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Palaiseau Cedex, France
4Department of Electrical and Computer Engineering, Microwaves
Laboratory, Democritus University of Thrace, Xanthi, GR-67100,
Greece

Abstract—We study the current distribution and input impedance of
a circular loop antenna in the form of an infinitesimally thin, perfectly
conducting narrow strip coiled into a ring. The antenna is located
on the surface of an axially magnetized plasma column surrounded
by a homogeneous isotropic medium. The current in the antenna
is excited by a time-harmonic voltage creating an electric field with
the azimuthal component in a gap of small angular opening on the
strip surface. The emphasis is placed on the solution of the integral
equations for the azimuthal harmonics of the antenna current in the
case where the magnetoplasma inside the column is nonresonant. The
properties of the kernels of the integral equations are discussed and
the current distribution in the antenna is obtained. It is shown that
the presence of a magnetized plasma column can significantly influence
the electrodynamic characteristics of the antenna compared with the
case where it is located in the surrounding medium or a homogeneous
plasma medium the parameters of which coincide with those inside the
column.
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1. INTRODUCTION

Electrodynamic characteristics of loop antennas in a magnetoplasma
were studied in many works [1–10]. The interest in the subject is
stimulated by wide application of such antennas for performing various
experiments in laboratory and space plasmas [5, 8, 11–16]. In earlier
theoretical papers, loop antennas with given current distribution in a
homogeneous magnetoplasma were considered (see, e.g., [1–3, 5–8] and
references therein). The problem of the current distribution and input
impedance of a loop antenna located in a homogeneous magnetized
plasma was studied in [4] within the framework of the transmission line
theory. Then a rigorous solution to this problem was found in [9, 10]
by using an integral equation method.

Recently, with reference to certain laboratory and space ex-
periments [12, 13, 15], enhanced attention has been paid to the
antenna characteristics in the presence of magnetic-field-aligned plas-
ma structures capable of guiding the excited electromagnetic waves.
However, until the present time, the influence of such plasma structures
on the current distribution and input impedance of a loop antenna has
not been examined within the framework of a rigorous approach.

In this article, using an integral equation method, we solve the
problem of the current distribution and input impedance of a circular
loop antenna located on the surface of an axially magnetized uniform
plasma column. It is assumed that the column is surrounded by
a homogeneous isotropic medium. The main attention is focused
on studying the antenna characteristics in a nonresonant band of
a magnetoplasma, for which the diagonal elements of the plasma
dielectric tensor have identical signs.

Our article is organized as follows. In Section 2, we present the
formulation of the problem and write the basic equations. Section 3
contains the derivation of integral equations for the antenna current.
These equations are solved in Section 4. The power radiated from the
antenna with the found current distribution is discussed in Section 5.
In Section 6, numerical results are reported. Section 7 presents our
conclusions along with suggestions for future work. In Appendix A,
we give expressions for the field coefficients used in the analysis of
the integral equations for the antenna current. Appendix B describes
the contributions of eigenmodes guided by the plasma column to the
antenna-excited field.
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2. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

Consider an antenna in the form of an infinitesimally thin, perfectly
conducting narrow strip of half-width d, which is coiled into a circular
loop of radius a (d ¿ a). The antenna is located coaxially on the
surface of a uniform plasma column surrounded by a homogeneous
isotropic medium and aligned with an external static magnetic field B0

(see Fig. 1), which is parallel to the z axis of a cylindrical coordinate
system (ρ, φ, z). The plasma inside the column is described by the
dielectric tensor

ε = ε0

(
ε −ig 0
ig ε 0
0 0 η

)
, (1)

where ε0 is the permittivity of free space. For a monochromatic
field with a time dependence of exp(iωt), the elements ε, g, and
η of tensor (1) in the case of a two-component cold collisionless
magnetoplasma can be written as [8, 17]

ε =

(
ω2 − ω2

LH

) (
ω2 − ω2

UH

)
(
ω2 − ω2

H

) (
ω2 − Ω2

H

) ,

g =
ω2

pωHω(
ω2 − ω2

H

) (
ω2 − Ω2

H

) , (2)

η = 1− ω2
p

ω2
,

where ΩH , ωH , ωLH, ωp, and ωUH are the ion and electron gyro-
frequencies, the lower hybrid frequency, the electron plasma frequency,
and the upper hybrid frequency, respectively. The homogeneous
isotropic medium surrounding the plasma column has the dielectric
permittivity εout = ε0εa.

a

E
ext

d2

z

B
0

 a2 ∆

Figure 1. Geometry of the problem.
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The antenna is excited by a time-harmonic given voltage which
creates an electric field with a single azimuthal component Eext

φ that
is nonzero for ρ = a and |z| < d in a narrow angular interval (gap)
|φ− φ0| ≤ ∆ ¿ π:

Eext
φ (a, φ, z) =

V0

2a∆
[U(φ− φ0 + ∆)− U(φ− φ0 −∆)]

× [U(z + d)− U(z − d)] . (3)

Here, V0 = const is a constant amplitude of the given voltage supplied
to the gap, ∆ is the angular half-width of the gap centered at φ = φ0,
and U is a Heaviside function. The quantity Eext

φ can be written as

Eext
φ =

∞∑
m=−∞

Am exp(−imφ), (4)

where
Am =

V0

2πa

sin(m∆)
m∆

exp(imφ0). (5)

The density J of the electric current excited on the antenna by
field (3) can be sought in the form

J = φ0I(φ, z)δ(ρ− a), (6)

where |z| < d, δ is a Dirac function, and I(φ, z) is the surface current
density which admits the following representation:

I(φ, z) =
∞∑

m=−∞
Im(z) exp(−imφ). (7)

