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Abstract—A cylindrical microstrip array antenna with 5 pairs of
coupled slotted strip framed patches is analyzed. The patches are
proximity-fed by a cylindrical microstrip line. In order to extract the
reflection coefficient from the standing wave pattern on the microstrip
line, its length is about 5 wavelengths. To the best of the authors’
knowledge proximity-fed cylindrical arrays have not been analyzed
before using a rigorous MOM model that takes into account all
electromagnetic couplings between patches and feeding line. The
paper consists of three parts. The first part describes a plane wave
excitation of the cylindrical microstrip structure. It introduces some
innovating theoretical developments, like the improvement of the
asymptote for the spectral Green’s function and the explicit surface
wave contribution. The second part calculates the radar cross section
of the cylindrical microstrip structure with single and coupled slotted
strip framed patches. The resonant frequencies, and the amplitude and
phase of the current distribution are analysed. The third part describes
a design for a proximity-fed array of 5 coupled slotted strip framed
patches. It gives the reflection coefficient, current distribution on the
patches, and radiation pattern. A very low level of cross polarization
(< −40 dB) is achieved. It is shown that the resonant frequencies of the
cylindrical array and its planar analogue lie very close to each other.
This is due to the common nature of the low frequency slot resonance
for the slotted strip framed patch.
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1. INTRODUCTION

In recent years, cylindrical microstrip antennas (CMAs) have
been intensively analysed by different methods [1–19]. Several
characteristics of CMAs such as the radiation pattern [8–19],
input impedance versus frequency [10–16, 17, 18], radar cross-section
(RCS) [19], and far field versus frequency in particular directions (RCS
analogue) [16] have been studied in the literature. The excitation of the
CMA can be via a cylindrical microstrip line (CML) [7, 12, 13, 17], a
probe [14, 16, 18], or a plane wave [19]. In most cases, the analysis
has been performed with the method of moments (MoM) in both
spectral [10, 12, 13, 15, 17–19] and spatial [7, 11, 14, 16, 18] domains.
The usage of entire-domain basis functions (defined over the entire
patch area) [10, 11, 15] for the analysis, limits the application of MoM
to rectangular cylindrical structures. Arbitrarily shaped patches need
sub-domain basis functions. They have been used for a rectangular
cylindrical patch with recessed feed [7, 13], a U-shaped patch [17], an
E-shaped patch [18], and rectangular cylindrical patches with variously
shaped slots [19].

One of today’s problems is designing cylindrical microstrip
antenna arrays with shaped patches fed by a microstrip line. From
planar antenna analysis [20–22] it is known that the patches can be
fed using either direct electrical contact (strong coupling) with the
microstrip line or using proximity coupling (weak coupling). To the
best of the authors’ knowledge cylindrical microstrip antenna arrays
with shaped patches proximity-fed by a CML have not been rigorously
analysed in the literature as yet.

This paper uses a proper patch shape in an effort to realize
weak coupling between the array components and the feeding CML,
simultaneously providing linear polarization of the radiation field (low-
level cross polarization). Weak coupling means that the power on the
CML should be coupled to the array elements not too quickly, in order
to permit multi-element antenna arrays, and at the same time not too
slowly, so that as much power as possible is indeed coupled to the
global array.

The choice of the slotted strip-frame patch, which is shaped to the
rectangular cylindrical form and is made of a strip with a slot, is based
on the authors’ experience with familiar complex-shape patches. This
topology is expected to be very suitable in view of the specific features
needed for the patch current amplitude and phase distributions: when
the E-vector of the excitation field is parallel to the slotted side of
the patch, the radiation field has predominantly a linear polarization.
It is worth mentioning that, to the knowledge of the authors, no
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slotted strip-frame patches of this kind have ever been used in printed
planar or cylindrical antennas [23–37]. It is clearly shown in this paper
that slotted strip-frame patches are effective for cylindrical microstrip
antenna arrays (CMAAs) fed by a cylindrical microstrip line.

