
Progress In Electromagnetics Research, Vol. 139, 559–575, 2013

A HYBRID COMPUTER-AIDED TUNING METHOD
FOR MICROWAVE FILTERS

Yong Liang Zhang*, Tao Su, Zhi Peng Li,
and Chang Hong Liang

Key Laboratory of Science and Technology on Antennas and
Microwaves, Xidian University, Xi’an, Shaanxi 710071, People’s
Republic of China

Abstract—A hybrid tuning method for microwave filters is presented
in this paper. This novel tuning technique is based on the combination
of the Cauchy method and aggressive space mapping (ASM) technique.
Cauchy method is applied to determine the characteristic polynomials
of the filter’s response, then the parameters (coupling matrix) of the
low-pass prototype is extracted from the characteristic polynomials.
The aggressive space mapping is used to optimized the fine model to
guarantee that each step of a tuning is always in the right direction.
The validity is verified by two examples. One deals with the four-
resonator cross-coupled filter and the other one is an direct coupled
six-resonator filter.

1. INTRODUCTION

Low-cost and High-Q microwave components are key components
of many telecommunication systems, and the design method is a
mature subject [1–12]. The tuning of microwave filters is the
last and important step in filter design procedure and dominates
the performance of filters. Since the traditional tuning process is
nontrivial, time consuming and very expensive, a great deal of efforts
have been made on computer-aided tuning (CAT) on microwave
coupled resonator filters in recent years [13–30].

The main approaches in the literature can be concluded as follows:
1) Rational models match the measured admittance parame-

ters [13, 14]: The concept of a constant phase loading was mentioned
in [13], but it is not showing how to determine the constant. Further-
more, the analytical diagnosis approach presented in the paper only
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deals with the lossless case. In [14], only the sampled data that is
far below or above the center frequency that the phase effect could be
obtained. It is not accurate because of spurious pass-bands and the
frequency-dependent coupling. And the unknown transmission line
needs to be de-embedded in the paper.

2) Analytical models based on the locations of system zeros and
poles [15, 16]: These papers provide a method that associates the
poles and zeros of a filter system with the CM for cascaded and
symmetrically coupled filters. In order to determine the poles and zeros
accurately, the phase derivative with respect to frequency is used.

3) Rational models match the measured S-parameters (Cauchy
method) [17–20]: In [17–19], it is inconvenient because that the tuning
direction and tuning value is not given accurately or suitably. In [20],
the polynomial P , F , and E solved in one step are not suitable for
extracting the correct coupling matrix because the phase shift is not
removed. The phase shift must be removed before the measured S
parameter is used to extract the correct coupling matrix.

4) Another diagnosis techniques are based on optimization, such
as [21–30]. The optimization procedures are either time consuming
(for global optimization) or are sensitive to the initial value and the
number of variables. It is easily tripped into a local optimum. The
process is very complicated.

One of the difficulties associated with the traditional tuning is
that it is not a deterministic process. In other words, there is no
guarantee that each step of a tuning is always in the right direction.
Such predicament is undesirable in tuning a channel filter for space use
as a repeated may wear out the plated silver of tuning screws.

In this paper, in order to rectify the limitation in [17], we present
a hybrid tuning method to predict the tuning direction and tuning
value accurately. This paper is organized as follows. In Section 2, the
basic theory of the hybrid tuning method is discussed in detail. This
section consists two parts. The first part is to convert the frequency
sampled S-parameters, obtained from the simulation or measurement,
into the rational functions given as a ratio of polynomials by using
the Cauchy method. Then the parameters of equivalent circuit are
extracted from the rational functions. In the second part, the position
of the tuning screws are directed by using the ASM technique. Two
examples are demonstrated in Section 3. The first tuning example is a
four-order cross-coupled filter with two finite transmission zeros; and
the second tuning example is a six-pole Chebyshev filter. Both of the
examples show the validity of the technique presented in this paper.
The comparison between the previous work of the author and the
presented method in this work is discussed in Section 4. A conclusion
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is drawn in Section 5.

