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Abstract—Based on the scattering theory and the Green function
method, a dynamical theory is given for calculating the diffraction of
deeply-etched gratings with a stratified structure substrate. The key
of our method is that the patterned grating structure is considered as
a perturbation to the unpatterned stratified structure rather than to
vacuum. Using the first-order Born approximation and in the Fresnel
diffraction region, we obtain a simple analytical expression, which can
be used to calculating the scattering intensity of deeply-etched circular
binary Fresnel zone plates with a stratified substrate (MDECBFZPs).
The numerical results show that the focusing intensity at the foci of
the MDCBFZP changes periodically with the etching depth and the
thickness of the substrate film. Our results are in good agreement with
FDTD simulations.

1. INTRODUCTION

A Fresnel zone plate (FZP) is an important optical element with light
collecting properties and it has many applications in the visible light,
millimeter waves, extreme-UV, and x-ray domain regions [1–6]. Many
papers based on the Rayleigh-Sommerfeld diffraction integral or on
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the Fresnel diffraction integral analyze the focusing properties of in-
plane FZPs [7–10]. Some studies show that the deeply-etched one-
dimensional (1-D) gratings have many excellent properties such as
high diffraction efficiency [11, 12] and suppressing the sidelobes in the
frequency response of a metal-insulator-metal plasmonic filter [13]. The
aim of this paper is to analyze the diffraction properties of deeply-
etched 2D circular Fresnel zone plates.

Many analysis methods, such as modal method [14], rigorous
coupled-wave approach [15], and matrix-method approach [16], are
used to calculate the diffraction of deeply-etched 1D periodical
gratings. A deeply-etched FZP is a non-periodical structure of
grating. It is difficult that above mentioned method is applied to
calculate the diffraction of non-periodical gratings. Recently, Kim et
al. numerically investigated the transmission optical field enhancement
by a metal/dielectric multilayered 2D-focusing sub-wavelength FZP
using the 3D finite-difference time-domain (FDTD) method [5]. The
FDTD method is appropriate only to the gratings which size are very
small, which is difficult to compute the field distribution of a large
size FZP. The scattering theory and method is a general method of
analyzing the scattering from inhomogeneous media [17], which can be
applied to analyze the diffraction of any grating regardless of its size,
periodicity or non-periodicity. In 1993, Sammar and André presented
a dynamical theory of the diffraction of one-dimensional (1D) ideal
deeply-etched stratified Fresnel linear zone plates (SFLZPs) [18, 19],
which is based on the scattering theory. Le and Pan applied essentially
the method by Sammar and André to calculate the diffraction field
of 2D ideal focusing multilayer reflection circular FZPs in 1999 [20].
However, Sammar and André considered the scattering potential of
the SFLZP as a perturbation to vacuum in [19]. Obviously, such
processing method is only a rough estimation for the diffraction field of
the grating without the substrate, because it is more accurate that only
the scattering potential of the SFLZP is considered as a perturbation
to multilayer structure vacuum. On the other hand, a grating substrate
layer is often needed in the actual grating etching. In this paper, we
develop the scattering theory to accurately calculate the diffraction of
deeply-etched circular binary FZPs with a multilayer substrate film
(MDECBFZPs). The key in our method is that scattering potential of
the MDECBFZP is considered as a perturbation to multilayer structure
rather than to vacuum. We obtain an analytical expression in the first-
order Born approximation, which can be easily used to calculate the
diffraction field of MDECBFZP in the Fresnel diffraction region.
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2. INTEGRAL EQUATION FOR THE SCATTERING
PROBLEM OF MDEBCFZP

