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LASSO BASED PERFORMANCE EVALUATION FOR
SPARSE ONE-DIMENSIONAL RADAR PROBLEM UN-
DER RANDOM SUB-SAMPLING AND GAUSSIAN
NOISE

Yin Xiang*, Bingchen Zhang, and Wen Hong

Institute of Electronics, Chinese Academy of Sciences, Beijing, China

Abstract—Sparse microwave imaging is the combination of mi-
crowave imaging and sparse signal processing, which aims to extract
physical and geometry information of sparse or transformed sparse
scene from least number of radar measurements. As a primary in-
vestigation on its performance, this paper focuses on the performance
guarantee for a one-dimensional radar, which detects delays of several
point targets located at a sparse scene via randomly sub-sampling of
radar returns. Based on the Lasso framework, the quantity relationship
among three important factors is discussed, including the sub-sampling
ratio ρM , sparse ratio ρK and signal-to-noise ratio (SNR), where ρM is
the ratio of number of random sub-sampling to that of Nyquist’s sam-
pling, and ρK is the ratio of sparsity to the number of unknowns. In
particular, to ensure correct delay detection and accurate back scat-
tering coefficient reconstruction for each target, one needs ρM to be
greater than C(ρK)ρK log N and the input SNR be of order log N ,
where N is the number of range cells in scene.

1. INTRODUCTION

Sparse microwave imaging is a new concept that combines microwave
imaging and sparse signal processing. It seeks to efficiently acquire
the target’s geometry and physical characteristics, which could be
sparsely represented, from limit radar observations or measurements in
temporal, frequency, spatial or spectrum domain [1]. In all features of
sparse microwave imaging, one of the sparse signal-processing tools
named as compressive sensing (CS) plays an important role. CS
was developed by Donoho [2], and Candes and Wakin [3] in 2004.
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It combines the processing of sampling and data compression, which
allows one to measure the sparse of compressed signal via very small
number of incoherent linear projections, then recover it accurately
via non-linear optimization methods. To date, to capture a signal
vector x of dimension N with K (K ¿ N) freedom, one only
needs M ∼ O(K log N) measurements. It means that the sufficient
number of samples measured by the sparse microwave imaging radar
is proportional to the sparsity of scene under observation, but not
to the bandwidth of radar system, when CS is applied. Accordingly,
compared with existing radar systems, the sparse microwave imaging
radar may have the potential ability to reduce the system data amount
and complexity [4].

In recent years, plenty of works have investigated the theory and
application of sparse microwave imaging radar, and a few of them are
mentioned here. In [5], Baraniuk and Steeghs suggest to apply CS to
radar imaging. After that, the CS based SAR imaging [6, 7], ISAR
imaging [8, 9] and other applications of microwave imaging [10–12] are
extensively discussed. A more detailed and comprehensive account can
be found in [4, 13, 14]. In particular, the principle of sparse microwave
imaging is fundamentally established in [4].

The works mentioned above show big progress of sparse microwave
imaging, but more efforts need to be made. If sparse microwave
imaging radar is going to be practical, one fatal question that we have
to face is how to evaluate the system performance. Namely, how many
samples will be sufficient against the given sparsity of scene and the
signal-to-noise-ratio (SNR) of radar measurement.

In this paper, we primarily attempt to answer the above question.
We focus on the fundamental radar microwave imaging problem.
In this problem, the radar transmits band-limit pulse to a one-
dimensional sparse scene, and the echo is randomly sub-sampled to
form compressed measurements. The term ‘sub-sample’ means that
the average sampling rate is lower than the Nyquist’s rate and that
it is randomly generated to form a proper CS measurement matrix,
which mainly determines the performance of system.

In the CS theory, several criteria are developed to investigate
whether the measurement matrix has a good performance for the
recovering of the sparse vector, such as mutual coherence [15],
restricted isometric property (RIP) [16], restricted orthogonality
property (ROP) [17], exact reconstruction criteria (ERC) [18]. In
general, mutual coherence is relatively easy to calculate, but the results
based on mutual coherence are sub-optimal compared with the results
on RIP, ROP, and ERC. RIP, ROP, and ERC based performance
guarantees are better, but still too strict to get a numerical constant
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C in the performance guarantee formed as M (M > C ·K log N).
In this paper, we would like to derive the performance guarantee

based on the Lasso framework. The sparse recovery property has
already been extensively demonstrated in [18]. With the help
of the existed theoretical tools, a quantity bound related to the
aforementioned three factors is given by considering the particular
measurement matrix of one-dimensional sparse microwave imaging
radar. The rest of the paper is organized as follows. Section 2 briefly
introduces the model of radar problem and Lasso framework. Section
3 discusses the performance guarantee for noiseless case. Section 4
is about the same task for the noisy case. Section 5 makes simple
simulations to support our analysis, and the last section concludes the
whole paper.