The theoretical analysis is carried out with the method of
moments in the spectral domain [13, 17, 19], exploiting, as in [17, 19],
piecewise sinusoidal (PWS) basis functions. The existing MoM scheme
in [13, 17, 19] has been upgraded, namely, considering some more
asymptotic terms in the spectral Green’s function, which reduces
simulation times. Also, the surface wave contribution to the mutual
impedance matrix has been explicitly derived. The reflection coefficient
in the feeding CML is considered as a function of frequency. The patch
current distributions and the CMAA radiation patterns are examined
at resonant frequencies. For comparison, a similar planar microstrip
antenna array has been analyzed with the simulation package Sonnet
12.53.

2. CYLINDRICAL MICROSTRIP STRUCTURE WITH
SLOTTED STRIP-FRAME PATCHES

2.1. Problem Formulation and Solution by the Moment
Method in the Spectral Domain

The cylindrical microstrip structure (CMS) under analysis is shown in
Fig. 1(a). It is based on the so-called Goubau line [38], and consists of
a z-infinite circular metal cylinder of radius r1 with a dielectric coated
cylinder of radius r0 and relative permittivity εr backing a slotted
strip-frame metal patch. The single and coupled patch versions are
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Figure 1. (a) CMS with a slotted strip-frame patch excited by a
plane wave, (b) single slotted strip-frame patch, and (c) pair of coupled
slotted strip-frame patches.
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presented in Figs. 1(b) and 1(c).
The plane wave

Einc = E0ejk0x (1)

with a unit amplitude (|E0| = 1) travels from infinity along the x-
axis to be normally incident on the patch surface. In formulae (1)
k0 = 2π/λ0, where λ0 is the free space wavelength. The time
dependence ejωt is assumed and suppressed throughout. In the
cylindrical coordinate system (r, ϕ, z) the z-components of the electric
and magnetic fields of the incident plane wave can be written as [39]

Einc
z (r, ϕ) =

n=∞∑
n=−∞

anz(r)e−jnϕ, (2)

H inc
z (r, ϕ) =

n=∞∑
n=−∞

ān z(r)e−j nϕ, (3)

with
an z(r) = W0 cos(γ)jnJn(k0r) (4)
ānz(r) = sin(γ)jnJn(k0r), (5)

where W0 is the free space wave impedance, Jn(x) the Bessel function
of the first kind of order n and argument x, and γ the polarization
parameter. For γ = 0◦, the E vector is parallel to the z-axis. For
γ = 90◦, the E vector is parallel to the y-axis.

It is required to find the patch current distribution produced by
the incident field. For this purpose, using the equivalence theorem [40],
the metal patch is substituted by the equivalent surface (sheet) electric
current distributed on the patch surface, S′. The current density
Je

s(r0, ϕ′, z′) on the surface S′ is unknown, with the subscript s
standing for z or ϕ. The total tangential electric field is represented
by the sum of the excitation field caused by the incident field and the
scattered field produced by the equivalent surface current in view of
the two partial domains: p = 0 for r ≥ r0 and p = 1 for r0 > r > r1.
Specifically,

Ep
s (r, ϕ, z) = Ep,exc

s (r, ϕ, z) + Escat ,J
s (r, ϕ, z), (6)

where

Escat ,J
s (r, z, ϕ) =

∫

z′

∫

ϕ′

ĜJ(r, r0, z, z′, ϕ, ϕ′) ·
[
Je

z(r0, ϕ
′, z′)

Je
ϕ(r0, ϕ

′, z′)

]
dS′, (7)

with the Green function

ĜJ(r,r0,z,z′,ϕ,ϕ′)=
[
GJ

zz(r, r0, z, z′, ϕ, ϕ′) GJ
zϕ(r, r0, z, z′, ϕ, ϕ′)

GJ
ϕz(r, r0, z, z′, ϕ, ϕ′) GJ

ϕϕ(r, r0, z, z′, ϕ, ϕ′)