To find I(φ, z), we express the azimuthal (Eφ) and longitudinal
(Ez) components of the electric field excited by current (6) in terms
of unknown quantities Im(z) and then use the boundary conditions on
the surface of the plasma column (ρ = a and −∞ < z < ∞) along
with the following boundary conditions on the antenna surface (ρ = a
and |z| < d):

Eφ + Eext
φ = 0, (8)
Ez = 0. (9)

The described procedure makes it possible to obtain integral equations
for the quantities Im(z) and thus reduce the problem of the antenna
current distribution to solving the corresponding integral equations.
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3. DERIVATION OF INTEGRAL EQUATIONS FOR THE
ANTENNA CURRENT

To derive integral equations for the antenna current, we should first
obtain expressions for the field components corresponding to the
current density in form (7). To do this, we rewrite the unknown current
density (7) as

I(φ, z) =
∞∑

m=−∞
exp(−imφ)

k0

2π

∫ ∞

−∞
Im(p) exp(−ik0pz)dp, (10)

where k0 = ω/c is the free-space wave number (c is the speed of light
in free space). Then we represent the field excited by this unknown
current in a similar form:

[
E(r)
H(r)

]
=

∞∑
m=−∞

exp(−imφ)
k0

2π

∫ ∞

−∞

[
Em(ρ, p)
Hm(ρ, p)

]
exp(−ik0pz)dp. (11)

Recall that in the case considered, the magnetic field H is related to
the magnetic induction B by H = B/µ0, where µ0 is the magnetic
permeability of free space.

Since the antenna current is zero in the spatial regions ρ < a and
ρ > a, the electric and magnetic fields should satisfy the source-free
Maxwell equations in these regions. It is convenient to express the
radial and azimuthal field components of Em(ρ, p) and Hm(ρ, p) in
terms of the longitudinal components Ez,m(ρ, p) and Hz,m(ρ, p), which
satisfy the following system of equations for ρ < a:

L̂mEz,m − k2
0

η

ε

(
p2 − ε

)
Ez,m = −ik2

0

g

ε
pZ0Hz,m, (12)

L̂mHz,m − k2
0

(
p2 +

g2 − ε2

ε

)
Hz,m = ik2

0

g

ε
ηpZ−1

0 Ez,m, (13)

where

L̂m =
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− m2

ρ2

and Z0 = (µ0/ε0)1/2 is the impedance of free space. For the ambient
region ρ > a, one should put ε = η = εa and g = 0 in Equations (12)
and (13).

The solutions of these equations must be regular on the column
axis (ρ = 0) and satisfy the radiation condition at infinity. At
the column surface ρ = a, the quantities Eφ,m(ρ, p), Ez,m(ρ, p),
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Hφ,m(ρ, p), and Hz,m(ρ, p) should satisfy the boundary conditions

Eφ,m(a− 0, p) = Eφ,m(a + 0, p),
Ez,m(a− 0, p) = Ez,m(a + 0, p),
Hφ,m(a− 0, p) = Hφ,m(a + 0, p),
Hz,m(a− 0, p) = Hz,m(a + 0, p) + Im(p).

(14)

It can be shown upon solution of the field equations that in the
source-free regions, the components of Em(ρ, p) and Hm(ρ, p) are given
by the following expressions:
(a) for ρ < a,

Eρ,m(ρ, p)=−
2∑

k=1

Bmk

[
nkp + g

ε
Jm+1(k0qkρ) + αkm

Jm(k0qkρ)
k0qkρ

]
,

Eφ,m(ρ, p)= i
2∑

k=1

Bmk

[
Jm+1(k0qkρ) + αkm

Jm(k0qkρ)
k0qkρ

]
,

Ez,m(ρ, p)=
i

η

2∑

k=1

BmknkqkJm(k0qkρ),

Hρ,m(ρ, p)=−iZ−1
0

2∑

k=1

Bmk

[
pJm+1(k0qkρ)− nkβkm

Jm(k0qkρ)
k0qkρ

]
,

Hφ,m(ρ, p)=−Z−1
0

2∑

k=1

Bmknk

[
Jm+1(k0qkρ)− βkm

Jm(k0qkρ)
k0qkρ

]
,

Hz,m(ρ, p)=−Z−1
0

2∑

k=1

BmkqkJm(k0qkρ);

(15)

(b) for ρ > a,

Eρ,m(ρ, p)=Cmm
H

(2)
m (k0qρ)
k0qρ

−Dm
p

εa

[
H

(2)
m+1(k0qρ)−m

H
(2)
m (k0qρ)
k0qρ

]
,

Eφ,m(ρ, p)=iCm

[
H

(2)
m+1(k0qρ)−m

H
(2)
m (k0qρ)
k0qρ

]
−iDm

p

εa
m

H
(2)
m (k0qρ)
k0qρ

,

Ez,m(ρ, p)=
i

εa
DmqH(2)

m (k0qρ),

Hρ,m(ρ, p)=−iZ−1
0 Cmp

[
H

(2)
m+1(k0qρ)−m

H
(2)
m (k0qρ)
k0qρ

]
(16)
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+iZ−1
0 Dmm

H
(2)
m (k0qρ)
k0qρ

,

Hφ,m(ρ, p) = Z−1
0 Cmpm

H
(2)
m (k0qρ)
k0qρ

− Z−1
0 Dm

[
H

(2)
m+1(k0qρ)

−m
H

(2)
m (k0qρ)
k0qρ

]
,

Hz,m(ρ, p) = −Z−1
0 CmqH(2)

m (k0qρ).

