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Abstract—As an important signature of the radar target, the angular
glint effects on radar sensor mainly arise at close distance, especially
at target near field. However, the current prediction methods of
angular glint are mostly based on the far field condition. This paper
presents a prediction technique of near field angular glint based on
the scattering center model to solve this problem. Firstly, the near
field backscattering is represented based on far-field scattering center
model. Then by solving the derivative of the backscattering phase
vs. the position vector of the observer, including incident angles and
range, we get the exact expression of angular glint at near field. Next,
the exact expression is approximated and simplified in the range of
terminal guidance. Finally, the factors affecting near-field angular
glint are analyzed using numeric simulation, and the error comparison
between the exact and approximate expression is also provided. It is
concluded that the expression in [1] is the approximation of ours at
far field under certain polarization, and the simplified expression has
a well precision in the range of terminal guidance. All these results
provide the theoretical basis for the prediction of near field angular
glint and its signature research.

1. INTRODUCTION

As is well known, angular glint is a radar target signature in equal
importance compared with radar cross section (RCS), and its effects
on radar sensor mainly arise at target near field. As the radar homing
guidance technique rapidly develops, target angular glint signature
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attracts an increasing attention [1, 2]. When missile approaches target,
on the one hand angular glint becomes the main tracking error source
of the guidance system [3, 4]; on the other hand, as a kind of target
signature, angular glint can provide abundant information on target
motion model identification, target recognition, etc. [5]. Therefore,
setting up the prediction model of angular glint has great realistic
significance on the angular glint investigation, mitigation, exploitation
and so on.

At present, two theories namely wavefront distortion and energy
flux density tilt are usually adopted to explain the generation of
angular glint, corresponding to two calculation methods-phase gradient
method and Poynting vector method. Reference [1] proves that the two
methods are equivalent under the geometrical optics approximation
condition, and derives the calculating formula based on the far
field condition. However, in the range of terminal guidance, the
approximate condition for most terminal guidance radars that work in
the optical region cannot be satisfied. For instance, when a radar with
λ = 5 cm in wavelength acts on a target with d = 20 m in maximum
size, the far field condition (r > 2d2/λ) requires a distance larger than
16 km. If the far field condition cannot be satisfied, is the calculating
formula in [1] applicable? Furthermore, how to calculate the near-field
angular glint?

To answer these questions, in this paper firstly we derive the
backscattering expression of target under the near field condition based
on the scattering center model in the optical region. Then, by solving
the derivative of the backscattering phase vs. the position vector of
the observer, we obtain the exact expression of angular glint at near
field based on phase gradient method, and show that the expression
in [1] is the far-field approximation of ours under certain polarization.
Considering the exact expression is fairly complicated, we simplify it
combined with the typical range of terminal guidance radar sensor.
Finally, simulations are implemented to validate our expression.

2. PROBLEM DESCRIPTION

As both the theoretical calculation and experimental measurement
demonstrate, in the optical region, the total electromagnetic scattering
of target can be considered as being made up by the electromagnetic
scattering from some local positions, which usually are called scattering
centers [1]. Scattering center is an important feature of the
electromagnetic scattering in the optical region and represents the
scattering characteristics of the surrounding local regions. Thus, in
this study, we assume that in the range of the considered distance,
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whether target locates in the far-field of radar or not, each scattering
center is in the local region that satisfies the far-field condition. In
effect, the assumption is widely adopted by the study of the near-
field target characteristics [6, 7]. Under the assumption, the far-field
scattering center model can be employed to investigate the target
characteristics at near field. Bhalla and Ling [8] used the far-field
scattering center model based on the SBR method to estimate the
near-field RCS, and obtained results that are fairly consistent with
electromagnetic computing and measured data, which is a further
evidence of the assumption rationality. Actually, assume 20 scattering
centers distribute uniformly on a target with 20 m in size, and then
each scattering center can represent a region with about 1 m in size.
That distance under the far-field condition for the radar with λ = 5 cm
in wavelength is 40m, far less than the radar blind range.

Based on the above assumption, when the far-field condition is not
satisfied, on the one hand, the incident electromagnetic waves cannot
be treated as plane waves, but spherical waves, as generally the radar
aperture D is far less than the target size; on the other hand, the
local region in which each scattering center lies satisfies the far-field
approximation, and thus both the incident and scattering waves can
be treated as plane waves.