]
(8)
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The excitation field Ep,exc
s (r, ϕ, z) is taken from the diffraction

problem solution [19] for a plane wave given by (1) incident on the
Goubau line. The derivation of (7) is available from [10]. The boundary
condition that the total tangential electric field (6) vanishes on the
substituted metal patch surface yields the following integral equation
for the unknown surface current density

−E0,exc
s (r0, z, ϕ)=

∫

z′

∫

ϕ′

ĜJ(r0, r0, z, z′, ϕ, ϕ′) ·
[
Jz(r0, ϕ

′, z′)
Jϕ(r0, ϕ

′, z′)

]
dS′. (9)

It should be borne in mind that the current and the Green’s function
components are evaluated at the interface r = r0. Integral Equation (9)
is solved by the method of moments using Galerkin’s scheme. The
unknown surface current density is expanded using the basis functions

J = Jz + Jϕ =
NB∑

i=1

αiJb
s,i, (10)

where

Jb
s,i(i = 1, . . . ,NB) =

{
Jb

z,i i = 1, . . . ,NBZ

Jb
ϕ,i, i = 1 + NBZ, . . . ,NBZ + NBϕ

. (11)

Here αi, i = 1, . . . , NB are the unknown coefficients and NB =
NBZ + NBϕ is the total number of basis functions, where NBZ =
(NZ − 1) × Nϕ, NBϕ = (Nϕ − 1) × NZ, and NZ and Nϕ are the
number of z- and ϕ-subdivisions, respectively.

By the method of moments, integral Equation (9) is reduced to a
system of linear algebraic equations (SLAE)

Zα = V, (12)

where α[i] = αi. Matrix Z is a block matrix

Z =
[
Zp,q

i,k

]
=

[
Zz,z

i1,k1 Zz,ϕ
i1,k2

Zϕ,z
i2,k1 Zϕ,ϕ

i2,k2

]
, (13)

where i1, k1 = 1, . . . , NBZ and i2, k2 = 1 + NBZ, . . ., NBZ + NBϕ.
The elements of matrix (13) evaluated in the spectral domain are

Zp,q
i,k =

1
4π2

∞∑
n=−∞

∞∫

−∞
J̃t

pi(−n,−h) ˆ̃G
J
(n, h) J̃b

qk(n, h)dh, (14)

where (p, q = z, ϕ), k = 1, . . . , NB, and J̃t
pi(−n,−h), J̃b

qk(n, h),

and ˆ̃G
J
(n, h) are the spectral equivalents of Jt

pi, Jb
q k, and ĜJ ,
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respectively. Function Jt
pi is the test function coinciding with the basis

functions (11) (Galerkin’s scheme). The ith element of the column
V = {V s

i (i = 1, . . . , NB}, where number i is as in (11), is evaluated
in the spatial domain as follows

V s
i = −

∫∫

Si

ds′Jt
siE

0,exc
s (r0, z, φ), (s = z, ϕ) (15)

Here surface Si is the domain of the ith test function. The spectral
Green’s function ˆ̃GJ (r0,n, h) is available from [16]. The Fourier
transforms of the basis functions and the final computational formula
for the V s

i elements are given in [19].

2.2. Effective Evaluation of the Mutual Impedance Matrix

A direct numerical evaluation of (14) presents a number of problems.
First, a large computation time is required as the spectral Green’s
function components involve cylindrical functions. To speed up the
calculations, we adopt the remedy applied during the evaluation
of the input impedance of a CML-fed CMA (strong coupling)
introduced in [12]. It consists of the separation of the asymptotic
terms out of the spectral Green’s function. For the first time,
asymptotic representations of spectral Green’s function components
were heuristically obtained in [12] by combining the available plane-
case formulas with the asymptotic cylindrical-case expressions for the
two limiting relationships h À n and h ¿ n between cylindrical
function index n and propagation constant h. Now with the
uniform asymptotes [41, 42] of the modified cylindrical functions, the
asymptotes of the spectral Green’s function components G̃J,AS

p q (h, n)
can be directly evaluated in pure cylindrical terms with the formulas

G̃J,AS
z z (h, n) =

jh̄2

√
n2 + (k0r0)2h̄2

k0r0

(εr + 1)
∆(n, h, r0 − r1) (16)