Here, Jm is a Bessel function of the first kind of order m, H
(l)
m a

Hankel function of the lth kind of order m, and Bmk, Cm, and Dm

are undetermined coefficients (k = 1, 2 and l = 1, 2). Other quantities
in Equations (15) and (16) are given by the expressions

nk =− ε

pg

[
p2 + q2

k(p) +
g2

ε
− ε

]
,

αk =
[
p2 + q2

k(p)− ε
]
g−1 − 1, βk = pn−1

k + 1,

qk(p) =
1√
2

{
ε− g2

ε
+ η −

(η

ε
+ 1

)
p2 −

(η

ε
− 1

)

× (−1)k
[(

p2 − P 2
b

) (
p2 − P 2

c

)]1/2

}1/2

,

Pb,c =
{

ε− (η + ε)
g2

(η − ε)2
+

2χb,c

(η − ε)2

× [
εg2η

(
g2 − (η − ε)2

)]1/2
}1/2

,

χb =− χc = −1,

(17)

and
q(p) = (εa − p2)1/2. (18)

It is evident that the field components (15) are regular on the column
axis. The radiation condition at infinity requires that the branch of
function (18) should be chosen so as to ensure the inequality

Imq(p) < 0. (19)

The coefficients Bmk, Cm, and Dm, which are obtained by
substituting field expressions (15) and (16) into the boundary
conditions (14), are presented in Appendix A. These coefficients
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contain the factor Im(p), which is given by the Fourier integral

Im(p) =
∫ d

−d
Im(z′) exp(ik0pz′)dz′. (20)

Using Equation (20), we first perform integration over p in (11) in order
to obtain the azimuthal and longitudinal components of the electric
field at ρ = a, which will be needed in what follows. It turns out that
for evaluation of the corresponding integrals, it is more convenient to
distort the integration path in the complex p plane so as to enclose all
poles and branch singularities of the integrands and then choose the
quantity q defined by Equation (18) as an integration variable. The
integrands of Equation (11) have the branch points p = ±ε

1/2
a , from

which the corresponding branch cuts go along the lines Im q(p) = 0 in
the complex p plane. In addition, these integrands may have poles at
some points p = ±pm,n, which are the normalized (to k0) propagation
constants of eigenmodes guided by the column. The quantities m and
n are the azimuthal and radial indices of the eigenmodes, respectively
(m = 0, ±1,±2, . . . and n = 1, 2, . . .). The location of the above-
mentioned singularities is shown qualitatively in Fig. 2. The figure
also shows the distorted integration path enclosing all the singularities
located in the lower half of the complex p plane for z − z′ > 0. For
z− z′ < 0, the integration path should be distorted to go in the upper
half of the complex p plane. Since the integral over the semicircle of
infinite radius is zero (see the path Γ∞ in Fig. 2 for the case z−z′ > 0),
the field is determined only by the sign-reversed residues of the poles at
p = pm,n and the integral around the branch cut, i.e., along the contour
Γ. To avoid misunderstanding, it is worth mentioning that the poles,
branch cuts, and branch points are slightly displaced off the real or
imaginary axis in Fig. 2, because a minor dissipative loss is assumed
to be introduced to the outer region ρ > a. This makes it possible
to easily clarify the mutual location of the integration paths and all
the singularities of the integrand in the complex p plane. However,
in the resulting expressions, the dissipative loss is put equal to zero
throughout.

When performing the above-described calculations, we observe
that the quantity q runs all real values from −∞ to ∞ during the
integration along Γ. Passing to integration over only the positive real
values of q reduces the integrals for the azimuthal and longitudinal
components of the electric field at the boundary ρ = a to the following
form:

Eφ(a, φ, z) =
∞∑

m=−∞
exp(−imφ)

∫ d

−d
Km(z − z′)Im(z′)dz′, (21)
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Figure 2. Paths of integration in the complex p plane.

Ez(a, φ, z) =
∞∑

m=−∞
exp(−imφ)

∫ d

−d
km(z − z′)Im(z′)dz′. (22)

Here,

Km(ζ) =
∑

n

2πa

Nm,n
E2

φ;m,n(a) exp (−ik0pm,n|ζ|)

+
ik0

2π

∫ ∞

0

q

p(q)

2∑

l=1

2∑

k=1

B
(l)
mk

∆(l)
m

[
Jm+1(Qk) +αkm

Jm(Qk)
Qk

]

× exp(−ik0p(q)|ζ|)dq, (23)

km(ζ) = sgnζ

{∑
n

2πa

Nm,n
Eφ;m,n(a)Ez;m,n(a) exp (−ik0pm,n|ζ|)

+
i

2πaη

∫ ∞

0

q

p(q)

2∑

l=1

2∑

k=1

B
(l)
mk

∆(l)
m

nkQkJm(Qk)

× exp(−ik0p(q)|ζ|)dq

}
, (24)

where

Qk = k0aqk(p(q)), Q = k0aq, p(q) =
(
εa − q2

)1/2
, (25)
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Eφ;m,n(ρ) and Ez;m,n(ρ) are functions describing the distributions over
the transverse coordinate ρ of the azimuthal and longitudinal electric-
field components of eigenmodes guided by the column, respectively,
and Nm,n is the norm of an eigenmode with the propagation constant
pm,n [8, 18–20]. Note that the function p(q) has the meaning of
the normalized propagation constant of the normal mode in the
background medium for the dimensionless transverse wave number
q = k⊥/k0. It is assumed that Im p(q) < 0.