As Figure 1 displays, in the target coordinate system, the position
and orientation of the radar antenna can be uniquely determined by
[r, ϕ, θ, εx, εz, εy]

T, where [r, ϕ, θ]T is the antenna position vector r
in the spherical coordinates form, {εx, εy, −εz} represents the three
rotating angles from the antenna coordinates (x, y, z)R to the incident
coordinates (k̂i

c, Êi
c‖, Êi

c⊥) in the order XZY ; as with the terminal
guidance system, εx is the polarization rotating angle related to the
reference polarized direction, εy and εz are the boresight error along
the y and z direction respectively, and [rn, ϕn, θn]T is the spherical
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Figure 1. Sketch map of the incident-scattering relationship based on
the near-field condition.
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coordinates representation in the target coordinate system of the
distance vector rn between the nth scattering center and the radar.

Let Pt, G, F (·), hr and hi be the radar transmit power, antenna
gain, antenna pattern function, and the transmitting and receiving
polarization respectively, ψc, ψn denote the angles between −−−→oRoT, −−→oRon

and the electrical boresight of antenna respectively, R(εx) denote the
polarization rotation matrix, and Sn,ϕn,θn denote the single station
line polarization scattering matrix of the nth scattering center in the
incident direction (ϕn, θn).

Ignoring the time-harmonic factor ejωt, the scattering intensity at
the radar can be formulated as:

Es=
√

P tG(hr)T(R(εx))T
[∑

n

F 2(ψn)
4πrn

2
Sn,ϕn,θn ·exp (−2jkrn)

]
R(εx)hi

(1)
Based on the definition of the near-field RCS [9], the near-field
scattering matrix S can be defined as:

S(r, ϕ, θ, εz, εy, F (·), V, k)=
∑

n

F 2(ψn)
F 2(ψc)

· r2

rn
2
·Sn,ϕn,θn ·exp(−2jkrn) (2)

where r = |r|, rn = |rnt| = |r−dn|, ψc = arccos (cos(εy) cos(εz)), ψn =
arccos(−x̂R · r̂n), and V stands for the physical structure of target.
Obviously, S represents the full polarization scattering matrix in the
direction (ϕ, θ). In comparison with the far-field scattering matrix, it
not only is related to target physical structure V , wavenumber k, and
incident angle (ϕ, θ), but also depends on the distance r between radar
and target center, antenna boresight error εz, εy and antenna pattern
F (·).

Substituting S into Es, the scattering intensity can be rewritten
as:

Es =
F 2(ψc)

√
PtG

4πr2
(hr)T(R(εx))TSR(εx)hi (3)

3. NEAR-FIELD ANGLE GLINT EXPRESSION

For simplicity, we use R to stand for the polarization rotation matrix
R(εx), and represent S in a complex form S = SRe + j · SIm. In
the terminal guidance process, the boresight error ψc approximately
equals to tracking error, generally in the mil order. Thus, we consider
the situation with ψc = 0.

The phase function of Es in (3) can be expressed as:

Φ(r, θ, ϕ)=− arg(Es)=− arctan
VN

UN
=− arctan

(
(Rhr)TSImRhi

(Rhr)TSReRhi

)
(4)
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where

SRe=
∑

n

F 2(ψn) · r
2

r2
n

·
(
SRe

n,ϕn,θn
cos(2krn)+SIm

n,ϕn,θn
sin(2krn)

)

=
∑

n

An ·
(
SRe

n,ϕn,θn
cosαn + SIm

n,ϕn,θn
sinαn

)
=

∑
n

SRe
n

SIm=
∑

n

F 2(ψn) · r
2

r2
n

·
(
− SRe

n,ϕn,θn
sin(2krn)+SIm

n,ϕn,θn
cos(2krn)

)

=
∑

n

An

(
− SRe

n,ϕn,θn
sinαn + SIm

n,ϕn,θn
cosαn

)
=

∑
n

SIm
n

(5)

Based on the basic principle of the phase gradient method [1], we can
obtain the target line glint error as:

eθ =
∂Φ/∂θ

∂Φ/∂r
=

(Rhr)T
[
UN

∑
n

∂SIm
n /∂θ − VN

∑
n

∂SRe
n /∂θ

]
Rhi

(Rhr)T
[
UN

∑
n

∂SIm
n /∂r − VN

∑
n

∂SRe
n /∂r

]
Rhi

eϕ =
∂Φ/∂ϕ

cos θ · ∂Φ/∂r

=
(Rhr)T

(
UN

∑
n

∂SIm
n /∂ϕ− VN

∑
n

∂SRe
n /∂ϕ

)
Rhi

cos θ · (Rhr)T
(

UN
∑
n

∂SIm
n /∂r − VN

∑
n

∂SRe
n /∂r

)
Rhi

(6)