G̃J,AS
z ϕ (h, n) =

jh̄n√
n2 + (k0r0)2h̄2

1
(εr + 1)

∆(n, h, r0 − r1) (17)

G̃J,AS
ϕ ϕ (h, n) =

jn2

(k0r0)
√

n2 + (k0r0)2h̄2

∆(n, h, r0 − r1)
(εr + 1)

, (18)

where h̄ = h/k0,

∆(n, h, r0 − r1) = 1− e−2
√

(n)2+(k0r0)2h̄2(r0−r1)/r0 , (19)
Formulas (16)–(18) differ from the corresponding expressions in [12]
by an additional factor ∆ in (19). Considering the Green’s



Progress In Electromagnetics Research, Vol. 139, 2013 545

function [42, 43] in the mixed potential form, one finds that the second
term in the right-hand side of (19) represents the source image inside
an infinite, dielectrically coated circular cylinder.

Another trouble with a direct evaluation of (14) is the singular
behaviour of the spectral Green’s function components at the poles
associated with the Goubau line surface waves. Normally the pole is
avoided by deforming the real-axis path of integration into the complex
plane of the propagation constant. In our case, the path of integration
always stays on the real axis, and the spectral function component
behavior at the poles is compensated by the subtraction of the specially
designed function [19] given by

G̃J,SURF
pq (h, n) =

2R
(pq)m
n Pm

n

h̄2 − (Pm
n )2

(20)

with h̄ = Pm
n (n = 0, . . . , N and m = 1, . . . , Mn), where N is

the largest azimuth index n at which the surface waves still exist,
Mn the largest number of the surface waves for the azimuth index
n fixed, and R

(pq)m
n the residue of a the spectral Green’s function

component G̃J
pq(h, n) at a pole h̄ = Pm

n . Poles have been found and

investigated in [42] using the Newton method. The residues R
(pq)m
n

can be calculated numerically.
With Green’s function asymptotes (16)–(18) and function (20)

to compensate the singular behavior at the surface wave poles,
expression (14) becomes

Z
(p,q)
ik = Z

(p,q),CYL
ik + Z

(p,q),AS
ik + Z

(p,q),SURF
ik , (21)

where

Z
(p,q),CYL
i,k =

1
4π2

∞∑
n=−∞

∞∫

−∞
J̃t

pi(−n,−h) ˆ̃G1J(n, h)J̃b
qk(n, h)dh (22)

Z
(p,q),AS
i,k =

1
4π2

∞∑
n=−∞

∞∫

−∞
J̃t

pi(−n,−h) ˆ̃G
J,AS

(n, h)J̃b
qk(n, h)dh (23)

Z
(p,q),SURF
i,k =

1
4π2

∞∑
n=−∞

I
(p,q),SURF
i,k (n) (24)

˜̂
G1(n, h)= ˜̂

G(n, h)− ˜̂
GAS(n, h)− G̃J,SURF

pq (h, n) (25)

I
(p,q),SURF
ik (n)=

∞∫

−∞
J̃t

pi(−n,−h) ˆ̃G
J,SURF

(n, h)J̃b
qk(n, h)dh (26)
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Through the Fourier transformants of the basis and the test functions
presented in a form [19]

