforms corresponding to the
equivalent currents measured over the Huygens surfaces. The DGF
generation is a part of preprocessing stage or, alternatively, the
DGF waveforms can be read from a file on a hard drive. However,
size of available memory and runtime still will limit the feasibility
of generation of long DGF waveforms [4, 31–33], as well as at the
preprocessing stage. If the length of the DGF waveforms is equal to the
number of iterations in the FDTD simulation, the presented techniques
return the same results as the direct FDTD method (assuming infinite
numerical precision of computations). Since the number of FDTD
iterations required for the convergence of a simulation is unknown
in advance and the DGF generation and convolution computations
require processor time, DGF has to be truncated with appropriate
windowing function [13]:

WG|nijk = Wn ·G|nijk (6)

Wn =





0, n < ni

1, ni 6 n < n0

wn, n0 6 n < nt

0, nt 6 n

(7)
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Since the DGF values are nonzero only for n > ni, the window
length is defined as ns = nt−ni. The value of ni coefficient corresponds
to the moment of the DGF wavefront arrival in the FDTD grid, refer
to (4). The window function consists of a constant range (Wn = 1) and
a tapering function range (Wn = wn). Such a formula of windowing
modifies only a tail of the DGF waveform. The constant range to total
window length ratio (CTR) for the considered windowing function was
defined as a quotient of the number of samples with Wn = 1 and the
total window size ns:

CTR =
n0 − ni

ns
(8)

Although waves generated on the Huygens box arrive to the
observation point at different moments ni, parameters of the
windowing function (wn,CTR, ns) are the same for all DGFs on the
Huygens box. The Hann’s tapering function was employed in the
developed implementation [34]:

wn = 0.5
[
1 + cos

(
π

n− n0

nt − n0

)]
(9)

The usefulness of the Hann’s window in electromagnetic
computations has already been demonstrated in [35]. Independently,
it was verified that the Hann’s window provides the best performance
of the DGF truncation [36], comparing to other functions which have
already been employed for this purpose in the literature [3, 13].

3. APPLICATION OF CGF INSTEAD OF DGF IN THE
FDTD METHOD

Although it may seem at first glance that CGF can be applied
instead of DGF in the FDTD method, drawbacks of this approach
are demonstrated and discussed here. Only the G̃ee,xz component of
dyadic CGF is considered for the sake of brevity. Its expression in the
infinite free space takes the following form for the cell (i, j, k) and the
continuous time t = n∆t [4]:

G̃ee,xz(t = n∆t)|i+ 1
2
jk =

sin θx cos θx cosφx

4π

η∆x∆y∆z

(c∆t)2

×
{

3U [(n−Rx)∆t]
R3

x∆t
+

3δ[(n−Rx)∆t]
R2

x

+
δ′[(n−Rx)∆t]

Rx
∆t

}
(10)

where U(t) is the unit step function, δ(t) is the Dirac delta function,
(θx, φx) are the azimuthal and polar angles for the spherical coordinates
of the observation point ((i + 1/2)∆x, j∆y, k∆z) with respect to the
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source point (0, 0, 1/2∆z) (in Cartesian coordinates). Rx denotes the
normalized distance:

Rx =

√(
i + 1/2

sx

)2

+
(

j

sy

)2

+
(

k − 1/2
sz

)2

(11)

The waveform (10) is not bandlimited thus sampling based on the
Nyquist theorem cannot be applied in this case [34]. However, the
convolution with the unit step function is equivalent to the integration
that can be represented as an integrator filter in the discrete-time
domain. The convolution with the first-order derivative of the Dirac
delta is equivalent to the differentiation that can be represented as a
differentiator filter in the discrete-time domain. The Dirac delta is
an identity element for the convolution in the continuous-time domain
whereas the Kronecker delta is the identity element for the convolution
in the discrete-time domain. Therefore, the following equivalences hold
between the continuous- and discrete-time domains:

U(t) −→ u|n
δ(t) −→ δ|n (12)

δ′(t) −→ δ′|n
where u|n is the discrete-time integrator implemented as the unit step
in the discrete domain, δ|n the Kronecker delta, and δ′| the discrete-
time differentiator. In the first instance, the differentiator can be
implemented as the first-order backward difference:

δ′|n =
δ|n − δ|n−1

∆t
(13)

In this way, one can obtain the following algorithm of the digital
filtration:

G̃ee,xz|ni+ 1
2
jk

=
sin θx cos θx cosφx

4π

η∆x∆y∆z

(c∆t)2

×
{

3u|n−Rx

R3
x∆t

+
3δ|n−Rx

R2
x

+
δ′|n−Rx

Rx
∆t

}
(14)

Unfortunately, the obtained formula may not be compatible with
the time-marching procedure of the FDTD method because Rx is not
an integer in general. For instance, Rx is equal to 64.3545 for the
cell (10, 20, 30) and sx = sy = sz = 1/

√
3. The exact representation

of the fractional shift α = Rx − bRxc requires execution of the
resampling process. The desired solution can be obtained by first
reconstructing the continuous bandlimited signal and then resampling
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it after shifting [37]:

xα|n = x[(n + α)∆t] =
+∞∑

k=−∞
x|k sinπ(n− k + α)

π(n− k + α)
(15)

Although these computations are equivalent to the linear
filtration, the impulse response of such a filter is not only infinite but
also noncasual for noninteger α. Fig. 2(a) shows implementation (12)–
(14) of CFG for the cell (10, 20, 30). Its filtration (15) with the use
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Figure 2. Time-domain waveforms of (a) G̃ee,xz|n component of
dyadic CGF, (b) α-shifted G̃ee,xz|n component of dyadic CGF and
(c) Gee,xz|n component of dyadic DGF for the cell (10, 20, 30).
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of sinπ(n + α)/(π(n + α)) is shown in Fig. 2(b). As seen, such a
representation of CGF in the discrete domain is noncasual since pulses
arrive to the observation point before the time t = cRx. On the other
hand, although DGF allows superluminal propagation like the FDTD
method [38], the DGF waveform is equal to 0 for n < ni (see Fig. 2(c)).

Any application of fractional delay filters (e.g., based on Lagrange
interpolation [37] or B-splines [39, 40]) will involve approximations or
noncasual solutions. Low-error approximations converge to the formula
of the resampling process (15) which is the only accurate solution in
the discrete domain. However, CGF after the filtration (15) may not
be casual (i.e., equal to 0 for n < ni), thus its applicability in the
FDTD method may lead to physically wrong results. Therefore, DGF
is applied in the developed FDTD method on disjoint domains because
DGF is casual and compatible with the discrete FDTD domain.

4. NUMERICAL RESULTS

The described above DGF-based techniques were implemented in the
developed FDTD solver on disjoint domains. Numerical tests were
executed in double floating-point precision. In the presented results
of investigations, the methods [31–33] were employed for the DGF
generation. The Courant numbers were taken as sx = sy = sz =
0.99/

√
3 . The relative error between vector results generated using

the evaluated technique [E|nijk] and the reference solution [Eref |nijk] was
calculated as:

Error = 20 log10


max

∣∣∣E|nijk −Eref |nijk
∣∣∣

max
∣∣∣Eref |nijk

∣∣∣


 (dB) (16)

Such a formula for error calculation is insensitive to distortions of
a single field component which values are negligible in comparison to
the maximal length of the field vector.

4.1. Radiated Field Computations

Accuracy of the radiated field computations was evaluated in
comparison with the convolution of a current source waveform with
DGF. Such a reference solution is equivalent to the FDTD simulation
in the infinite Yee’s grid, thus reference waveforms are not distorted by
reflections from imperfect PMLs. It was verified that the error of the
radiated field computations is less than −130 dB for the DGF lengths
equal to the total number of time steps in a simulation. It proves that
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the Huygens box, PMLs, DGFs and the convolution computations were
correctly implemented in the software.