where 


∂SRe
n /∂r

∂SRe
n /∂ϕ

∂SRe
n /∂θ


 =




SIm
n ∂αn/∂r + SRe

n · ∂ ln An/∂r
SIm

n ∂αn/∂ϕ + SRe
n · ∂ ln An/∂ϕ

SIm
n ∂αn/∂θ + SRe

n · ∂ ln An/∂θ







∂SIm
n /∂r

∂SIm
n /∂ϕ

∂SIm
n /∂θ


 =



−SRe

n ∂αn/∂r + SIm
n · ∂ lnAn/∂r

−SRe
n ∂αn/∂ϕ + SIm

n · ∂ lnAn/∂ϕ
−SRe

n ∂αn/∂θ + SIm
n · ∂ lnAn/∂θ




(7)

[
∂αn/∂r
∂αn/∂ϕ
∂αn/∂θ

]
= 2k

[
∂rn/∂r
∂rn/∂ϕ
∂rn/∂θ

]
= −2k

r

rn
·



dn · r̂/r − 1
dn · ϕ̂ · cos θ

dn · θ̂


 (8)

[
∂ lnAn/∂r
∂ ln An/∂ϕ
∂ lnAn/∂θ

]
=

2
F (ψn)

· ∂F

∂(cosψ)
·
[

∂(r̂ · r̂n)/∂r
∂(r̂ · r̂n)/∂ϕ
∂(r̂ · r̂n)/∂θ

]
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+2 ·
(

1
r

[1
0
0

]
− 1

rn

[
∂rn/∂r
∂rn/∂ϕ
∂rn/∂θ

])

= 2


1

r

[1
0
0

]
+

1
rn
· r

rn




dn · r̂/r − 1
cos θ · dn · ϕ̂

dn · θ̂




− 1
rn
· 1
F (ψn)

· ∂F

∂(cos ψn)
·



−1
cos θ · dn · ϕ̂

dn · θ̂







= 2

(
rn

2 + r · dn · r̂
r · rn

2

[1
0
0

]

+
1
rn

(
r

rn
− 1

F (ψn)
· ∂F

∂(cosψn)

)
·



−1
cos θ · dn · ϕ̂

dn · θ̂




 (9)

Under the far-field condition, when r →∞, target is in the far field of
radar, ψn → 0, rn/r → 1, An → 1, and r − rn ≈ dn · r̂ ¿ r. Therefore

[
∂αn/∂r
∂αn/∂ϕ
∂αn/∂θ

]
≈ −2k




−1
cos θ · dn · ϕ̂

dn · θ̂


 ;

[
∂ lnAn/∂r
∂ ln An/∂ϕ
∂ lnAn/∂θ

]
≈ 0 (10)

Substitute (10) into (7), and let the polarization rotation angle εx

equal to 0, then we can obtain
(
hr,hi

) ∈
{

(hi,hj)|i, j = 1, 2,h1 =
[
1
0

]
,h2 =

[
0
1

]}
(11)

and (6) can be simplified as

eθ =
UN

∑
n

∂
[
SIm

n

]
ij
/∂θ − VN

∑
n

[
SRe

n

]
ij
/∂θ

UN
∑
n

[SIm
n ]ij /∂r − VN

∑
n

[SRe
n ]ij /∂r

= −
UN

∑
n

[
SRe

n

]
ij
· dn · θ̂+VN

∑
n

[
SIm

n

]
ij
· dn · θ̂

UN
2 + VN

2

eϕ =
1

cos θ
·
UN

∑
n

∂
[
SIm

n

]
ij
/∂ϕ− VN

∑
n

[
SRe

n

]
ij
/∂ϕ

UN
∑
n

[SIm
n ]ij /∂r − VN

∑
n

[SRe
n ]ij /∂r

= −
UN

∑
n

[
SRe

n

]
ij
· dn · ϕ̂+VN

∑
n

[
SIm

n

]
ij
· dn · ϕ̂

UN
2 + VN

2

(12)
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where [S]ij stands for the element of the matrix S in the ith row and jth
column, and UN , VN ,

[
SRe

n

]
ij

and
[
SIm

n

]
ij

degenerate into the far-field
form,

S′(r, ϕ, θ, V, k) = exp(−2jkr)
∑

n

Sn,ϕn,θn · exp (2jkdn · r̂) (13)

(12) is consistent with the expression in [1], other than the
definition of θ. Thus, the expression in [1] is a special case of (6) in
the far field. (6) is obtained by the exact solution of the derivative of
the backscattering phase vs. the position vector of the observer, and
we call it the exact expression. Without the far-field assumption, it is
applicable for any range, if the assumption in Section 2 is satisfied.