J̃b(t)
p,i (n, h) = J̃

b(t)
p,i (n, h)e0

p = ejz
b(t)
i hejnϕ

b(t)
i an

p (n)ah
p(h)e0

p, (27)

where e0
p is the unit vector in the z or ϕ direction. an

p (n) and ah
p(h)

are given in [19]. z
b(t)
i and ϕ

b(t)
i are the centers of basis (test) function

location, respectively. Expression (26) is written as

I
(p,q),SURF
ik (n) = e

−jn
(
ϕt

i−ϕ
b)
k

)
an

p (−n)an
q (n)f (p,q)(n) (28)

where

f (p,q)(n) =

∞∫

−∞
e−jh(zt

i−zb
k)ah

p(−h)e0
p
ˆ̃G

J,SURF
(n, h)ah

q (h)e0
qdh (29)

The evaluation of the integral (29) implies closing the integration
contour in the upper or the lower half-plane (depending on the z − z′
sign) and employing the residue theorem as in [42]. The result is

f (p,q)(n) = −2πik0

Mn∑

m=1

Rm
n ah

p (−Pm
n ) ah

q (Pm
n ) e±iP m

n k0(zt
i−zb

k) (30)

The sign ± is chosen depending on whether zt
i − zb

k < 0(+) or > 0(−).

2.3. Radar Cross Section Analysis

The solution of Equation (12) yields the patch current distribution
and, hence, the field at any point of space, including the far field
~Escat ,J(R, θ, ϕ). Then the RCS can be calculated as

σuν =
4πR2

∣∣∣ ~Escat ,J(R, θ = π/2, ϕ = 0) ·~iν
∣∣∣
2

∣∣∣ ~E0
u

∣∣∣
2 (31)

Here u, ν = θ, ϕ, | ~E0
u| is the field amplitude of the incident plane wave

polarized in the u-direction, ~iν the unit vector in the ν-direction, and
~Escat ,J ·~iν the ν-field component in the direction θ = π/2, ϕ = 0.

Assume that the analyzed CMS in Fig. 1 has r1 = 0.025m,
εr = 2.2, and r0/r1 = 1.0316. Fig. 2 presents the numerically
calculated RCS, σθ θ/σ0 (where σ0 = πWzWϕ is the normalizing factor)
versus frequency. Curve 1 is for the slotted strip-frame patch, curve
2 is for the pair of coupled strip-frame patches, and curve 3 is for the
custom rectangular cylindrical patch,whose size is the same as in [13],
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having dimensions Wz = Wϕ = 5.04 cm in the z- and ϕ-directions,
respectively. The resonant frequency of this patch is f = 1.9825GHz,
see Fig. 2, which is very close to the value f = 2.001GHz (the
difference is about 1%) observed in [13]. Here we use the same mesh
as in [13], namely, with 10 and 42 segments in the z- and ϕ-directions,
respectively. The segment size is Lz = 0.504 cm and Lϕ = 0.12 cm in
the z- and ϕ-directions, respectively. To get the slotted strip-frame
patch from the rectangular cylindrical patch in the frame of the same
mesh we can remove some segments in such a way that the slotted
strip-frame patch fits a size of 8× 16 segments having Wz = 4.032 cm,
Wϕ = 1.92 cm as overall dimensions (see Fig. 1(b)). The slot is located
in a symmetrical way, namely Wz = 2Ls + La, where Ls = 1.512 cm,
La = 1.008 cm. The patch profile of the pair of coupled slotted strip-
frame patches was constructed in a similar way with the only difference
that the original rectangular cylindrical patch is split in to 10 × 39
segments (39 segments instead of 42). Then the pair of coupled slotted
strip-frame patches is formed from the rectangular cylindrical patch
by removing some segments in such a way that eventually it fits a size
of 8 × 19 segments in the z- and ϕ-directions, respectively, having
Wz = 4.032 cm, Wϕ = 1.032 cm, Lϕ = 0.129 cm, Ls = 1.512 cm,
La = 1.008 cm, Lz = 0.504 cm, and Lb = 0.387 cm.

Notice that in the ϕ-direction, the single strip-frame patch is twice
as long as each patch in the pair of coupled strip-frame patches. This
is why the resonant frequency of the single patch is evidently lower
than the resonant frequency of the pair of coupled strip-frame patches.