2. PROBLEM SETUP

2.1. Radar Problem Based on Sparse Signal Processing

In this model, one-dimensional sparse scene, which contains only a
small number of point scatters, is measured by randomly sub-sampled
radar echo. The radar return equation is written as a linear convolution
form

s(t) =
∫

h(t− τ)x(τ)dτ + n(t) (1)

where, s denotes the echo, and h denotes the transmitted pulse and is
considered as linear modulation signal written as

h(τ) = rect
( τ

T

)
exp

(
øπKτ2

)
, τ ∈

[
−T

2
,
T

2

)
(2)

where, T, K are the time duration and linear rate of the linear

modulation signal, respectively, and rect (x) =
{

1, |x| ≤ 0.5
0, else , x(τ) =

K∑
k=1

xkδ(τ − τk). xk stands for the back-scattering coefficients of the

target k, n the additive Gaussian noise, t the fast time, and τ the
delay of each target.

Let y = Θ ◦ s = [s(t1), . . . , s(tM )]T be a set of non-uniform
samples randomly sampled from s(t), where Θ denotes the linear
operation for sub-sampling. Together with (1), each sample of s(t)
can be represented as

ym =
∫

h(tm − τ)x(τ)dτ + n(tm), m = 1, . . . , M (3)
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where, M is the number of sub-samplers.
To solve Equation (3) via sparse signal processing meth-

ods, x(τ) should be discreted to the vector form as x =
[x(∆τ), . . . , x(n∆τ), . . .], n = 1, . . . , N , where ∆τ is selected to be
∆τ = 1/B so as to preserve the stability of sparse recovery due to [19],
and N is the number of the range cells, i.e., the number of unknowns.
Then (3) is changed as

y = ΘHx + n = Φx + n (4)

where, Φ = ΘH ∈ CM×N is the measurement matrix of the sparse
microwave radar. Without losing any generality, assume that y is
randomly selected from the Nyquist’s samples of s(t), then H can be
expressed as a discrete linear convolution matrix (see Fig. 1).

Figure 1. Construction of measurement matrix of radar with
randomly sub-samplers, Zhang et al. [4].

Let NS , NH be the number of Nyquist’s samples in s(t), h(t),
respectively. The sub-sampling ratio is defined as

ρM =
M

Ns
(5)

Assume that x is sparse and includes up to K non-zero entries, all of
which should not be constrained in small regions; otherwise some local
region will be too dense to be correctly recovered. For instance, let an
extremely large scene include N (N À NH) range cells, but contain
one NH -length continuous region that is full filled. Though other parts
of the scene can be empty, it is obvious that the full filled region can
never be reconstructed from sub-Nyquist’s samples/measurements. As
a result, the sparse ratio ρK is needed to be defined as a value such
that any Nh-length continues range cells contain no more than ρKNh

non-zero entries, that is

ρK = sup
k

‖xΞ‖0

Nh
, Ξ = {k, k + 1, . . . , k + Nh − 1} (6)
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Assume that the complex noise n satisfies n[i]
i.i.d.∼ N(0, σ2

0), i =
1, . . . , M , where N() stands for the normal distribution, and σ2

0 is the
variance of noise and also means its average power. Then the SNR of
radar can be defined as the ratio of signal average power to σ2

0 [20].
For instance, if there is only one point target located at the scene,
the SNR equals |x|2/σ2

0, where |x| is the amplitude of the target echo.
However, for a scene that contains K À 1 targets, it is hard to express
the particular average signal power. As a result, the SNR used in this
paper is given as