Without loss of generality, let us consider a double-layer optical
medium stratified in depth, laterally patterned and referred to the
cylindrical frame as shown in Figure 1. The FZP pattern is deeply
etched in the upper surface of a double-layer substrate. We assume
that the incoming and transmission space are air with the refractive
index of n0 = n3 = 1, and the first- and second films are glass and
Magnesium fluoride (MgF2) with the refractive indexes of n2 = 1.52
and n3 = 1.38, respectively. We limit our results to the scalar problem;
electromagnetically, it corresponds to the transverse electric (TE)
polarization incident on the MDECBFZP. The propagation equation
is restricted in the patterned stratified structure to the following
Helmholtz equation [17]:

[
∆ + k2ε(R)

]
U = 0, (1)

where k = 2π/λ is the wave number, λ is the wavelength, and R is
the position vector in the scattering medium. ε(R) is the dielectric
constant of the patterned multilayer structure.

We denote that the dielectric constant of the unpatterned
multilayer structure as εf (R). It will be convenient to re-write
Equation (1) in the form

[
∆ + k2εf (R)

]
U = V (R)U, (2)

where
V (R) = k2 [εf (R)− ε(R)] . (3)
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Figure 1. Geometry of the scattering of a plane wave incident upon
a deeply-etched circular binary Fresnel zone plate with a double-layer
substrate: (a) Top down view in xy plane, and (b) cross-sectional view
in xz plane.
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Equation (2) is an inhomogeneous differential equation, where the
function V (R) is called the perturbed scattering potential of the
patterned structure relative to the unpatterned stratified structure
with the dielectric constant of εf (R).

According to the scattering theory [17], Equation (2) can be
considered an inhomogeneous differential equation whose general
solution is

U(r) = U (f)(r) + U (s)(r), (4a)

U (s)(r) = − 1
4π

∫

Ω
V (R)U(R)

exp(ik |r−R|)
|r−R| dR, (4b)

where U (f)(r) is the total field of the unpatterned multilayer structure
and U (s)(r) is the perturbed scattering field by the patterned grating.
Ω is the volume in the grating layer.

Assuming that r is much larger than R and the thickness of the
patterned region is small enough, we expand |r −R| in terms of R/r
and restrict ourselves to the second order in R. In this case we have
the approximation

exp (ik |r−R|)
|r−R| ≈ exp(ikr)

r
exp

(
−ikd ·R

)
exp

(
ik′R2

2r

)
. (5)

Here kd is the scattered wave vector, and k′ is related to the angle of
τ between r and R,

kd = kr/r, k′ = k sin2 τ. (6)

On using the approximation (Equation (5)) in the integral in
Equation (4b) we see that

U(r) = U (f)(r) +
exp(ikr)

r
f(kd,k, r), (7)

and

f
(
kd,k, r

)
=− 1

4π

∫

Ω
V (R)U (R) exp

(
−ikd ·R

)
exp

(
ik′R2

2r

)
dR. (8)

3. THE FIRST-ORDER BORN APPROXIMATION

For the scattering potential it is clear from Equation (3) that a
patterned multilayer structure will scatter weakly if its dielectric
constant ε(R) differs only slightly from the dielectric constant εf (R)
of the unpatterned stratified structure. In the conventional first-order
Born approximation [17], the incident field U (i) is used to replace the
total field U under the integral in Equation (4b). For the FZP with
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a stratified structure substrate, we replace U under the integral in
Equation (4b) with U (f), which is a good approximation to the total
field. One then obtains, to the solution of the integral equation of
scattering, the expression

U(r)=U (f)(r)−exp(ikr)
4πr

{∫

Ω
V (R)U (f)(R)

exp(ik |r−R|)
|r−R| dR

}
. (9)

This approximate solution is called as the modified first-order Born
approximation, or, more precisely, the first-order Born approximation
under the circumstances with a stratified structure substrate.