The amplitude and phase distributions of the z- and ϕ-components
of the current density for the pair of coupled strip-frame patches are
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Figure 2. CMA radar cross section σθθ/σ0 and resonant frequencies
f for different-shape patches: 1 — slotted strip-frame patch, f1 =
0.985GHz, 2 — pair of coupled slotted strip-frame patches, f2 =
1.275GHz, and 3 — rectangular cylindrical patch, f3 = 1.9825GHz.
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presented in Figs. 3 and 4. The z-component of the current is mainly
concentrated on the slot-opposite conducting strips (Wz), with no
phase shift between these currents.

For the single patch, the amplitude of the ϕ-component of the
current is similarly distributed on both ϕ-directed conducting strips,
with a 180◦ phase shift between them. For the pair of strip-
frame patches, the amplitude and phase distributions of the current
z-component are symmetric with respect to the plane ϕ = 0◦.

(a) (b)

Figure 3. Amplitude distributions of the (a) z- and (b) ϕ- components
of the surface current density on the pair of coupled slotted strip-frame
patches.
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Figure 4. Phase distributions of the (a) z- and (b) ϕ-components of
the surface current density on the pair of coupled slotted strip-frame
patches.
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The amplitude distribution of the ϕ-component current density is
symmetric with respect to the plane ϕ= 0◦. But the phase distribution
is asymmetric.

2.4. Analysis of the Behavior of S11 for the Pair of
Strip-frame Patches When a Planar Structure Is Fed by a
Microstrip Line

In order to test the results of the pair of coupled strip-frame patches,
a comparison to the planar case is performed. Consider the situation
where the pair of coupled slotted strip-frame patches from Fig. 1(c) is
placed on a plane dielectric substrate backed by a metal plane. The
microstrip line feed of the patch is shown in Fig. 5(a). The constitutive
and the geometrical parameters of the planar microstrip antenna
and the above-considered cylindrical antenna are the same, with the
geometrical dimension Wstr = Lu = 0.129 cm added. The planar
microstrip array calculations were performed with the simulation
package Sonnet 12.53. The resulting reflection versus frequency is
plotted in Fig. 5(b). At resonant frequency f = 1.2737GHz, the
reflection coefficient |S11| = −6.48 dB is at its minimum.

The resonant frequencies of the pair of coupled slotted strip-frame
patches in the cylindrical (Fig. 2, curve 2) and planar (Fig. 5(b)) cases
agree very well. The difference is within 0.12%.

1

Wstr

Lu 

(a) (b)

Figure 5. (a) Planar microstrip antenna with a pair of coupled slotted
strip-frame patches fed by a microstrip line, (b) reflection coefficient
versus frequency.
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3. CYLINDRICAL MICROSTRIP ARRAY ANTENNA
WITH SLOTTED STRIP-FRAMED PATCHES

3.1. Problem Formulation and Solution by the Moment
Method in the Spectral Domain

Consider the cylindrical microstrip antenna array (CMAA) shown in
Fig. 6, consisting of 10 patches, each like a slotted strip frame. The
structure is symmetrical about the CML, ϕ = 0◦. The patches lie on
each side of the CML so that the slot faces the CML and the opposite
patch slot. For geometrical details of the single and coupled patches,
see Figs. 1(b) and 1(c). The CML begins at z = zoc (the lower open
end) and ends at z = zf (the upper open end). The delta-generator
location is z = zg.

 

z f
 

zq
 

zp
 

zg
 

zoc
 

R 
z θ 

delta 

generator 

r0 

r1 

 

εr 

metal

ϕ 

line 

patch 

Figure 6. The radiating structure — the CMAA of 10 patches.