SNR =
∑K

k=1 |xk|2/K

σ2
0

=
‖x‖2

2

Kσ2
0

(7)

which is a simple generalization of the one-target case.
As the signal vector, x is sparse in its own domain and can be

recovered by solving the following convex optimization problem [3]

x̂ = argx min ‖x‖1 s.t. ‖y−Φx‖2 ≤ ε (8)

where ‖‖1 stands for the L1-norm of vector and ε = ‖n‖2. This L1-
constrained form is known by the name of Basis Pursuit De-Noising
(BPDN), which can be transformed into the flowing L1-penalized
optimization problem, also called as Lasso, by the statistic community

x̂ = argx minL (x) ; L (x) =
1
2
‖y−Φx‖2

2 + γ ‖x‖1 (9)

where, γ > 0 is regularization parameter, which is chosen due to the
level of back-projection noise Φ∗n, and plays as a role of de-noising
threshold clearing all recovery noise outside a finite support. In the
following paragraphs, we will make our analysis about the performance
evaluation under the Lasso framework.

2.2. A General Sparse Recovery Property of Lasso

Lasso (least absolute shrinkage and selection operator), is used by the
statistic community to demonstrate a particular regularization version
of least squares (see (9) for its definition). From the Bayesian aspect,
Lasso performs a zero-mean Laplace priori on the under-test signal x.
As regularization goes stronger (γ becomes larger), Lasso pushes more
and more entries of the recovered solution x̂ to be zeros. Accordingly,
Lasso can be used to find the sparse solution of given under-determined
linear problems formed as (4).

In a huge number of research papers about Lasso, the general
sparse recovery property is extensively studied, and no limitation on
the kind of the measurement matrix is made in [18]. One can make
the following statements from [18]:
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Let x, x̂ be the original and the recovered sparse signal via Lasso,
respectively, Λ = supp(x) denotes support of x, then if and only if∥∥∥Φ∗

ΛcP⊥
VΛ

n + γΦ∗
ΛcΦΛ (Φ∗

ΛΦΛ)−1 gΛ

∥∥∥
∞

< γ (10)

x̂ is also supported in Λ, i.e., supp(x̂) ⊆ supp(x), and

eΛ:= x̂Λ−xΛ=(Φ∗
ΛΦΛ)−1 Φ∗

Λn−γ (Φ∗
ΛΦΛ)−1 gΛ (11)

where, ΛC is the complement set of Λ, ΦΛ the partial matrix consisting
of Φ’s columns index by Λ, and so as for ΦΛC , P⊥

VΛ
denotes the

orthogonal projection to the space VΛ, which is expended by column

vector of ΦΛ, vector g satisfies g [i] =
{

sgn (x̂ [i]) ; x̂ [i] 6= 0
c [i] , |c [i]| ≤ 1; else ,

where sgn () is the complex sign function, c [i] a proper value that
makes Equation (11) hold, and gΛ the row restriction of g indexed by
Λ.

Condition (10) and formula (11) demonstrate two functions of
Lasso for sparse recovery:
a) Preserve the support of original signal, and clean noise outside its

support;
b) Preserve a stable recovery on the support.

The relationship of the three fatal factors used to evaluate the radar
performance, sparsity K , sufficient measurement number M , and SNR
is buried in (10) and (11). If a particular measurement matrix is taken
into consideration, the relationship will be discovered.

3. NOISELESS CASE

Firstly, we would like to study the case when the noise is absent, so
that the affection of factor SNR is not considered in this section. The
following analysis discovers the basic relationship between ρK and ρM .

As n = 0 in noiseless case, (10) and (11) become∥∥∥Φ∗
ΛcΦΛ (Φ∗

ΛΦΛ)−1 gΛ

∥∥∥
∞

< 1 (12)

eΛ= −γ (Φ∗
ΛΦΛ)−1 gΛ (13)

Condition (12) can be expressed as∣∣∣
〈
(Φ∗

ΛΦΛ)−1 Φ∗
Λφj ,gΛ

〉∣∣∣ < 1, ∀j /∈ Λ (14)

where, φj is the j-th column of Φ. Whether it would hold or not has
no relationship with the regularization constant γ, so that γ can be
chosen as small as possible.
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Indeed, since gΛ is a bounded but unknown vector, (14) holds
if ‖(Φ∗

ΛΦΛ)−1Φ∗
Λφj‖2 always takes small values for any j outside Λ,

which depends on two properties of Φ, the on-support isometric and
of-support incoherence.