Expressions for the quantities B
(l)
mk and ∆(l)

m in Equations (23)
and (24) are written as

B
(l)
m1 =Z0

k0a

Q1Jm(Q1)

[
η

εa
n2J (2)

m H(l)
m +

η

εa
p

m

Q2
J̃ (2)

m

− n2

((H(l)
m

)2 − p2

εa

m2

Q4

)]
,

B
(l)
m2 =Z0

k0a

Q2Jm(Q2)

[
− η

εa
n1J̃ (1)

m H(l)
m − η

εa
p

m

Q2
J (1)

m

+ n1

((H(l)
m

)2 − p2

εa

m2

Q4

)]
,

(26)

∆(l)
m = (−1)l

{
n2

[
η

εa
J (1)

m J (2)
m −

(
J (1)

m +
η

εa
J (2)

m

)
H(l)

m

]

−n1

[
η

εa
J̃ (1)

m J̃ (2)
m −

(
J̃ (2)

m +
η

εa
J̃ (1)

m

)
H(l)

m

]

+(n2 − n1)
[(H(l)

m

)2 − p2

εa

m2

Q4

]

+p
η

εa

m

Q2

[
J (1)

m + J̃ (1)
m − J (2)

m − J̃ (2)
m

]}
, (27)

where

J (1)
m =

Jm+1(Q1)
Q1Jm(Q1)

+ m
α1

Q2
1

, J (2)
m =

Jm+1(Q2)
Q2Jm(Q2)

−m
β2

Q2
2

,

J̃ (1)
m =

Jm+1(Q1)
Q1Jm(Q1)

−m
β1

Q2
1

, J̃ (2)
m =

Jm+1(Q2)
Q2Jm(Q2)

+ m
α2

Q2
2

,

H(l)
m =

H
(l)
m+1(Q)

QH
(l)
m (Q)

− m

Q2
, k = 1, 2, l = 1, 2.

(28)

It is to be emphasized that all the quantities entering the integrands
in Equations (23) and (24) and containing p are calculated for p =
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p(q). The details of derivation of Equations (26) and (27) are briefly
described in Appendix A.

Let us dwell in greater detail on the calculation of the terms that
describe the contributions of eigenmodes to Equations (23) and (24).
According to [8, 19], the quantity ∆(2)

m , regarded as a function of p, can
be used to determine the propagation constants of eigenmodes. To this
end, one should solve the equation

∆(2)
m (p) = 0, (29)

the roots of which are the propagation constants p = pm,n of
eigenmodes. The eigenmode fields can be obtained as Em,n(ρ) =
Ẽm(ρ, pm,n) and Hm,n(ρ) = H̃m(ρ, pm,n), where Ẽm(ρ, p) =
Em(ρ, p)∆(2)

m (p)I−1
m (p) and H̃m(ρ, p) = Hm(ρ, p)∆(2)

m (p)I−1
m (p) [8].

The norms Nm,n of the eigenmodes are calculated as follows [8, 20]:

Nm,n=2π

∫ ∞

0

[
Em,n(ρ)×H(T )

−m,−n(ρ)−E(T )
−m,−n(ρ)×Hm,n(ρ)

]
·z0ρdρ.(30)

Here, the negative sign of the subscript n stands to denote eigenmodes
propagating in the negative direction of the z axis, for which pm,−n =
−pm,n, and the superscript (T ) denotes fields taken in an auxiliary
(“transposed”) medium described by the transposed dielectric tensor
εT . The details of calculation of the eigenmode contribution to the
antenna field are given in Appendix B.

Using the boundary conditions (8) and (9) for the tangential
components of the electric field on the antenna surface and allowing
for Equations (4), (5), (21), and (22), we can obtain integral equations
for Im(z). Equation (8) yields

∫ d

−d
Km(z − z′)Im(z′)dz′ = −Am, (31)

whereas Equation (9) gives
∫ d

−d
km(z − z′)Im(z′)dz′ = 0. (32)

It is assumed in Equations (31) and (32) that m = 0, ±1, ±2, . . . and
|z| < d.

The behavior of the solutions of the obtained integral equations is
determined by the properties of their kernels. It will be shown below
that in the case of a sufficiently narrow strip where the conditions

d ¿ a, d ¿ a|η/ε|1/2,

(k0d)2 max{|εa|, |ε|, |g|, |η|} ¿ 1 (33)
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hold, the properties of the kernels make it possible to obtain approxi-
mate solutions of Equations (31) and (32). In what follows, we present
a method for obtaining such solutions in the case of a nonresonant
plasma where sgn ε = sgn η. The case of a resonant plasma, which
corresponds to the relation sgnε 6= sgnη, is much more complex, and
its consideration falls beyond the scope of this paper.

4. SOLUTION OF INTEGRAL EQUATIONS FOR THE
ANTENNA CURRENT

We start our analysis of integral Equations (31) and (32) from studying
the properties of their kernels (23) and (24) in the case of a non-
resonant plasma in the column. We represent the kernels of the integral
equations as

Km(ζ) = K(s)
m (ζ) + Fm(ζ),

km(ζ) = k(s)
m (ζ) + fm(ζ).

(34)

Here,

K(s)
m (ζ) = −iZ0

k2
0a

2

∫ ∞

0
J2

m+1(k0aq) exp(−k0q|ζ|)dq

+iZ0
m2

2a

εa

εη

∫ ∞

0

J2
m(k0aq)
Vm(q)

exp
(
− k0

√
ε

η
q|ζ|

)
dq, (35)

k(s)
m (ζ) = sgn(ζ)Z0

k0

2
m

εa

εη

√
ε

η

∫ ∞

0

qJ2
m(k0aq)
Vm(q)

× exp
(
−k0

√
ε

η
q|ζ|

)
dq, (36)

where

Vm(q) = sin2
(
k0aq − πm

2
− π

4

)
+

ε2
a

εη
cos2

(
k0aq − πm

2
− π

4

)
. (37)

The integrands of Equations (35) and (36) are obtained by making
the limiting transition q → ∞ in the corresponding integrands of
kernels (23) and (24) and changing the integration variable in the
k = 2 terms of the resulting kernels in accordance with the relation√

η/εq → q. In the derivation of Equations (34)–(37), we made use of
the fact that for q →∞ and sgnε = sgnη,

q1 = q , q2 =
√

η

ε
q , p = −iq , n1 = −i

g

η − ε

η

q
, n2 = −i

η − ε

g
q,

α1 = −1 +
g

η − ε
, α2 =

η − ε

gε
q2, β1 =

η − ε

gη
q2, β2 = 1 +

g

η − ε
.
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The quantities Fm(ζ) and fm(ζ) are written as