In our theoretical model, the CML and the patch array are thought
of as a single patch of complex geometry. In this case, applying the
moment method to the integral equation for the patch current density
yields a SLAE (12), where the elements of its right-hand side column
V [44] are

Vi =
{ − 1V, z = zg

0, otherwise
(32)

The solution of (12) with right-hand side (32) yields the current density
distributions on the patches and along the microstrip line. Then,
as for the planar microstrip antenna, the reflection coefficient in the
CML and the value of the CMAA input impedance can be evaluated
using the equivalent scheme method [44] by virtue of the fact that
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the CML supports a single quasi-TEM wave. This is true when the
CML is electrically small (the metal cylinder radius is smaller than
the wavelength, r1 < λ, where λ is the free-space wavelength) and the
dielectric substrate is thin enough (r0− r1 = d ¿ λ), which is the case
for the problem under consideration.

To find the reflection coefficient in the CML, the standing wave
pattern is analyzed on the length zg < z < zp between the delta-
generator and the point zp, where the first patch begins. In this case,
to minimize reflections from the CML open end (z = zoc), the delta-
generator should be at a quarter wavelength from the CML right open
end (zg − zoc ≈ λg/4, where λg is the quasi-TEM CML wavelength).
Alternatively, the space ∆z = zp− zg should not be smaller than λg/2
in order to allow the standing wave simulation.

3.2. Results & Discussion

The analyzed structure (Fig. 6) has a metal cylinder of radius r1 =
2.5 cm. The dielectric substrate thickness is d = 0.762mm, the
relative permittivity is εr = 2.2. The array consists of 10 strip-
frame patches, Wz = 3.664 cm, Wϕ = 1.832 cm, Lϕ = Lz = 0.458 cm,
and La = 0.916 cm each, for each patch, with the center-to center
distance being 17.404 cm. The patch slot is symmetrically located.
The array is zq − zp = 73.28 cm long in the z-direction. Each patch is
Lu = Lϕ/2 apart from the CML. The CML width is Wstr = 0.229 cm,
the length is zf − zoc = 100.302 cm. The lower open end of the CML is
zp − zoc = 26.564 cm away from the first patch of the array and sticks
out of the array by zf − zq = 0.458 cm. Each patch is split into 8× 8
segments of size Lz × Lϕ/2. The CML structure and the patch array
are meshed similarly.

In Fig. 7, the cylindrical and the planar structures of equal
linear dimensions are compared for their frequency dependences of
the reflection coefficients in the CML. Curve 1 (circles) describes the
cylindrical CMAA and comes from the standing wave analysis on the
length zg < z < zp. The resonant frequency is f = 1.35GHz, with the
minimum reflection coefficient |S11| = −8.48 dB. Curve 2 (triangles)
is for the planar microstrip array simulated with Sonnet 12.53. The
resonant frequency difference between the cylindrical and the planar
arrays is within 0.4%.

Figures 8(a), (b) come from the solution of the SLAE (15) and
presents the amplitude (Fig. 8(a)) and the phase (Fig. 8(b)) of the
surface current z-component on the patches and on the CML at
resonant frequency f = 1.35GHz. Notice that the amplitude and
the phase of the z- and ϕ-components of the electric current of a
single patch in the array behave as in Figs. 3 and 4. For the array
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Figure 7. The reflection coefficient versus frequency: 1 — CMAA
and 2 — planar microstrip array antenna.

(a) (b)

Figure 8. The current z-component (a) amplitude and (b) phase
distributions on CMAA patches and CML at resonant frequency
f = 1.35GHz.

as a whole it is observed that there is a relative decay of the z-
current amplitude in the array from patch to patch (see Fig. 8(a))
while the phase (see Fig. 8(b)) remains constant. Also it is seen
from Fig. 8(a) that for any coupled pairs of patches the z-component
of the patch current density on the outer side sometimes prevails
over the current density on the slotted side of the patch and they
both are considerably larger than the CML current density. The
identical planar antenna array was examined at resonant frequency f =
1.3448GHz by using the simulation package Sonnet 12.53. The current
distribution resembles the CMAA current distribution (see Fig. 8).
Comparing the slotted strip-frame patch and the custom, similarly
sized rectangular cylindrical patch, Wz = 3.664 cm, Wϕ = 1.832 cm
shows that the former has far more pronounced resonant properties
(see the bandwidth in Fig. 2). Its resonant frequency (f = 1.35GHz)
is substantially lower than the resonant frequency (f = 2.75GHz) of
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Figure 9. The CMAA radiation patterns at resonant frequency
f = 1.35GHz: the Eθ-component versus θ with (a) ϕ = 0◦ and versus
ϕ with (b) θ = 90◦.