Figure 3 shows accuracy of the DGF implementation of the
radiated field computations against the length of windowing function
for varied position of the observation point (i, j, k). Results for the
ramped sinusoid (with frequency corresponding to the wavelength
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Figure 3. Error of the electric field vectors computed using the
windowed DGF propagators vs. window length. (a) and (b) Ramped
harmonic current source excited the center of the Huygens box with the
corresponding wavelength equal to 20∆x. (c) and (d) Differentiated
Gaussian pulse excited the center of the Huygens box with the maximal
frequency in the spectrum corresponding to the wavelength equal to
20∆x. Positions of the observation cell varied in the (a) and (c) axial,
and (b) and (d) diagonal directions from the source.
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λ = 20∆x) and the differentiated Gaussian (with maximal frequency in
the spectrum corresponding to λ = 20∆x) excitations are respectively
presented in Figs. 3(a) and (b) and Figs. 3(c) and (d). The CTR
parameter was set to 0.5 in both cases, the number of samples was set
to 1600 for the source- and the observation-point waveforms. Jz current
source was placed in the center of the cubic Huygens box consisting of
27 cells. As seen in Figs. 3(a) and (c), the computations of the radiated
field require window length longer than minimal value providing an
acceptable error level, e.g., 200 samples for the error below −40 dB
and i = 128 in the axial direction from source. The convolution of the
harmonic excitation lasting 1600 samples with the significantly shorter
windowed DGFs resulted in the error below −60 dB for the diagonal
direction in the grid, refer to Fig. 3(b). The error is slightly larger for
observation points in the axial direction than for the diagonal direction
in the grid. For pulse excitation (refer to Figs. 3(c) and (d)), the error
in the axial direction is increased for small distance from the source
(i = 32). In this case, distortions such as small spurious peaks appear
in computed waveforms for insufficiently long windowed DGFs.

Figure 4 shows accuracy of the DGF implementation of the
radiated field computations vs. CTR value for the excitations as in
Figs. 3(a) and (b) and Figs. 3(c) and (d), respectively. The window
length was set to 400 samples. Other parameters are the same as in
the previous test. As seen, the CTR = 0.5 provides the satisfactory
accuracy of the DGF windowing in a wide range of distances from
the source and excitation waveforms. Therefore, this CTR value is
recommended for windowing of the DGF waveforms. CTR = 1 is
equivalent to the case of the DGF truncation using the rectangular
window. As seen, such a truncation provides the lowest accuracy of
computations.

Figure 5 shows the accuracy of the radiated field computations for
varied volume of the Huygens box around the half-wavelength dipole
antenna. In this test, the direct FDTD simulation was employed
as the reference solution. The DGF window length was set to
ns = 100 samples. The observation point was placed in the diagonal
direction from the source. As seen, the accuracy of the developed
technique (−50 dB) does not change significantly for varied volume of
the Huygens box.

4.2. FDTD Simulations on Disjoint Domains with Unilateral
Coupling

Figure 6 shows the accuracy of computations when the radiated field
excites a coupled TFSF domain (both FDTD domains of size 263 cells,
terminated by 10 PMLs). Jz source was placed in the center of the



490 Stefanski

0 0.2 0.4 0.6 0.8 1
CTR

WG
ee

*J
harm

   - ( i, 0, 0)

E
rr

o
r 

(d
B

)

 

i =192

i = 128

i = 64

  i = 32

 -100

 -80

 -60

 -40

 -20

0

CTR

ee
*J

harm
   - ( i, i, i )

E
rr

o
r 

(d
B

)

 

 

i = 192

i = 128

 i = 64

i = 32

 -80

 -60

 -40

 -20

0

CTR

ee
*J

diffg
   - ( i, 0, 0 )

E
rr

o
r 

(d
B

)

 

i =192

i = 128

i = 64

i = 32

CTR

ee
*Jdiffg

   - ( i, i, i )

E
rr

o
r 

(d
B

)

 

i = 192

i = 128

i = 64

i = 32

 -100

 -80

 -60

 -40

 -20

0

0 0.2 0.4 0.6 0.8 1

WG

 -80

 -60

 -40

 -20

0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

WG WG

(a) (b)

(c) (d)

Figure 4. Error of the electric field vectors computed using the
windowed DGF propagators vs. CTR parameter value. (a) and
(b) Ramped harmonic current source excited the center of the Huygens
box with the corresponding wavelength equal to 20∆x. (c) and
(d) Differentiated Gaussian pulse excited the center of the Huygens
box with the maximal frequency in the spectrum corresponding to the
wavelength equal to 20∆x. Positions of the observation cell varied in
the (a) and (c) axial, and (b) and (d) diagonal directions from the
source.

radiating domain whereas observation point was in the center of the
coupled TFSF domain. The error is between −75 dB and −60 dB for
varying position of the domain with the observation point. It was
noticed that errors are higher for wideband excitations with spectrum
starting from low frequency contents (e.g., differentiated Gaussian
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Figure 6. Error of the electric field vectors in the TFSF domain
excited by the radiated field (computed using windowed DGF
propagators) vs. position of the observation cell from the source.
Ramped sinusoid (λ = 20∆x) and Gaussian modulated (λ/∆x =
20− 40) current sources excited the Huygens box of size 64 cells. The
coupled total-field domain was of size 64 cells as well.