Fm(ζ) =
∑

n

2πa

Nm,n
E2

φ;m,n(a) exp (−ik0pm,n|ζ|)

+
ik0

2π

∫ ∞

0

{
q

p(q)

2∑

l=1

2∑

k=1

B
(l)
mk

∆(l)
m

[
Jm+1(Qk) + αkm

Jm(Qk)
Qk

]

× exp (−ik0p(q)|ζ|)

+ Z0k0aπ

[
J2

m+1(k0aq)− m2

(k0a)2
εa

εη

√
η

ε

J2
m(k0aq

√
η/ε)

Vm(q
√

η/ε)

]

× exp (−k0q|ζ|)
}

dq, (38)

fm(ζ) = sgnζ

{∑
n

2πa

Nm,n
Eφ;m,n(a)Ez;m,n(a) exp (−ik0pm,n|ζ|)

+
k0

2

∫ ∞

0

[
i

πk0aη

q

p(q)

2∑

l=1

2∑

k=1

B
(l)
mk

∆(l)
m

nkQkJm(Qk)

× exp(−ik0p(q)|ζ|)

−Z0m
εa

εη

√
η

ε

qJ2
m(k0aq

√
η/ε)

Vm(q
√

η/ε)
exp (−k0q|ζ|)

]
dq

}
. (39)

It is worth noting that the quantities Fm(ζ) and fm(ζ) are determined
by the terms corresponding to eigenmodes in (23) and (24), as well
as by the integrals over q, the integrands of which are given by the
differences of the respective quantities entering rigorous formulas for
the kernels Km(ζ) and km(ζ) and those entering relations (35) and (36).

It is easily shown that the quantities (35) and (36) tend to infinity
for ζ = 0, whereas the quantities Fm(ζ) and fm(ζ) have no singularities
at this point. Thus, formulas (34) give representations of the kernels
Km(ζ) and km(ζ) as the sums of the terms K

(s)
m (ζ) and k

(s)
m (ζ), which

comprise singular parts, and the nonsingular terms Fm(ζ) and fm(ζ).
The latter ones can then be taken at ζ = 0 under conditions (33).

Expression (35) can be reduced to the form

K(s)
m (ζ) = iZ0

k0

2π

{[
ln
|ζ|
2a

+ ψ

(
m +

3
2

)
+ γ

]

+
m2

(k0a)2
εa

εη

(
bm ln

|ζ|
2a

+ cm

)}
, (40)
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where γ = 0, 5772 . . . is Euler’s constant, ψ(z) = d ln Γ(z)/dz is
the logarithmic derivative of a gamma function, and bm and cm are
coefficients which are independent of ζ and obtainable only numerically
in the general case. In the special case ε2

a = εη, they admit the rigorous
analytical representation

bm = −1, cm =
1
2

ln
η

ε
− ψ

(
m +

1
2

)
− γ.

As a result, integral Equation (31) takes the form
∫ d

−d
Im(z′) ln

|z − z′|
2a

dz′

= i
2πAm

Z0k0

(k0a)2εηε−1
a

m2bm + (k0a)2εηε−1
a
− Sm

∫ d

−d
Im(z′)dz′, (41)

where

Sm =
1

m2bm + (k0a)2εηε−1
a

{
m2cm + (k0a)2εηε−1

a

×
[
ψ

(
m +

3
2

)
+ γ − i

2π

Z0k0
Fm(0)

]}
. (42)

In turn, Equation (32) under conditions (33) is transformed to the
following form: ∫ d

−d
m
Im(z′)
z − z′

dz′ = 0. (43)

When deriving Equation (43), we took into account that the quantity
k

(s)
m (ζ) in (36) is proportional to the derivative of the second term

of K
(s)
m (ζ) in (35) with respect to ζ. In addition, we allowed for the

relation fm(0) = 0. Although this relation follows formally from the
properties of the function sgn ζ, it can also be justified on physical
grounds if we approximately put z = 0 in the nonsingular part
fm(z − z′) of the corresponding integral equation, which is always
possible for a sufficiently narrow strip. Then, using the evenness of
the function Im(z), we have for z = 0

∫ d

−d
fm(z − z′)Im(z′)dz′ = 0.

It can be shown that the solutions of Equations (41) and (43)
are the main terms of the asymptotics of solutions to initial integral
Equations (31) and (32) under conditions (33) and d ¿ 2a∆ ¿ a
(see [10] for details). Here, we restrict ourselves to analysis of
Equations (41) and (43).
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It is a straightforward matter to verify that the solution to
Equation (41) with the logarithmic kernel automatically satisfies
singular integral Equation (43) with the Cauchy kernel [10]. This fact
allows us to consider only Equation (41) in what follows. The solution
to Equation (41) can be found using the techniques discussed in [10]
and has the form

Im(z) =
2i

Z0k0

√
d2 − z2

Amδm

ln (4a/d)− Sm
, (44)

where

δm = − (k0a)2εηε−1
a

m2bm + (k0a)2εηε−1
a

. (45)

Substituting (44) into (7), we obtain the following formula for the linear
current density I(φ, z):

I(φ, z) =
iV0

Z0πk0a
√

d2 − z2

∞∑
m=−∞

sin (m∆)
m∆

× δm

ln(4a/d)− Sm
exp [−im(φ− φ0)]. (46)

It is seen from the formulas obtained that the surface current density
tends to infinity near the edges of a perfectly conducting strip. Such
behavior of the current density corresponds to the well-known Meixner
condition at the edge [21]. Note that despite the divergence of I(φ, z)
for |z| → d, the total current IΣ(φ) in the cross section φ = const,
which is determined by the formula

IΣ(φ) =
∫ d

−d
I(φ, z)dz,

is finite. Upon calculation of IΣ(φ), one can find the input impedance
Z = R + iX of the antenna by the formula Z = V0/IΣ(φ0).