3.1. On-support Isometric

In the context of CS, the isometric property demonstrates how close
between Φ∗

ΛΦΛ and the identity matrix [21]. Φ∗
ΛΦΛ is well-posed,

and ‖(Φ∗
ΛΦΛ)−1‖2 is bounded by a limited value, when the isometric

property of ΦΛ is good.
As mentioned before, Φ consists of random row selections from

H according to the sub-sampling operator Θ. ρM can seem as the
probability of the random selection. Then, the Gram matrix of Φ can
be written as the sum of NS random matrix as

Φ∗Φ =
NS∑

n=1

ζnh∗n,•hn,• = ρMH∗H +
NS∑

n=1

ςnh∗n,•hn,• (15)

where, ζn, n = 1, . . . , N is an i.i.d. Bernoulli series with P (ζ = 1) =
ρM , P (ζ = 0) = 1 − ρM , and ςn = ζn − Eζn, n = 1, . . . , Ns, and hn,•
is the n-th row of H.

Then the Gram matrix of ΦΛ can be writhen as

Φ∗
ΛΦΛ = ρMH∗

ΛHΛ +
NS∑

n=1

ςnh∗n,Λhn,Λ (16)

and its maximum and minimum eigenvalues can be bound by

λmax (Φ∗
ΛΦΛ) ≤ ρMλmax (H∗

ΛHΛ) +

∥∥∥∥∥
NS∑

n=1

ςnh∗n,Λhn,Λ

∥∥∥∥∥
2−2

(17)

λmin (Φ∗
ΛΦΛ) ≥ ρMλmin (H∗

ΛHΛ)−
∥∥∥∥∥

NS∑

n=1

ςnh∗n,Λhn,Λ

∥∥∥∥∥
2−2

(18)

where, λmax(·), λmin(·) stands for the maximum and minimum
eigenvalue of some matrix, and hn,Λ is a column restriction of hn,•
indexed by Λ.

Firstly, the range of eigenvalue of H∗
ΛHΛ can be estimated

according to the gerschgorin’s circle theorem [22],

λmax (H∗
ΛHΛ) ≤ ‖hk‖2 +

∑

i∈Λ,i6=k

|〈hk, hi〉| (19)

λmin (H∗
ΛHΛ) ≥ ‖hk‖2 −

∑

i∈Λ,i6=k

|〈hk, hi〉| (20)
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hold for any k ∈ Λ. From the definition of H we can state that
hk, hi, the two discrete forms of chirp signal with delay of k∆τ, i∆τ ,
respectively, share the common support if and only if i ∈ [k− NH

2 , k +
NH
2 ). Denote Λk = Λ ∩ [k − NH

2 , k + NH
2 ) as a local support of x in a

NH -length continues region of [k− NH
2 , k + NH

2 ). According to (6), we
have ‖Λk‖0 ≤ ρKNH , where ‖Λk‖0 denotes the number of candidates
of Λk.

Define the mutual coherence of H as

µH =
sup
i 6=k

|〈hi, hk〉|

‖hi‖2 ‖hk‖2

=
1

NH
sup
i6=k

|〈hi, hk〉| (21)

Then,
∑

i∈Λ,i6=k

|〈hk, hi〉| =
∑

i∈Λk,i6=k

|〈hk, hi〉| ≤ ‖Λk‖0 · µHNH ≤ ρkNH · µHNH

Substituting the above inequality to (19) and (20) gives

λmax (H∗
ΛHΛ) ≤ NH (1 + ρkNHµH) (22)

λmin (H∗
ΛHΛ) ≥ NH (1− ρkNHµH) (23)

Secondly, the spectrum bound for
NS∑
n=1

ςnh∗Λ,nhΛ,n, the sum of

independent random matrix, can be estimated according to the
Bornstein’s inequality [23], which states

P

(∥∥∥∥∥
NS∑

n=1

Xn

∥∥∥∥∥
2−2

≥ t

)
≤ (d1 + d2) exp

(
− t2

/
2

σ2 + Bt/3

)
(24)

where, Xn ∈ Cd1×d2 , n = 1, . . . , NS is a series of independent random
distributed matrix such that E(Xn) = 0, supn ‖Xn‖2−2 ≤ B, and

max(‖E(
NS∑
n=1

X∗
nXn)‖2−2, ‖E(

NS∑
n=1

XnX∗
n)‖2−2) ≤ σ2.