2. BASIC THEORY

2.1. Cauchy Method for Parameter Extraction (PE)

The Cauchy method is a mature technique for generating rational
polynomial interpolates from measurements (or simulations) of passive
devices. Recently, this method has been employed for generating
rational models of the low-pass frequency domain, starting from the
simulated band-pass response [17–20].

The Cauchy method is well-known in the literature and it will
only briefly be recalled here. In case of a two-port lossless network
in Figure 1 described by its scattering parameters S11 and S21, three
characteristic polynomials F (s), P (s) and E(s) completely define a
rational model in the normalized low-pass domain s

S11(s) = F (s)
E(s) =

n∑
k=0

a1k(s)k

n∑
k=0

bk(s)k
S21(s) = P (s)

E(s) =

nz∑
k=0

a2k(s)k

n∑
k=0

bk(s)k
(1)

where, n is the order of the filter and nz is the number of finite
transmission zeros. Using the matrix notation, (1) can be rewritten
as

[S21Vn −S11Vnz ]
[
a1

a2

]
= 0 (2)

The coefficient is a1 = [a1,0 . . . . . . a1,n]T , a2 = [a2,0 . . . . . . a2,nz]T ,
Sk1 = diag{Sk1(si)}, k = 1, 2. and Vm is a increasing-power mth-
order Vandermonde matrix whose size is Ns × (m + 1). In order to
guarantee the system matrix has solution, Ns must be greater or equal
to n + nz + 1. The coefficients of numerators can be solved with TLS
(total least square) method. Once the polynomials F (s) and P (s) have
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Figure 1. General two-port cross-coupled network.
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been computed, The poles (roots of E(s)) can be computed using the
Feldkeller’s equation

F (s)F ∗(−s) + P (s)P ∗(−s) = E(s)E∗(−s) (3)

The roots of the LHS side of the above equation are in pairs with
opposite real part. Selecting those with negative real part the poles of
the filter are obtained. The coefficients b = [b1 b2 . . . bn ]T (which
define the polynomial E(s)) are finally determined from the poles. So
far, the characteristic polynomials F (s), P (s) and E(s) are obtained,
and they are suitable for the synthesis of a low-pass prototype network
which is shown in Figure 1. That is to say the coupling matrix can
be synthesized through the classical method which is presented by
Cameron [31].

2.2. ASM Technique

The aggressive space mapping (ASM) is a well known method [32].
In the ASM technique, approximations to the matrix of first-order
derivatives are updated by classic Broyden formula.

Here, the coarse model is the equivalent circuit shown in Figure 1,
and the fine model is the physical model. We refer to the coarse model
parameters as xc and the fine model parameters as xf . The optimal
coarse model design is denoted as x∗c . We also denote the responses
of the coarse model as Rc(xc) and that of the fine model as Rf (xf ).
First, we measure the filter when the tuning screw in the two different
position states, then the coarse model parameters is extracted by the
Cauchy method. Second, use the ASM technique to predict the next
better positions of the tuning screws. The goal is to find the best
position of tuning screw pideal

i . The recipe is outlined in the following
steps.

Step 1) Measure the filter twice with different tuning positions xf1,
xf2 to obtain the S-parameters, then obtain two groups equivalent
circuit parameters xc1, xc2 by the Cauchy method. Where, xf =
[p1 p2 . . . pi . . . ] is the vector of tuning positions.

Step 2) Calculate the initial Broyden matrix B0 through the
equation B0 = diag( xc2−xc1

xf2−xf1
). Here, the coarse model parameters and

fine model parameters have different physical meanings, so the initial
Broyden matrix B0 is not the identity matrix.

Step 3) Evaluate the difference f (1) = x
(1)
c −x∗c . Stop if ‖f (1)‖ ≤ ε.