5. POWER RADIATED

We now derive an expression for the total power radiated from the
antenna with the obtained current in the presence of a cylindrical
plasma column immersed in an isotropic medium. With allowance
for the guided eigenmodes, the expression for the total radiated power
in the case of a loss-free open guide takes the form

PΣ =
∑

m,±n

Pm,±n + Prad, (47)
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where Prad is the power radiated to the surrounding medium and Pm,±n

the power going to an eigenmode with the indices m and ±n. As in
the above, the signs “+” and “−” of the subscript n stand to denote
the eigenmodes propagating from the source region in the positive and
negative directions of the z axis, respectively. The quantities Pm,±n are
calculated in a standard way [8, 18, 20]. The power Prad can be found
by integrating the time-averaged Poynting vector over the surface of a
cylinder of radius ρ = ρa ≥ a:

Prad =
1
2

∫ ∞

−∞
dz

∫ 2π

0
Re[Eφ(r)H∗

z (r)− Ez(r)H∗
φ(r)]∣∣∣ρ=ρa

ρdφ. (48)

Here, the asterisk denotes complex conjugation. Integrals on the right-
hand side of Equation (48) can be reduced to a more convenient form
by using the representations

Eφ,z(r) =
∞∑

m=−∞
e−imφ k0

2π

∫ ∞

−∞
Eφ,z;m(ρ, p)e−ik0pzdp, (49)

H∗
φ,z(r) =

∞∑

m̃=−∞
eim̃φ k0

2π

∫ ∞

−∞
H∗

φ,z;m̃(ρ, p̃)eik0p̃zdp̃. (50)

Substituting representations (49) and (50) into Equation (48), we make
use of the well-known formulas

1
2π

∫ 2π

0
e−i(m−m̃)φdφ = δm,m̃,

k0

2π

∫ ∞

−∞
e−ik0(p−p̃)zdz = δ(p− p̃),

where δm,m̃ is the Kronecker delta. Then, allowing for the Wronskians
of cylindrical functions and the fact that the quantity q is purely
imaginary for p > ε

1/2
a and p < −ε

1/2
a , we obtain after some algebra

Prad = (Z0π)−1
∞∑

m=−∞

∫ √
εa

−√εa

(|Cm|2 + ε−1
a |Dm|2

)
dp. (51)

Recall that the coefficients Cm and Dm in (51) are given in Appendix A.

6. NUMERICAL RESULTS

The results of the preceding sections can be used to analyze the
current distribution and input impedance of the antenna. We now
present some numerical results illustrating the behavior of these
characteristics. Calculations have been performed for the following
values of parameters: the plasma density inside the column is equal to
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N = 1011 cm−3, the external static magnetic field B0 = 200 G, and the
relative dielectric permittivity of the background medium is equal to
εa = 1, which corresponds to free space. With these values, which
can easily be realized under laboratory conditions, the plasma has
ωp = 1.78× 1010 s−1 and ωH = 3.51× 109 s−1. Since presenting results
for all nonresonant frequency ranges would take up much space, we
will dwell on the case where the angular frequency ω lies in the range
ωH < ω < ωUH/

√
2. Here, the upper hybrid frequency is given by

ωUH = (ω2
p+ω2

H)1/2. The quantities ΩH and ωLH, which are much lower
than ω in this case, can approximately be put equal to zero in (2). Note
that in the chosen frequency range, the nonresonant plasma column
with ε < 0 and η < 0 is capable of guiding an axisymmetric eigenmode
of the surface type [22]. In addition, nonsymmetric eigenmodes of the
surface type can exist at such frequencies.

It is assumed that the midpoint of the region to which the given
voltage is supplied has the azimuthal coordinate φ0 = 0. The antenna
radius a coincides with the column radius and ranges from 0.4 to
2.5 cm, d/a = 0.02, and ∆ = 0.05 rad.

Since the current distribution of an antenna with a sufficiently
large radius a can be influenced by the presence of eigenmodes guided
by the column, we briefly discuss their dispersion properties and
field structures. As an example, Fig. 3 shows the dispersion curves
pm,n(ω) of three surface modes with the azimuthal indices m = 0, ±1
for a = 2.5 cm and the above-mentioned plasma parameters inside
the column. For the chosen values of parameters, it is these modes
that notably affect the current distribution, whereas the influence of
other modes is negligible. Recall that the mode propagation constants
p = pm,n are roots of Equation (29). Since no more than one surface

0.5 1 1.5 2 2.5 3 3.5
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m= 1m= 0
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Figure 3. Dispersion curves of eigenmodes with the indices m = 0,±1
and n = 1 for N = 1011 cm−3, B0 = 200 G, εa = 1, and a = 2.5 cm.
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mode exists for a fixed azimuthal index m in the considered frequency
range, the radial index of each mode is taken equal to n = 1. It is seen
that the propagation constant of the axisymmetric eigenmode with the
azimuthal index m = 0 tends to infinity as ω approaches the boundary
frequency ω̃ = ωUH/

√
2. The propagation constants of the modes with

the indices m = ±1 tend to infinity at some other frequencies, which
lie in the vicinity of ω̃.

Figure 4 shows the field components of the axisymmetric (m = 0)
eigenmode as functions of the radial coordinate ρ normalized to a at
the angular frequency ω = 6.6 × 109 s−1 if other parameters are the
same as in Fig. 3. In this case, the diagonal elements of the dielectric
tensor amount to ε = −9.2 and η = −6.3. The propagation constant
of this eigenmode is equal to pm,n = 1.56. It is seen that the mode
demonstrates surface behavior and is of the quasi-TM type.
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Figure 4. Fields (a) Em,n(ρ) and (b) Hm,n(ρ) of an eigenmode with
the indices m = 0 and n = 1 for N = 1011 cm−3, B0 = 200 G, εa = 1,
a = 2.5 cm, and ω = 6.6× 109 s−1.