Let Xn = ςnh∗n,Λhn,Λ, n = 1, . . . , NS be random K-by-K matrix,
then it satisfies E(Xn) = 0, and ‖Xn‖2−2 = |ςn| · ‖h∗n,Λhn,Λ‖2−2 ≤
‖hn,Λ‖2

2.
Since the row vector h•,n is also a discrete form of the chirp signal

and has a limited duration of [n− NH
2 , n + NH

2 ), its restricted part,
hΛ,n, is supported in Λn = Λ∩ [n− NH

2 , n + NH
2 ) with ‖Λn‖0 ≤ ρKNH

as the same reason mentioned before. As a result,

‖Xn‖2−2 ≤ ‖hn,Λ‖2
2 ≤ ‖hn,Λ‖2

∞ · ‖Λn‖0 ≤ ρKNH = B (25)
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Since Xn = X∗
n, we get

∥∥∥∥∥E

(
NS∑

n=1

X∗
nXn

)∥∥∥∥∥
2−2

=

∥∥∥∥∥E

(
NS∑

n=1

XnX∗
n

)∥∥∥∥∥
2−2

= E

(
NS∑

n=1

XnX∗
n

)
= ρM (1− ρM ) ·

∥∥∥∥∥
NS∑

n=1

‖hn,Λ‖2
2h
∗
n,Λhn,Λ

∥∥∥∥∥
2−2

≤ ρM · ρKNH ·
∥∥∥∥∥

NS∑

n=1

h∗n,Λhn,Λ

∥∥∥∥∥
2−2

= ρM · ρKNH · ‖H∗
ΛHΛ‖2−2

≤ ρM · ρKNH ·NH (1 + ρKNHµH) = σ2 (26)

where, the first inequality holds for ‖hn,Λ‖2
2 ≤ ρKNH (see (23)) and for

h∗n,Λhn,Λ being a non-negative definite matrix, and the last inequality
holds according to (16).

Substituting (25)–(26) into (24) gives

P

(∥∥∥∥∥
NS∑

n=1

ςnh∗n,Λhn,Λ

∥∥∥∥∥
2−2

≥ ρMNH (1 + ρKNHµH) · δ
)

≤ 2K exp

(
−ρM (1 + ρKNHµH)

ρK

δ2
/
2

1 + δ/3

)
(27)

where δ is an arbitrary small positive value.
Together with (22)–(23) and (27), the following formula can be

derived

P
(∥∥Φ∗

ΛΦ−
ΛρMNHI

∥∥
2−2

≥ ρMNH (ρKNHµH +(1+ρKNHµH) · δ)
)

≤2K exp

(
−ρM (1 + ρKNHµH)

ρK

δ2
/
2

1 + δ/3

)
(28)

where, I is the K-by-K identity matrix. Formula (28) demonstrates
that ΦΛ has a good isometric property with high probability, because
both µH and δ are of small value.

3.2. Of-support Incoherence

In CS theory, the mutual coherence of Φ in (4) should be designed as
smaller as possible. A sufficient small coherence, i.e., incoherence, also
bounds Φ∗

Λφj , ∀j /∈ Λ.
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Let v be an arbitrary bounded vector. Due to (15),

〈Φ∗
Λφj ,v〉 = ρMh∗jHΛv +

NS∑

n=1

ςnh∗n,jhn,Λv (29)

Firstly, let Λj = Λ ∩
[
j − NH

2 , j + NH
2

)
, then

∣∣h∗jHΛv
∣∣≤∥∥h∗jHΛ

∥∥
2
‖v‖2 =

√∑

i∈Λ

|〈hj , hi〉|2 ‖v‖2 =
√∑

i∈Λj

|〈hj , hi〉|2 ‖v‖2

≤
√
‖Λj‖0 · µHNH ‖v‖2 ≤

√
ρKNH ·NHµH ‖v‖2 (30)

Secondly, let Xn = ςnh∗n,jhn,Λv, n = 1, . . . , NS be random
valuable, then E(Xn) = 0, and