Step 4) Solve B(j)h(j) = −f (j) for the roots h(j). Where h(j) is
the increasing value of the tuning screws.

Step 5) Set x
(j+1)
f = x

(j)
f + h(j).
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Step 6) Measure the response Rf (x(j+1)
f ) when the tuning screws

at the position x
(j+1)
f .

Step 7) Extract x
(j+1)
c such that Rc(x

(j+1)
c ) ≈ Rf (x(j+1)

f ).
Note: The parameter extraction is an important step in the ASM

technique. In this step, we extract the parameter of the coarse model
by Cauchy method, such that Rc(x

(j+1)
c ) ≈ Rf (x(j+1)

f ).

Step 8) Evaluate f (j+1) = x
(j+1)
c − x∗c . Stop if ‖f (j+1)‖ ≤ ε.

Step 9) Update B(j+1) = B(j) + f (j+1)h(j)T

h(j)T h(j)
.

Step 10) Set j = j + 1; go to step 4.
To illustrate the tuning procedure, a four-resonator band-pass

filter with cross coupling between resonator 1–4 and six-resonator
Chebyshev band-pass filter are utilized in Section 3.

3. EXPERIMENT RESULTS

3.1. Four-order Cross-coupled Coaxial Filter

The first example is a fourth order cross-coupled filter. The
specifications of the filter are listed in the following table.

Table 1. Specifications of the four-resonator cross-coupled filter.

Center

frequency

f0

Pass-band
Return

loss

Normalized

finite

transmission

zeros

Filter

degree

2069.3MHz 2015MHz–2125 MHz 20 dB −2j, 2j 4

The N + 2 degree normalized coupling matrix M can be easily
obtained through the method in [27]

M =




0 1.0236 0 0 0 0
1.0236 0 0.8706 0 −0.1705 0

0 0.8706 0 0.7673 0 0
0 0 0.7673 0 0.8706 0
0 −0.1705 0 0.8706 0 1.0236
0 0 0 0 1.0236 0




(4)

The topology of the filter is shown as Figure 2.
Because coupling matrix of the filter is symmetrical, the tuning

screws which are shown in Figure 3 are also symmetrical. The coupling



564 Zhang et al.

Figure 2. The topology of the fourth-order cross-coupled filter.

(a) (b)

Figure 3. The model of the fourth-order cross-coupled filter. (a) Top
view, (b) side view.

(a) (b)

Figure 4. The size of single resonator. (a) Bottom view, (b) side
view.

of the source to the first resonator, the load to the last resonator and
the cross-coupling are not tunable. In order to help the readers to
reproduce the hybrid technique that proposed in this paper, Figure 4
shows the resonating unit of the filter.

The tuning producer is shown as following steps:
Step 1, obtain the optimal coarse model parameters

x∗
c
=[f1 f2 M12 M23 ]=[2.0693 2.0693 0.0468 0.0403 ] (5)
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Step 2, Measure the filter twice with different tuning positions
xf int1, xf int2 to obtain the S-parameters, then obtain two groups
equivalent circuit parameters xcint1, xcint2. The initial position of
tuning screws is

xf int1 = [p1 p2 p3 p4 ] = [10 10 10 10 ] (6)

then use the Cauchy method to obtain the equivalent circuit
parameters

xcint1 =[f1 f2 M12 M23 ] = [2.0723 2.0881 0.0417 0.0434 ] (7)

the second initial position of the tuning screw is decided by comparing
xcint1 and x∗

c
.

if xcint1(i) > x∗c(i), i = 1, 2, xf int2(i) = 1.05 ∗ xf int1(i); else
xf int2(i) = 0.95 ∗ xf int1(i).
if xcint1(i) > 1.5 ∗ x∗c(i), i = 3, 4, xf int2(i) = 0.9 ∗ xf int1(i);
if 1.5∗x∗c(i) > xcint1(i) > x∗c(i), i = 3, 4, xf int2(i) = 0.95∗xf int1(i).
if x∗c(i) > 1.5 ∗ xcint1(i), i = 3, 4, xf int2(i) = 1.1 ∗ xf int1(i);
if 1.5 ∗ xcint1(i) > x∗c(i) > xcint1(i), i = 3, 4, xf int2(i) = 1.05 ∗
xf int1(i);