For relatively small values of a, the current distribution turns
out to be similar to that of the same antenna in free space.
This is illustrated by Fig. 5, which shows the absolute value
|IΣ(φ)|, normalized to its maximum |IΣmax|, and the phase θ(φ) =
arctan(ImIΣ(φ)/ReIΣ(φ)) of the antenna current as functions of the
azimuthal angle φ for a = 0.4 cm (other parameters are the same
as in Fig. 4). In addition, the left-hand plot of Fig. 5 shows the
current distributions of the same antenna located in free space and
a homogeneous magnetoplasma the parameters of which coincide with
those of the plasma medium inside the column. We do not show the
phase distributions of the antenna current in a homogeneous plasma or
free space, because they almost coincide with the curve on the right-
hand plot of Fig. 5.

For a larger radius of the antenna and the plasma column, we
observe a greater difference between the current distributions of the
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Figure 5. Normalized amplitude (a) and phase (b) of the antenna
current as functions of the angle φ if the antenna is located on the
surface of a plasma column (solid line), in free space (dashed line), and
in a homogeneous magnetoplasma (dashed-dotted line) for a = 0.4 cm,
d/a = 0.02, ∆ = 0.05 rad, φ0 = 0, N = 1011 cm−3, B0 = 200 G, and
ω = 6.6× 109 s−1.
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Figure 6. Normalized amplitude (a) and phase (b) of the antenna
current as functions of the angle φ for a = 1 cm, d/a = 0.02, ∆ =
0.05 rad, φ0 = 0, N = 1011 cm−3, B0 = 200 G, and ω = 6.6× 109 s−1.

antenna placed on the surface of the plasma column and the same
antenna located in free space or a homogeneous magnetoplasma. For
example, Figs. 6 and 7 present the absolute values and phases of the
antenna current for a = 1 cm and a = 1.5 cm, respectively.

Figure 8 corresponds to the radius a = 1.7 cm. In this case, the
current distribution still resembles qualitatively that in the previous
case.

The amplitude and phase distributions of the antenna current
for a comparatively large radius a = 2.5 cm are shown in Fig. 9. In
this case, three surface eigenmodes (with the indices m = 0, ±1 and
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Figure 7. The same as in Fig. 6, but for a = 1.5 cm.

-180 -120 -60 0 60 120 180
0

0.2

0.4

0.6

0.8

1

-180 -120 -60 0 60 120 180

-180

-135

-90

-45

0

45

90

-270

-225

(a) (b)

 (degrees)φ (degrees)

(d
eg
re
es
)

θ

φ

|
|

I
m
a
x

Σ
(φ
)

Σ
I/

Figure 8. The same as in Fig. 6, but for a = 1.7 cm.
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Figure 9. The same as in Fig. 6, but for a = 2.5 cm.

n = 1) significantly affect the current distribution. If a loop antenna
of the same radius were located in free space, it would have a current
distribution close to that of a half-wave circular loop since k0a = 0.55.
The presence of the plasma column evidently leads to an essentially
different current distribution of the antenna.

The distributions of Figs. 5–9 demonstrate some asymmetry about
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the midpoint of the region to which the excitation voltage is supplied.
This asymmetry, which is the most pronounced in the dependences
θ(φ), is stipulated by the gyrotropy of the plasma inside the column.
The reversal of the direction of the external magnetic field leads to a
change in the current distribution. This change is described by the
replacement IΣ(φ) → IΣ(−φ).

The obtained results can also be applied for finding the input
impedance Z = R + iX of the antenna. Note that the real part R =
ReZ = Re(V0/IΣ(φ0)) of the input impedance, i.e., the input radiation
resistance of the antenna, is completely determined by the nonsingular
terms of the integral equation kernels in the case considered. Since
the nonsingular parts Fm(ζ) were approximated by their values Fm(0)
at ζ = 0 during the solution of the integral equations for the antenna
current, the quantity R should be refined for relatively large values of
a. A close examination shows that the most accurate result for R is
obtained if we calculate the total radiated power PΣ (see Section 5) for
the found current distribution IΣ(φ) and then put R = 2PΣ/|IΣ(φ0)|2.
It is interesting to mention that for the chosen parameters, the values
of R = Re(V0/IΣ(φ0)) and R = 2PΣ/|IΣ(φ0)|2 almost coincide if
a < 1 cm. For 1 < a < 2.5 cm the difference between these quantities
increases with increasing a, although the ratio of R = Re(V0/IΣ(φ0))
to R = 2PΣ/|IΣ(φ0)|2 remains a factor of order unity. Thus, in what
follows we take R = 2PΣ/|IΣ(φ0)|2 as the input radiation resistance.
The input reactance of the antenna is determined by the imaginary
part of the impedance Z and is calculated using the standard formula
X = Im(V0/IΣ(φ0)).

As an example, Table 1 presents R and X for the same plasma
parameters in the column and its radii as in Figs. 5–9. In addition, we
give the relative contributions of both the continuous-spectrum waves
(Rcs = 2Prad/|IΣ(φ0)|2) and the eigenmodes (Rmod = R − Rcs) to the
quantity R. One can see a significant contribution of eigenmodes to R

Table 1. X, R, and the relative contributions of the continuous-
spectrum waves and the eigenmodes to the radiation resistance.

a, cm X, Ω R, Ω Rcs/R Rmod/R

0.4 173.96 0.018 0.833 0.167
1 1361.80 6.021 0.925 0.075

1.5 −281.24 1.367 0.979 0.021
1.7 160.10 1.638 0.988 0.012
2.5 465.47 8.972 0.597 0.403
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for a moderately large antenna radius a.
It is evident from the obtained numerical results that the presence

of a column filled with a nonresonant magnetoplasma can significantly
affect the electrodynamic characteristics of the loop antenna compared
with the cases where it is located in free space [23] or a homogeneous
magnetoplasma the parameters of which coincide with those inside the
column. Recall that in the latter case, the current distribution decays
exponentially along the strip conductor of the antenna with distance
from the region to which the given voltage is supplied if ε < 0 and
η < 0 [10].