‖Xn‖2−2 = |ςn| ·
∥∥h∗n,jhn,Λv

∥∥
2
≤‖hn,Λ‖2 ‖v‖2≤

√
ρKNN ‖v‖2 =B (31)

∥∥∥∥∥E

(
NS∑

n=1

X∗
nXn

)∥∥∥∥∥
2−2

=

∥∥∥∥∥E

(
NS∑

n=1

XnX∗
n

)∥∥∥∥∥
2−2

= E

(
NS∑

n=1

|Xn|2
)

= ρM (1− ρM ) ·
NS∑

n=1

∣∣h∗j,n
∣∣2 |hΛ,nv|2 ≤ ρM · ‖HΛv‖2

2

≤ ρMNH (1 + ρkNHµH) · ‖v‖2
2 = σ2 (32)

Substitute (31)–(32) into (24), it gives

P

(∥∥∥∥∥
NS∑

n=1

ςnh∗j,nhΛ,nv

∥∥∥∥∥
2−2

≥ ρMNH (1 + ρKNHµH)√
ρKNN

· δ ‖v‖2

)

≤ 2 exp
(
−ρM (1 + ρKNHµH)

ρK

δ2/2
1 + δ/3

)
(33)

Combine (30) and (33), and consider about all j /∈ Λ, then gives

P
(
|〈Φ∗

Λφj ,v〉| ≥ ρMNH (ρKNHµH + (1 + ρKNHµH) · δ)√
ρKNN

‖v‖2

)

≤ 2 (N −K) exp

(
−ρM (1 + ρKNHµH)

ρK

δ2
/
2

1 + δ/3

)
(34)

Then Φ∗
Λφj are well bounded for high probability.
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3.3. Support Preserving Condition

The support preserving condition of noiseless case is demonstrated
by (12), i.e., (14). Formulas (28) and (34) derived in the last two
subsections play a key role in determining whether the condition holds
or not.

Firstly, we state that (Φ∗
ΛΦΛ)−1Φ∗

Λφj is supported in Λj =
Λ ∩ [j − NH

2 , j + NH
2 ) and then

〈
(Φ∗

ΛΦΛ)−1 Φ∗
Λφj ,gΛ

〉
=

〈
(Φ∗

ΛΦΛ)−1 Φ∗
Λφj , ĝΛ

〉
(35)

where, ĝΛ [i] =
{

gΛ [i] ; i ∈ Λj

0; else , i.e., ĝΛ eliminates all non-zeros of

gΛ outside Λ, and

‖ĝΛ‖2 ≤
√
‖Λj‖0 ‖ĝΛ‖∞ ≤

√
ρKNH (36)

The proof is obvious. According to (15), Φ∗
Λφj =

NS∑
n=1

ζnh∗n,Λhn,j .

For a given j, hn,j = 0 if j /∈ [j − NH
2 , j + NH

2 ), so that the vector
h∗n,Λhn,j is supported in Λj . Namely, Φ∗

Λφj is also supported in Λj . Let
wΛ be a vector defined on Λ and be supported in Λj such that wΛj =
(Φ∗

Λj
ΦΛj )

−1Φ∗
Λj

φj , then wΛ satisfies (Φ∗
ΛΦΛ)wΛ = Φ∗

Λφj . Due to
the uniqueness of well-posed matrix inversion, wΛ = (Φ∗

ΛΦΛ)−1Φ∗
Λφj

is supported in Λj .
Secondly, we would like to derive the bound for 〈(Φ∗

ΛΦΛ)−1Φ∗
Λφj ,

gΛ〉. Assume v = (Φ∗
ΛΦΛ)−1ĝΛ. From (36) it gives

‖v‖2 =
∥∥∥(Φ∗

ΛΦΛ)−1
∥∥∥

2−2
·
√

ρKNH (37)

Together with (28), (34)–(35), the following formula can be derived
∣∣∣
〈
(Φ∗

ΛΦΛ)−1 Φ∗
Λφj ,gΛ

〉∣∣∣ = |〈Φ∗
Λφj , v〉|

<
ρMNH (ρKNHµH + (1 + ρKNHµH) · δ)√

ρKNN
‖v‖2

≤ ρMNH(ρKNHµH +(1+ρKNHµH) · δ)√
ρKNN

∥∥∥(Φ∗
ΛΦΛ)−1

∥∥∥
2−2

√
ρKNH

<
ρMNH (ρKNHµH + (1 + ρKNHµH) · δ)