So the second initial position of the tuning screw is

xf int2 = [p1 p2 p3 p4 ] = [10.5 10.5 10.5 9.5 ] (8)

then obtain the equivalent circuit parameters

xcint2 =[f1 f2 M12 M23 ] = [2.0509 2.0655 0.0429 0.0425 ] (9)

And the corresponding response is shown in Figure 5.
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Figure 5. The initial response of the four-order cross-coupled filter.
(a) Initial one, (b) initial two.
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Step 3, Calculate the initial Broyden matrix B0 through the
equation B0 = diag( xcint2−xcint1

xf int2−xf int1
).

B(0) = diag
(

xcint2−xcint1

xf int2−xf int1

)

= diag(−0.0427 −0.0452 0.0025 0.0018) (10)

Step 4, Start to iterate, Evaluate the difference

f (1) = x(0)
c − x∗c = [−0.0184 −0.0038 −0.0034 0.0017 ]T (11)

here x
(0)
c = xcint2. Stop if ‖f (1)‖ ≤ ε, where, ε is the convergence

precision. Calculate the increased value of the tuning screw

H ite1 = [−0.4309 −0.0834 1.374 −0.9399 ] (12)

And the position of the tuning screw is

xf ite1 = xf int2 + H ite1 = [p1 p2 p3 p4 ]
= [10.0691 10.4166 11.8740 8.5601 ] (13)

Extract the coarse model parameters

xc ite1 =[f1 f2 M12 M23 ]=[2.0668 2.0687 0.0463 0.0398 ] (14)

Update the Broyden matrix B(2) = B(1) + (f (1) ∗ h(1)T
)/(h(1)T ∗ h(1)).

Step 5, the second and third iteration are similar as the first
iteration. In order to reproduce the tuning methodology, the result
of the two iterations are shown in the following

H ite2=[−0.0501 −0.0112 −0.0153 0.4714 ] (15)
xf ite2=xf ite1 + H ite2 = [p1 p2 p3 p4 ]

= [10.0189 10.4054 11.8587 9.0315 ] (16)
xc ite2=[f1 f2 M12 M23 ]=[2.0688 2.0683 0.0463 0.0410 ] (17)
H ite3=[−0.0113 −0.0191 0.0151 −0.066 ] (18)
xf ite3=xf ite2 + H ite3 = [p1 p2 p3 p4 ]

= [10.0077 10.3863 11.8737 8.9655 ] (19)

After three iterations, we obtain the final response which is
required by the specifications. The corresponding responses of the
three iterations are shown in Figure 6.

From Figure 6, we can see that the final measured response agrees
with the ideal response well. It shows the validity of this method in
this paper.
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Figure 6. Response of the four-order cross-coupled filter. (a) Iteration
one, (b) iteration two, (c) iteration three.

Table 2. Specifications of the six-resonator Chebyshev filter.

Center
frequency f0

Pass-band
Return

loss
Filter
degree

2069.3MHz 2015 MHz–2125MHz 20 dB 6

Figure 7. The topology of the six-pole Chebyshev filter.
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(a) (b)

Figure 8. The model of six-pole Chebyshev filter. (a) Top view,
(b) side view.

3.2. Six-pole Chebyshev Filter

In order to shown this method is validity for higher order filters, now
we consider a second example which degree is higher than the previous
one, The specification of the filter is shown in Table 2.