source). Therefore, the modulated Gaussian source, with the frequency
band corresponding to the wavelengths 20∆x and 40∆x, was employed
in this test.
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4.3. FDTD Simulations on Disjoint Domains with Bilateral
Coupling

Two half-wavelength (λ = 20∆x) dipoles were placed inside the
bilaterally coupled FDTD domains, each with the Huygens box of
size 4 × 4 × 15 cells. The modulated Gaussian current source (the
corresponding wavelengths λ/∆x = 16−26.6) excited the transmitting
antenna whereas the electric field was measured by the receiving
antenna in the coupled domain. The relative position of both
domains was varied in the direction (i, i, 0), where i = 8, 16, 32, 64, 128.
Exemplary waveforms, compared with the result of the direct FDTD
simulation, are presented in Fig. 7. As seen, waveforms computed using
both methods overlap. The differences between waveforms obtained
using the FDTD method on disjoint domains and the direct FDTD
method are presented in Fig. 8. As seen, the error of the field measured
by the receiving antenna is around 20 dB higher than measured in the
source. It stems from a relatively weak coupling between the antennas
and stronger influence of the DGF truncation on the coupled domain.
For i > 16, the error measured in the source is almost constant because
the impact of the receiving antenna on the source is relatively low in
this case.
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Figure 7. Exemplary waveforms measured by (a) the transmitting
antenna and (b) the receiving antenna (shift between antennas:
(i, i, 0) = (8, 8, 0), modulated Gaussian excitation (λ/∆x = 16− 26.6),
Hann’s window length ns = 100).
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domains vs. shift between domains (modulated Gaussian excitation
with λ/∆x = 16− 26.6, Hann’s window length ns = 100).

4.4. Summary and Discussion of Numerical Results

The runtime scaling of the DGF convolution computations executed
over M cells at the Huygens box is of order (Mns) for a single
observation point. Therefore, the runtime scaling is of order (M2ns)
for two coupled domains (computational cost of FDTD updates is
neglected). On the other hand, the direct FDTD computations
require updating of all cells in the extended domain including coupled
subdomains and all observation points in the far-field zone. The
runtime scaling of these computations is of order (N3), where N3

denotes the number of cells in a cubic domain. Therefore, efficiency of
the FDTD method on disjoint domains is higher than the direct FDTD
method if small domains are simulated and distance between them is
sufficiently long (M2ns ¿ N3).

The length of DGF waveforms equal to the number of iterations
in an FDTD simulation guarantees that the presented techniques
return the same results as the direct FDTD method (assuming infinite
numerical precision of computations). However, the DGF generation
represents the rate limiting step of the proposed computational
techniques. Although the DGF generation can be significantly
accelerated with the use of parallel processing [31–33], size of available
memory and runtime currently limit the feasibility of generation of long
DGF waveforms. Therefore, in the presented results of computations,
DGF waveforms are truncated to speed up computations and the
windowing technique is applied to increase the accuracy of results.
Currently, the DGF applicability faces the tradeoff between accuracy
and runtime. Therefore, the presented DGF techniques are of limited
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practical use. However, it can be anticipated that the development of
new fast methods of the DGF generation in the future will improve
applicability of these techniques in FDTD simulations.

The developed 3-D FDTD method on disjoint domains holds many
applications for future work. For instance, simultaneous simulations
of a transmitter and a receiver in radio communication systems are
possible with the use of this method. The FDTD method on disjoint
domains is also open for further extensions including multiple-domain
FDTD simulations with many sources and scatterers placed in separate
subdomains. Moreover, DGF allows to decompose the FDTD domain
in order to execute computations on distributed memory parallel
architectures with subdomains updated by different processing units.

5. CONCLUSIONS

The FDTD method on disjoint domains and computations of the
electromagnetic field radiated by the FDTD domain are the DGF
applications examined in this paper. DGF is directly derived
from the FDTD update equations, thus the FDTD method and its
integral discrete formulation based on DGF can be perfectly coupled.
Unfortunately, the DGF generation requires significant processor time.
Therefore, the infinite DGF waveforms are truncated using the Hann’s
window and accuracy of this approximation has been demonstrated.
Currently, the DGF applicability faces the tradeoff between accuracy
and runtime. It can be anticipated that the development of new fast
methods of the DGF generation in the future will improve applicability
of these techniques in FDTD simulations.
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