4. SIMPLIFIED EXPRESSION FOR TERMINAL
GUIDANCE

As a calculating expression, (6) is fairly complicated. Combined with
the terminal guidance radar, we simplify (6) in this section. As the
presence of the radar blind range, we consider the distance ranging in

dmax/β < r < 2 · d2
max/λ (14)

where β is the half-power beam width in radian, and dmax/β < r
denotes that target angle is less than the mainlobe beam width.

With the constraint in (14), the far-field condition is not satisfied,
but with the absence of incomplete irradiation. Thus we concentrate on
the mainlobe beam in analysis. The pattern is usually approximated
by

F (ψ) = cosqψ (15)

where q = log(1/
√

2)/ log(cos(β/2)).
Substituting (15) into (9), we obtain

[
∂ ln An/∂r
∂ lnAn/∂ϕ
∂ ln An/∂θ

]
= 2

(
rn

2 + r · dn · r̂
r · rn

2

[1
0
0

]

+
1
rn

(
r

rn
− q

cosψn

)
·



−1
cos θ · dn · ϕ̂

dn · θ̂





 (16)

For the terminal guidance radar sensor, generally β is set to a
small angle ranging 2 6 degree to obtain good azimuth resolution,
consequently, q À 1 and r > dmax/β À dmax. For example, if
β = 0.0873 (5 degree), then q ≈ 370 and r > 11.5dmax. For the
nth scattering point, 1 − dn/r ≤ rn/r ≤ 1 + dn/r can be obtained by
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the triangular relationship. Therefore, r/rn ≈ 1 ¿ q, and (16) can be
simplified as

[
∂ ln An/∂r
∂ lnAn/∂ϕ
∂ ln An/∂θ

]
≈ − 2q

rn cosψn




−1
cos θ · dn · ϕ̂

dn · θ̂


 (17)

∂αn/∂r can be still approximated by (10) with r/rn ≈ 1 and dn ·
r̂ ¿ r. Comparing ∂αn/∂r in (17) with that in (10), q/(rn cosψn) ¿ k
is established in the considered distance range. It can be seen that
the phase gradient aroused by the amplitude An is far less than that
aroused by the phase αn. Accordingly, the phase gradient because of
An can be ignored in the calculation. Substituting (10) into (6), we
can obtain the approximation as

eθ = −
(Rhr)T

(
UN

∑
n

SRe
n · dn · θ̂+VN

∑
n

SIm
n · dn · θ̂

)
Rhi

UN
2 + VN

2

= −
(Rhr)T

(
UN

∑
n

SRe
n · dn · θ̂+VN

∑
n

SIm
n · dn · θ̂

)
Rhi

∣∣∣(Rhr)TS ·Rhi
∣∣∣
2

eϕ = −
(Rhr)T

(
UN

∑
n

SRe
n · dn · ϕ̂+VN

∑
n

SIm
n · dn · ϕ̂

)
Rhi

UN
2 + VN

2

= −
(Rhr)T

(
UN

∑
n

SRe
n · dn · ϕ̂+VN

∑
n

SIm
n · dn · ϕ̂

)
Rhi

∣∣∣(Rhr)TS ·Rhi
∣∣∣
2

(18)

Note that
1) Although both (18) and (12) are obtained based on the

approximation of the derivative in (10), but they have different
meanings; under the far-field condition, the approximation in (10) is
very exact, but (18) has approximate error in the considered distance
range.

2) Scattering matrix S, SRe
n , SIm

n and UN , VN in (18) are all defined
at near field, but defined at far field in (12), which can be considered
as the far-field approximation of (18). In this way, the expression
in [1] can be extended in the near-field range, as long as the related
parameters are replaced with their far-field forms.

3) In (18), |(Rhr)TS ·Rhi|2 is just the target near-field RCS [9].
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5. SIMULATION

This section takes the angle glint calculation of F18 as an example
to analyze the influencing factors and compare the exact expression
in (6) and approximate expression in (18). The distance ranging in
100m < r < 16000m, the half-power beam width is β = 5◦, λ = 5 cm,
and polarization rotation angle is εx = 0◦. The scattering center mode
of F18 shown in Figure 2 is obtained by the method in [10].

xy z

-5 0 5
-10

0
10
-2

0

2

x (m)
y (m)

z 
(m

)

Figure 2. The scattering center mode of F18.

5.1. Analysis of Different Influencing Factors

From (6) (9), we can obtain that angle glint is related to distance
r, incident direction (ϕ, θ), antenna pattern F (·), wavenumber k,
transmitting and receiving polarization (hr, hi), polarization rotation
angle εx and so on. For a given radar system, (hr,hi), F (·) and k are
specified, and the main influencing factors become (r, ϕ, θ, εx). The
effect of the factors on angle glint is described in Figure 3∼Figure 6,
where hi = hr = [1, 0]T, and F (·) is calculated based on (15).