7. CONCLUSION

In this article, we have obtained the solution to the problem of the
current distribution of a loop antenna in the form of an infinitesimally
thin, perfectly conducting narrow strip located on the surface of an
axially magnetized plasma column. The found solution describes the
distribution of the surface-current density both along and across the
strip and makes it possible to study the electrodynamic characteristics
of the antenna as functions of its parameters as well as the parameters
of the plasma column and the surrounding medium. It is important
that the developed method of solution, which has been used in the
case where the plasma inside the column is nonresonant, can be
extended to a more complex case of a resonant magnetoplasma when
an infinite number of propagating quasielectrostatic eigenmodes exist
on the plasma column. This case, which falls beyond the scope of this
work, will be considered separately.
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APPENDIX A. COEFFICIENTS IN THE FIELD
REPRESENTATION

The coefficients Bmk, Cm, and Dm in Equations (15) and (16), which
ensure the fulfillment of the boundary conditions (14), are written as
follows:

Bm1 =
Im(p)

∆(2)
m (p)

Z0k0aχ(1)

Q1Jm(Q1)

[
η

εa
n2J (2)

m H(2)
m +

η

εa
p

m

Q2
J̃ (2)

m

− n2

((H(2)
m

)2 − p2

εa

m2

Q4

)]
, (A1)

Bm2 =
Im(p)

∆(2)
m (p)

Z0k0aχ(2)

Q2Jm(Q2)

[
η

εa
n1J̃ (1)

m H(2)
m +

η

εa
p

m

Q2
J (1)

m

− n1

((
H(2)

m

)2
− p2

εa

m2

Q4

)]
, (A2)

Cm =
Im(p)

∆(2)
m (p)

Z0k0a

QH
(2)
m (Q)

[(
n1J̃ (2)

m − n2J (1)
m

)
H(2)

m

+
η

εa

(
J̃ (1)

m −J (2)
m

)
p

m

Q2
+

η

εa

(
n2J (1)

m J (2)
m −n1J̃ (1)

m J̃ (2)
m

)]
, (A3)

Dm =
Im(p)

∆(2)
m (p)

Z0k0a

QH
(2)
m (Q)

[
η
(
J̃ (1)

m − J (2)
m

)
H(2)

m

+
(
n1J̃ (2)

m − n2J (1)
m

)
p

m

Q2

]
, (A4)

where χ(1) = −χ(2) = 1, and other notations are defined in Section 3.
Since the azimuthal and longitudinal components of the electric

field are continuous on the surface of the plasma column, either
the coefficients (A1) and (A2) or coefficients (A3) and (A4) can be
used to obtain the field components (21) and (22) at ρ = a. To
derive the integral equations for the antenna current, we find it more
convenient to utilize coefficients (A1) and (A2). Substituting them
into the expressions for the azimuthal and longitudinal electric-field
components at ρ = a, making use of the transformations described in
Section 3, and allowing for the relationship ∆(2)

m (e−iπq) = −∆(1)
m (q),

one can arrive at kernels (23) and (24), the integrands of which contain
the quantities given by Equations (26) and (27).
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APPENDIX B. CONTRIBUTION OF EIGENMODES TO
THE ANTENNA FIELD

As is shown in [8, 18, 20], to determine the contribution of eigenmodes
guided by the plasma column to the total field which is excited by the
antenna current, one should either calculate residues of the poles at
p = pm,n in the complex p plane for the integrals in (11), or apply an
eigenfunction expansion technique. Although both approaches yield
identical results, the latter one is simpler in the case considered.

Using the results of [8, 18, 20], the contributions of eigenmodes
to the electric and magnetic fields in the region |z| < d, which are
hereafter denoted as Emod(r) and Hmod(r), respectively, are written
as

[
Emod(r)
Hmod(r)

]
=

∞∑
m=−∞

+∑
s=−

∑
ns

am,ns(z)
[
Em,ns(r)
Hm,ns(r)

]
. (B1)

Here, s = ±, n+ = n, n− = −n, and am,ns(z) are the expansion
coefficients of the modal fields which are defined as follows:[

Em,n±(r)
Hm,n±(r)

]
=

[
Em,n±(ρ)
Hm,n±(ρ)

]
exp(−imφ∓ ik0pm,nz). (B2)

The expansion coefficients in (B1) can be found in the form [8, 18]

am,ns(z) =
1

Nm,n

∫

(z
(1)
s ,z

(2)
s )

J(r′) ·E(T )
−m,−ns

(r′)dr′, (B3)

where the prime denotes the integration variables r′ = (ρ′, φ′, z′)
and the notation (z(1)

s , z
(2)
s ) designates the interval of integration with

respect to z′:

z(1)
s =

{ − d for s = +,

z for s = −,
z(2)
s =

{
z for s = +,

d for s = −.
(B4)

We substitute the electric current in the form of Equations (6)
and (7) into Equation (B3) and take into account the relationship
E

(T )
φ;−m,−n(a) = Eφ;m,n(a) [8]. After some algebra, we obtain the

azimuthal and longitudinal components of the modal electric field Emod

(see Equation (B1)) at ρ = a. Then we arrive at formulas for the modal
terms that are summed over n in Equations (23) and (24).
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