Under the condition of the modified first-order Born approxima-
tion and in the Fresnel diffraction region, Equation (8) can be expressed
as

f
(
kd,k, r

)
=− 1

4π

∫

Ω
V (R)U (f) exp

(
−ikd ·R

)
exp

(
ik′R2

2r

)
dR. (10)

4. SCATTERING OF AN IN-DEPTH STRATIFIED
MEDIUM

In this section our purpose is to calculate the optical field distribution
(U (f)) of an unpatterned multilayer structure. We assume the incident
field is a unit-amplitude plane wave,

U (i)(r) = exp(ik · r) = exp(ikρ · ρ) exp(ikzz). (11)

The Helmholtz equation for an unpatterned multilayer structure can
be obtained from Equation (2) as

[
∆ + k2εf (R)

]
U (f) (R) = 0. (12)

Let us consider a medium that is laterally unbounded but stratified
in depth, that is, the dielectric constant depends only on the z
coordinate. For an arbitrary profile it is possible to divide this profile
into homogeneous slabs of thickness hj . According to the boundary
conditions of the electromagnetic fields, the tangential component of
U (f)(R) is consecutive. Thus the field in the jth-layer slab can be
written as

U
(f)
j (R) = exp(ikρ · ρ)U (f)

j (z). (13)

where U
(f)
j (z) can be obtained by solving the Helmholtz equation in

each homogeneous slab j of dielectric constant εj :
[

∂2

∂z2
+ k2εj

]
U

(f)
j (z) = 0. (14)
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By using the method presented in [19] we can obtain the scattering
field of the unpatterned double-layer structure in the glass

U (f) = [T1 exp(ik1,zz) + R1 exp(−ik1,zz)]

rect
(

z + h1 + h2 − h/2
h/2

)
exp(ikρ · ρ). (15)

where k1,z =
√

ε1k2 − k2
x.

5. APPLICATION TO A TRANSMISSION MDECBFZP

5.1. Modeling of Transmission Circular Binary Fresnel Zone
Plate

We now consider a positive circular binary Fresnel zone plate as shown
in Figure 1. The FZP grating is etched in the glass slab of thickness
h1 and the etching depth of the grating is h(< h1). The radius of the
central zone is a and the focal length of the first-order (primary) focus
is f1 = a2/λ. To enhance the transmission of light, an antireflection
layer whose thickness is h2 is coated on the surface of the glass. The
origin O is chosen at the bottom surface of the antireflection film.
The scattering potential of the patterned structure in Equation (3) is
expressed as

V (ρ, z) = k2(εb − εa)Vρ(ρ)Vz(z), (16a)

Vρ(ρ) =
L∑

l=0

circ
[
ρ/

(
a
√

2l + 1
)]
− circ

[
ρ/

(
a
√

2l
)]

, (16b)

Vz(z) = rect [(z + h1 + h2 − h/2)/(h/2)] , (16c)
By use of the method in [17, 19] we obtain the scattering field of the
unpatterned double-layer structure in the glass

U (f) = [T1 exp(ik1,zz) + R1 exp(−ik1,zz)]

rect
(

z + h1 + h2 − h/2
h/2

)
exp(ikρ · ρ). (17)

Substituting Equations (16) and (17) into Equation (10), we can
calculate the scattering field of the MEDCBFZP with the double-
layer substrate. Due to the separability of the electric susceptibility
of materials and the etching depth h ¿ r, we can assume a spatial
dependence of scattering potential of the scattering medium and
calculate the scattering amplitude laterally and in-depth, respectively,

f(kd,k, r) = − 1
4π

k2 (εb − εa)
ˆ̃Vρ

(
kd

ρ − kρ, r
) [

T1
ˆ̃Vz(kd

z − k1,z, r)

+R1
ˆ̃Vz(kd

z + k1,z, r)
]
. (18)
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where

ˆ̃Vρ(kd
ρ − kρ, r)=2π

∫ ∞

0
Vρ(ρ) exp

(
ikρ2

2r

)
J0 [(kd

ρ−kρ)ρ]ρdρ, (19a)

ˆ̃Vz(kd
z − k1,z, r)=

∫ −(h1+h2−h)

−(h1+h2)
exp

(
ikz2

2r

)
exp

[
−i

(
kd

z−k1,z

)
z
]
dz, (19b)