Figure 3 shows the four dimensional slices of angle glint vs.
distance and incident angle, with εx = 0. We can observe that
both in the azimuth slice and elevation slice, the angle glint makes
the transition from strips of far range to spots of near range along
the r direction, which shows the distance effect on angle glint. The
relationship between them can be better observed in Figure 4(a),
Figure 4(c), Figure 5(a) and Figure 5(c). The distance slice in Figure
3 describes the relationship between angle glint and incident angle.
Comparing Figure 4(b), Figure 4(d), Figure 5(b), Figure 5(d) with
Figure 4(a), Figure 4(c), Figure 5(a), Figure 5(c) respectively, it is not
difficult to see that the sensitivity of angle glint to orientation is higher
than that to distance. Moreover, as F-18 is with respect to the plane
XOZ of symmetry, when ϕ = 0, we obtain eϕ = 0, which is clearly
visible in Figure 4(c).
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Figure 3. Slices of angle glint vs. distance and incident angle.
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Figure 4. The relationship between eϕ and distance and orientation.
(a) θ = 0 deg. (b) r = 1000 m. (c) θ = 0 deg. (d) [r, θ] = [1000, 0].

Figure 6 displays the effect of polarization rotation angle εx on line
glint error eϕ, eθ with ϕ = 15◦ and θ = 0◦. It can be known from (6),
for a specified polarization, εx affects eϕ and eθ via the weighting
factors of the scattering matrix, which leads to the periodicity shown
in Figure 6.
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Figure 6. The effect of polarization rotation angle on angle glint.

Notice there are 315 junctions satisfying |eθ| > 20 and 714
junctions with |eϕ| > 20 in the space grids of Figure 3 (116× 37× 53).
In consideration of clarity, the significant points with line glint error
greater than 20m are removed.
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5.2. Error Analysis of the Approximate Expression

Define the approximate error in percent as

∆E = 100×
∣∣∣∣∣

√
eθ2

2 + eϕ2
2 −√

eθ1
2 + eϕ1

2

√
eθ1

2 + eϕ1
2

∣∣∣∣∣ (19)

where the angle glints eθ1, eϕ1 are calculated by (6), while eθ2, eϕ2 are
by (18).

Figure 7 plots the variation curves of the near-field angle glint
obtained by (6) and (18) vs. distance, while Figure 8 represents the
variation curves of the angle glint approximate error ∆E with each
polarization transmitting and receiving pair vs. distance. It can be
observed in Figure 8 that different from the far-field angle glint, the
near-field angle glint depends on not only the incident angle but also
the distance. In the near range of the distance, great fluctuation occurs
in the angle glint with the change of distance. As the distance r
increases, the angle glint gradually approaches to the far-field value and
finally becomes independent of the distance. Besides, in the range of
the considered distance, the two results obtained by the two expressions
are almost consistent, which validate the approximate expression.
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Figure 7. Near-field angle glint variation curves vs. distance. (a) HH
polarization, εx = θ = 0, ϕ = 15 deg. (b) HH polarization, εx = θ = 0,
ϕ = 15 deg.

Figure 8 shows the error distribution vs. distance. When r >
300m, the approximate error is less than 1%. With the increase
of distance r, the error approaches to 0. However, when 100 m <
r < 300m, the error reaches 10% with the simulated orientation. As
the distance r further decreases, the predictive approximate error will
become much larger, but the distance has been in the blind range of
radar sensor.
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Figure 8. Approximate error ∆E variation curves vs. distance.
(a) HH polarization, εx = θ = 0. (b) HV polarization, εx = θ = 0.
(c) V H polarization, εx = θ = 0. (d) V V polarization, εx = θ = 0.

6. CONCLUSIONS

In this paper, we focus on the calculation of angle glint at near
field. Based on the phase gradient method, we derive the exact
expression of angle glint, which is applicable for the far-field angle glint.
Theoretical analysis shows that the angle glint expression in [1] is just
the far-field approximation of the derived expression under specified
polarization. Combined with the terminal guidance, we demonstrate
that in the range of considered distance, the amplitude impact on the
phase gradient can be ignored, and gives the responding approximate
expression. Eventually, we analyze the effect of each factor on angle
glint by simulation, and the approximate error between the simplified
and exact expressions. The relative results obtained in this study
could be adopted as some theoretical basis for the estimation and
investigation of the near-field angle glint.
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