ρMNH − ρMNH (ρKNHµH + (1 + ρKNHµH) · δ)
=

(ρKNHµH + (1 + ρKNHµH) · δ)
1− (ρKNHµH + (1 + ρKNHµH) · δ) (38)
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holds for any j /∈ Λ with a probability exceeding

1− 2N exp

(
−ρM (1 + ρKNHµH)

ρK

δ2
/
2

1 + δ/3

)
(39)

According to condition (14), letting the right side of (38) equal to “1”,
gives

δ =
1
2 − ρKNHµH

1 + ρKNHµH
(40)

Finally, substituting (40) to (39) and together with (38), we conclude
that:

Statement 1: In the noiseless sparse delay detection problem, if
ρM , ρK satisfies

ρM ≥ ρK log N · 1
2

7 + 4ρKNHµH(
1
2 − ρKNHµH

)2 = C (ρK) ρK log N (41)

the sparse signal’s support is preserved with a high probability
exceeding 1− 2/

√
N .

In the above formula, C(ρK) is not a numerical value independent
of ρK but is increased while ρK is enlarged. The constant of
NHµH , which demonstrates the mutual incoherence between the radar
waveform and its time delays, dominates how C(ρK) changes with ρK .
For instance, let the bandwidth and time duration of waveform given by
(2) be chosen as 150 MHz and 6µs, respectively, then NHµH

∼= 14.81.
Assume ρK ≤ 1/10NHµH = 0.6753%, then it can be calculated from
(41) that C(ρK) takes value in (14, 23.125].

4. NOISY CASE

4.1. Support Preserving Condition for Noisy Case

Comparing the noisy and noiseless condition expressed by (12) and
(14), it can be found that the existence of measurement noise is bad
for the support preserving. In a noisy case, the regularization constant
γ should be sufficient large so that∥∥∥Φ∗

ΛcP⊥
VΛ

n
∥∥∥
∞

< γ
(
1−

∥∥∥Φ∗
ΛcΦΛ (Φ∗

ΛΦΛ)−1 gΛ

∥∥∥
∞

)
(42)

Formula (42) demonstrates a sharp sufficient support preserving
condition for the noisy case.

Assume the right side of (38) equal to positive parameter α < 1,
i.e.,

∥∥∥Φ∗
ΛcΦΛ (Φ∗

ΛΦΛ)−1 gΛ

∥∥∥
∞

< α, and

δ =
α

1+α − ρKNHµH

1 + ρKNHµH
(43)
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Substituting (43) to (39) shows that in a noisy case if

ρM ≥ ρK log N · 3 + α
1+α + 2ρKNHµH(

α
1+α − ρKNHµH

)2 = C ′ (ρK , α) · ρK log N (44)

‖Φ∗
ΛcΦΛ(Φ∗

ΛΦΛ)−1gΛ‖∞ < α will hold with a probability exceeding
1− 2/

√
N . Together with (42), inequality can be derived

γ ≥ 1
1− α

∥∥∥Φ∗
ΛcP⊥

VΛ
n
∥∥∥
∞

(45)

The following derivations will show how ‖Φ∗
ΛcP⊥

VΛ
n‖∞ is bounded.

Consider a concentration property of real Gaussian variable n ∼
N(0, σ2

0), it is easy to prove that

P (|n| ≥ t) =
2√

2πσ0

∫ +∞

t
exp

(
− x2

2σ2
0

)
dx

≤
√

2
π

1
σ0

∫ +∞

t

x

t
exp

(
− x2

2σ2
0

)
dx =

√
2
π

σ0

t
exp

(
− t2

2σ2
0

)
(46)

The conclusion of (46) can be extended for complex Gaussian variable.
Selecting some j /∈ Λ, from (46) we can derive that

P
(∣∣∣φ∗jP⊥

VΛ
n
∣∣∣ ≥ t

)
≤

√
2
π

σ0

∥∥∥P⊥
VΛ

φj

∥∥∥
2

t
exp


− t2

2σ2
0

∥∥∥P⊥
VΛ

φj

∥∥∥
2

2




≤
√

2
π

σ0 ‖φj‖2

t
exp

(
− t2

2σ2
0 ‖φj‖2

2

)
(47)

The second inequality in (47) holds because ‖P⊥
VΛ

φj‖2 ≤ ‖φj‖2.