The N + 2 degree normalized coupling matrix M is shown

M =




0 1.0021 0 0 0 0 0 0
1.0021 0 0.8430 0 0 0 0 0

0 0.8430 0 0.6111 0 0 0 0
0 0 0.6111 0 0.5834 0 0 0
0 0 0 0.5834 0 0.6111 0 0
0 0 0 0 0.6111 0 0.8430 0
0 0 0 0 0 0.8430 0 1.0021
0 0 0 0 0 0 1.0021 0




(20)

The topology of the filter is shown as Figure 7.
The filter model is shown as Figure 8. There are six tuning screws

for the filter.
The tuning producer is shown as following steps:
Step 1, obtain the optimal coarse model parameters

x∗c = [f01 f02 f03 M12 M23 M34 ]
= [2.0693 2.0693 2.0693 0.0448 0.0325 0.031 ] (21)

Step 2, Measure the filter twice with different tuning positions
xf int1, xf int2 to obtain the S-parameters, then obtain two groups
equivalent circuit parameters xcint1, xcint2. the initial position of tuning
screws is

xf int1 = [p1 p2 p3 p4 p5 p6 ] = [10 10 10 10 10 10 ] (22)
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then use the Cauchy method to obtain the equivalent circuit
parameters

xcint1 = [f1 f2 f3 M12 M23 M34 ]
= [2.0905 2.0935 2.0891 0.0408 0.0429 0.044 ] (23)

the second initial position of the tuning screw is decided by comparing
xcint1 and x∗

c
.

if xcint1(i) > x∗c(i), i = 1, 2, xf int2(i) = 1.05 ∗ xf int1(i); else
xf int2(i) = 0.95 ∗ xf int1(i).
if xcint1(i) > x∗c(i), i = 3, xf int2(i) = 1.1 ∗xf int1(i); else xf int2(i) =
0.9 ∗ xf int1(i).
if xcint1(i) > 1.5 ∗ x∗c(i), i = 4, xf int2(i) = 0.9 ∗ xf int1(i);
if 1.5 ∗ x∗c(i) > xcint1(i) > x∗c(i), i = 4, xf int2(i) = 0.95 ∗ xf int1(i).
if x∗c(i) > 1.5 ∗ xcint1(i), i = 4, xf int2(i) = 1.1 ∗ xf int1(i);
if 1.5∗xcint1(i) > x∗c(i) > xcint1(i), i = 4, xf int2(i) = 1.05∗xf int1(i);
if xcint1(i) > 1.5 ∗ x∗c(i), i = 5, 6, xf int2(i) = 0.95 ∗ xf int1(i);
if 1.5 ∗ x∗c(i) > xcint1(i) > x∗c(i), i = 5, 6, xf int2(i) = 0.925 ∗
xf int1(i).
if x∗c(i) > 1.5 ∗ xcint1(i), i = 5, 6, xf int2(i) = 1.05 ∗ xf int1(i);
if 1.5 ∗ xcint1(i) > x∗c(i) > xcint1(i), i = 5, 6, xf int2(i) = 1.025 ∗
xf int1(i);

So the second initial position of the tuning screw is

xf int2 =[p1 p2 p3 p4 p5 p6]=[10.5 10.5 11 10.5 9.25 9.25] (24)

then obtain the equivalent circuit parameters

xcint2 = [f1 f2 f3 M12 M23 M34 ]
= [2.0696 2.0707 2.0482 0.0417 0.0398 0.0409 ] (25)

And the corresponding response is shown in Figure 9.
Step 3, Calculate the initial Broyden matrix B0 through the

equation B0 = diag( xcint2−xcint1
xf int2−xf int1

).