the rectangular cylindrical patch.
Figures 9(a) and (b) plot the far-field radiation patterns of the

Eθ-component versus θ at ϕ = 0◦ (a) and versus ϕ at θ = 90◦ (b). The
CMAA pattern shows a sole main lobe at θ = 88◦. The sidelobe level
does not exceed −14 dB within 0◦ < θ < 180◦ in the forward radiation
case.

A spatial radiation pattern analysis reveals that the back lobe,
θ = 272◦ (Fig. 9(a) is actually the main lobe for ϕ = 180◦ (Fig. 9(b)).
This takes place when the spatial radiation pattern tends to be conical
with θ = 88◦ = const. In this case, the forward to backward radiation
ratio is 11.5 dB. The cross polarization of the antenna is lower than
−40 dB. This low amount of cross polarization is provided by the
specific phase distribution of the current density on the pair of coupled
slotted strip-frame patches in the symmetrical excitation case. Namely,
the contribution of the current ϕ-component to the radiation pattern
is minimum (see Figs. 4(b) and 5(b)).

The Q factor of the main resonance is Q ≈ 700. This is good
enough for many narrow-band antennas and multifrequency antennas.
In the millimeter wave region, the single-patch bandwidth can be
extended by increasing the substrate thickness to λ/(4

√
εr).

The current distributions on the patch and along the feed line were
thoroughly analyzed. A mixed regime is observed, in the sense that
both standing-wave and traveling-wave regimes hold simultaneously in
the CML at the patch array location. For the discussed configuration
the standing-wave regime prevails over the travelling-wave regime. As
the number of patches increases, the traveling-wave regime will become
dominating.



554 Svezhentsev, Kryzhanovskiy, and Vandenbosch

4. CONCLUSION

Cylindrical microstrip structures with slotted strip-frame patches,
single and coupled, have been examined for the first time. It has
been shown that both patch varieties have substantially lower resonant
frequencies than analogous rectangular cylindrical patches. Resonant
frequencies of a pair of coupled slotted strip-frame patches in the planar
and cylindrical cases agree very well (within 0.12%). This is explained
by the common nature of the low frequency slot resonance, which takes
place in both cases.

A cylindrical microstrip antenna array with 5 pairs of coupled
slotted strip-frame patches proximity-fed by a microstrip line of about
5 wavelengths in size has been proposed. Rigorous analysis of such
large proximity-fed cylindrical arrays has not been realised before.
The time consumed has been reduced considerably by using a special
technique in which asymptotes of the spectral Green’s functions have
been extracted.

An extremely low level of cross polarization (< −40 dB) was
obtained. A very good agreement (0.4%) for resonant frequencies and
resonant current distributions is observed between the cylindrical and
planar antenna versions. The fact that these two arrays were analyzed
by two different methods provides an extra validation of the model
used for the cylindrical microstrip antenna.

Slotted strip-frame patches are promising, also at mm wave
frequencies, because there are no direct electrical contacts in the
microstrip line feed case. The advantage of the proximity fed antenna
array consists of the fact that the effective patch-to-CML coupling is
controlled by varying the space between the CML and the patches. The
slot size and the patch shape do not need to be changed. Therefore
the weak coupling regime may allow providing different classical array
profiles of the current distributions on the elements like cosine, cosine-
quadratic, etc.. It also allows antennas with a series feed of several
tens of wavelengths.

The proposed theoretical model can be effectively used for the
analysis of patch arrays with other complex shapes.
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