ˆ̃Vz(kd
z + k1,z, r)=

∫ −(h1+h2−h)

−(h1+h2)
exp

(
ikz2

2r

)
exp

[
−i

(
kd

z +k1,z

)
z
]
dz. (19c)

Due to the etching depth h much smaller than r, the Fresnel transform
ˆ̃Vz(qz, r) can be replaced by the Fourier transform Ṽz(qz). Thus,
the total scattering field of the patterned multilayer structure can be
simplified as

f
(
kd,k, r

)
=− 1

4π
k2 (εb − εa)

ˆ̃Vρ

(
kd

ρ − kρ, r
)

[
T1 exp V̂z

(
kd

z − k1,z

)
+ R1V̂z

(
kd

z + k1,z

)]
. (20)

Ṽz(qz) can be easily calculated. The analytical expression of ˆ̃Vρ(qρ, r)
at the optical axis (that is, when qρ = 0) is obtained as

ˆ̃Vρ(qρ, r) = πa2sinc
(

ka2

4r

)
exp

(
ika2

4r
(2L + 1)

)

sin
(

k(L + 1)a2

2r

)
/ sin

(
ka2

2r

)
. (21)

The positions of the foci from Equation (21) can be obtained as

rj = − f1

2j + 1
, j = 0, ±1, ±2, . . . (22)

Applying the Lommel functions we obtain the simple analytical
expression of ˆ̃Vρ(qρ, r) for the off-axis case of qρ 6= 0, giving

ˆ̃Vρ(qρ,r) = πa2
2L+1∑

m=1

(−1)m+1um, (23a)

um =





2m

ξm
exp

(
iξm

2

)
[U1(ξm, νm)− iU2(ξm, νm)], ξm >νm

2mi

ξm

[
exp

(
− iv2

m

2ξm

)
−exp

(
iξm

2

)
[V0(ξm, νm)− iV1(ξm, νm)]

]
, ξm<νm

, (23b)

where Un and Vn are the Lommel functions [17], ξm = ma2k/r,
νm =

√
maqρ.
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5.2. Numerical Results

In the following calculations, we assume the unit-amplitude plane wave
of λ = 0.65µm is incident on the MDELBFZP along the z axis of
θ0 = 0◦. The MDECBFZP’s parameters are n0 = n3 = 1, n1 = 1.5,
n2 = 1.38, L = 200, f1 = 9 mm, h1 = 1.2 mm, n2h2 = λ/4, and h = λ.
The radius of the FZP is 1.532 mm. Figure 2 shows the scattering
intensity (I = |f(kd,k, r)/4π r|2) distribution along the z axis. From
the figure it is found that the intensities of each spots are equal for
this FZP but their axial full-widths at half-maximum (FWHMs) are
unequal, where the axial FWHM of the first-order spot is maximum.
Our calculation also shows that the transverse FWHMs of each spots
for this FZP are equal in the whole Fresnel diffraction region.

(a) (b)

Figure 2. Intensity distribution of the scattering light of the
MDECBFZP along (a) the optical axis and (b) the comparison of each
spot sizes, where 1, 3, and 5 denotes the first-, third-, and fifth-order
spots, respectively. The MDECBFZP’s parameters are n0 = n3 = 1,
n1 = 1.5, n2 = 1.38, L = 200, f1 = 9 mm, h1 = 1.2mm, n2h2 = λ/4,
and h = λ. The radius of the FZP is 1.532mm.

Figures 3(a), (b), and (c) show the scattering intensity at the
primary focus versus the MDECBFZP’s h, h1, and h2, respectively.
It is clear that the scattering intensity oscillates periodically. It is
found from Figure 3(a) that the scattering intensity is largest when the
etched depth h is equal to odd wavelengths. Our calculation is same
as that based on FDTD simulation [5] but different from that in [19].
The result of Sammar and André showed that scaterring intensity of
the SFLZP increase gradually as the increase of the etching depth of
the grating [19]. Therefore, our processing method is necessary to
accurately and fast calculating the diffraction field of deeply-etched
grating. From Figure 3(c) we find that the scattering intensity can be
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(a) (b) (c)

Figure 3. The scattering intensity at the primary focus of the
MDECBFZP with (a) h, (b) h1, and (c) h2. The MDECBFZP’s
parameters are same as in Figure 2.