B0=diag
(

xcint2 − xcint1

xf int2 − xf int1

)

=diag(−0.0417 −0.0456 −0.0459 0.0018 0.0042 0.0042)(26)

Step 4, Start to iterate, Evaluate the difference

f (1) = x(0)
c −x∗c

= [0.0003 0.0014 −0.0211 −0.0031 0.0073 0.0099 ]T (27)
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here x
(0)
c = xcint2. Stop if

∥∥f (1)
∥∥ ≤ ε, where, ε is the convergence

precision. Calculate the increased value of the tuning screw

Hite1 =[0.0072 0.0313 −0.5156 1.6868 −1.7462 −2.3818 ] (28)

And the position of the tuning screw is

xfite1=xf int2 + H ite1 = [p1 p2 p3 p4 p5 p6 ]
=[10.5072 10.5313 10.4844 12.1868 7.5038 6.8682 ] (29)

Extract the coarse model parameters

xcite1 = [f1 f2 f3 M12 M23 M34 ]
= [2.0665 2.0690 2.0784 0.0462 0.0364 0.0356 ] (30)

Update the Broyden matrix B(2) =B(1)+(f (1)∗h(1)T
)/(h(1)T ∗h(1)).

Step 5, the second, third and fourth iteration are similar as the first
iteration. In order to reproduce the tuning methodology, the results of
the last three iterations are shown in the following

Hite2=[−0.0878 −0.0095 0.2959 −1.0011 −1.2380 −1.4798](31)
xfite2=xf ite1 + H ite2 = [p1 p2 p3 p4 p5 p6 ]

=[10.4193 10.5218 10.7802 11.1856 6.2658 5.3884 ] (32)
xcite2=[f1 f2 f3 M12 M23 M34 ]

=[2.0714 2.0743 2.0723 0.0437 0.0332 0.0319 ] (33)
Hite3=[0.0431 0.1263 0.1390 0.5454 −0.4010 −0.5207 ] (34)
xfite3=xf ite2 + H ite3 = [p1 p2 p3 p4 p5 p6 ]

=[10.4625 10.6481 10.9192 11.7310 5.8648 4.8648 ] (35)
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Figure 9. The initial Response of the six-pole Chebyshev filter.
(a) Initial one, (b) initial two.
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Figure 10. Response of the six-pole Chebyshev filter. (a) Iteration
one, (b) iteration two, (c) iteration three, (d) iteration four.

xcite3=[f1 f2 f3 M12 M23 M34 ]
=[2.0694 2.0688 2.0689 0.0448 0.0331 0.0306 ] (36)

Hite4=[0.0006 −0.0176 −0.0251 −0.0169 0.1394 0.1599 ] (37)
xfite4=xf ite3 + H ite4 = [p1 p2 p3 p4 p5 p6 ]

=[10.4631 10.6305 10.8941 11.7142 6.0042 5.0237 ] (38)

After four iterations, we obtain the final response which is
required by the specifications. The corresponding responses of the
four iterations are shown in Figure 10.

After four iterations, from Figure 10, we can see that the measured
response agree with the required specifications well. It shows the
validity of the new tuning technique.

4. COMPARISON AND DISCUSSION

In order to compare the method proposed in [33, 34] with the method
proposed in this paper, the summary of the results are shown in
Table 3.
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Table 3. Performance comparison between the method in [33, 34] and
in this paper.

Method
Number of
sampled
points

Time
consuming

of each
iteration

Speed complexity

Proposed
in [33, 34]

275
About 6.2
seconds

Slow Yes

Proposed
in this paper

96
About 0.2
seconds

Fast No

In [33], the low degree filters are tuning by the VF-ASM technique.
Literature [34] shows the validity of this method for the higher degree
filters. Although the method in [33, 34] is time consuming, they
suitable for the automated filter tuning. The method proposed in this
paper is fast and easy to reproduce. However, the sampled frequency
points must be near the passband, and must adjust in the iteration
process.

5. CONCLUSION

A novel tuning method based on Cauchy method and ASM technique is
presented in this paper. The Cauchy method is applied to extract the
equivalent circuit model parameters from the measured S-parameters.
And the ASM technique predicts the tuning directions and value of
the tuning screws. The filter can be tuned well through less than four
iterations. Two examples are used to verify this new method, and the
results show the validity of this method.
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