(a) (b)

(c) (d)

Figure 4. Focusing characteristics of a MDECBFZP with L =
20 zones, a = 10µm, and h = 650 µm etching depth under CP
illumination. The blue and red curves are the results obtained by
the theory formulation and by the FDTD simulation, respectively.
(a) and (c) are the transverse intensity distributions in the focus
planes of z = f1 (first-order) and z = f1/3 (third-order), respectively.
(b) and (d) are the axial intensity distribution in the vicinity of the
focuses of z = f1 and z = f1/3.

enhanced when the antireflection film has a appropriate thickness. For
an example, I = 6.455 × 105 when h2 = 0 but I = 7.09 × 105 when
n2h2 = 0.254λ, the scattering intensity being improved by 9.2% using
the antireflection film.
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6. COMPARISON WITH FDTD SIMULATION RESULTS

With the purpose of validating the model developed on in this paper,
we shall compare the previous results with the simulation results
provided by the finite-difference time-domain (FDTD) method for
the considered FZP. In our FDTD simulations, the input source
is a monochromatic circularly-polarized (CP) plane wave with a
wavelength λ = 650 nm and perfectly matched layer is used as
the boundary conditions. The parameters of the MDECBFZP are
L = 20 zones, a = 10µm (f1 = 153.8µm), h1 = h2 = 10µm,
n0 = n3 = 1, n1 = 1.5, n2 = 1.38. Figures 4 and 5 compare the total
intensity (|Ex|2 + |Ey|2 + |Ez|2) distribution obtained by the theory
model and FDTD simulation. From these figures it is seen that the
field distribution calculated from the FDTD method is close to that
predicted from the analytical model. This implies that the analytical
model can match well with FDTD calculation. It is noted that the
error between two curves in Figure 4(c) is large at the third-order focus,
which may be due to the use of the first-order Born approximation. If
the higher-order Born approximation is used, the error is likely reduced.

Figure 5. The intensity of focusing light at the first-order focus as
a function of the etching depth of the MDECBFZP with 20 zones.
Solid curve and discrete dots are the results obtained by the theory
formulation and by the FDTD simulation, respectively.

7. CONCLUSION

Basing on the scattering theory and the Green function method,
we have proposed a simple and effective method to calculate the
diffraction field distribution of deeply-etched gratings with a stratified
structure substrate. The key of our method is that the patterned
grating structure is considered as a perturbation to the unpatterned
stratified structure rather than to vacuum. As an example, we calculate
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the scattering intensity distribution of the transmission MDECBFZP
with a double-layer substrate film in the Fresnel diffraction region.
The calculation results show that the etched depth and the thickness
of each layer in the stratified structure substrate have all an important
effect on the scattering intensity at the foci of the MDECBFZP. The
diffraction intensity periodically varies with the etching depth of the
grating and the thickness of each film in the MDECBFZP. The results
deduced from the proposed model shows qualitative agreement with
that obtained from the FDTD method. Thus the proposed formulation
is useful in simplifying the analysis compared to rigorous diffraction
calculations. Although we have focused our attention in the last part
of the paper on the MDECBFZP’s working by transmission, we must
emphasize that our method can be profitably implemented for the
reflection FZPs, especially for the FZP’s with a high aspect ratio and a
multilayer structure substrate. Finally, we have to point out that since
we use some approximations in the process of derivation, the obtained
analytical formulae for calculating the etched-deeply grating is valid
for non-subwavelength gratings and in the Fresnel diffraction region.
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