Consider ‖φj‖2
2 = ρMNH +

NS∑
n=1

ςn = ρMNH +
∑

n∈[j−NH
2

,j+
NH
2

)

ςn,

then we get for some j that

P
(∣∣∣‖φj‖2

2 − ρMNH

∣∣∣ ≥ δρMNH

)
≤ 2 exp

(
−ρMNH

δ2
/
2

1 + δ/3

)
(48)

due to the Bornstein’s inequality.
Choosing a δ that satisfies δ = 1 and substituting it into (48), we

get

P
(∣∣∣‖φj‖2

2 − ρMNH

∣∣∣ ≥ ρMNH

)
≤ 2 exp

(
−3

8
ρMNH

)
(49)
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Since ρMNH À 1, (49) states that ‖φj‖2
2 < 2ρMNH almost surely

holds. As a result, combining (47) and (49) and considering j /∈ Λ, we
can derive that

P
(∥∥∥Φ∗

ΛcP⊥
VΛ

n
∥∥∥
∞
≥ t

)
≤2(N−K)

√
ρMNH

π

σ0

t
exp

(
− t2

4σ2
0ρMNH

)
(50)

Let t = 2σ0
√

ρMNH log N , then (50) becomes

P
(∥∥∥Φ∗

ΛcP⊥
VΛ

n
∥∥∥
∞
≥ 2σ0

√
ρMNH log N

)
≤

(
1− K

N

)
1√

π log N
(51)

It can be concluded from (44)–(45) and (51) that if ρM , ρK

satisfies (44) and

γ =
1

1− α
2σ0

√
ρMNH log N (52)

the support preserving will almost ensure via Lasso with a probability
exceeding 1− 2/

√
N − 1−K/N√

π log N
.

4.2. On Support Reconstruction Error and SNR

As the signal support is picked out, it can be derived from (11) that

‖x̂− x‖2 = ‖x̂Λ−xΛ‖2 ≤
∥∥∥(Φ∗

ΛΦΛ)−1 Φ∗
Λn

∥∥∥
2
+ γ

∥∥∥(Φ∗
ΛΦΛ)−1 gΛ

∥∥∥
2

(53)
On the left side of (50), the first term is proportional to noise and the
second term proportional to γ. Indeed, it is shown by (52) that γ is
proportional to noise, too. In the following, we will demonstrate how
measurement noise affects the reconstruction error.

Firstly, we can be derive that∥∥∥(Φ∗
ΛΦΛ)−1 Φ∗

Λn
∥∥∥

2
≤
√

K
∥∥∥(Φ∗

ΛΦΛ)−1 Φ∗
Λn

∥∥∥
∞

(54)

Let u be any column of ΦΛ(Φ∗
ΛΦΛ)−1, then ‖(Φ∗

ΛΦΛ)−1Φ∗
Λn‖∞

= supu |u∗n| and ‖u‖2 ≤ 1/
√

λmin(Φ∗
ΛΦΛ). While (42)–(43) hold,

from (28) we can get

λmin (Φ∗
ΛΦΛ) >

ρMNH

1 + α
(55)

By the same means to derive (51), we get

P


‖u∗n‖∞ ≥ σ0√

λmin

(
Φ∗

ΛΦΛ

)
√

2 log N


 ≤ K

N

1√
π log N

(56)
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Substituting (55)–(56) to (54),

∥∥∥(Φ∗
ΛΦΛ)−1 Φ∗

Λn
∥∥∥

2
< σ0

√
log N

ρMNH
·
√

2 (1 + α) ·
√

K (57)

holds with a probability exceeding 1− K/N√
π log N

.
Secondly, it can be derived that∥∥∥(Φ∗

ΛΦΛ)−1 gΛ

∥∥∥
2
≤

∥∥∥(Φ∗
ΛΦΛ)−1

∥∥∥
2−2

‖gΛ‖2

=
1

λmin

(
Φ∗

ΛΦΛ

) ·
√

K <
1 + α

ρMNH
·
√

K (58)

Then substituting (52), (57)–(58) to (53), we have

‖x̂− x‖2 <

(√
2 (1 + α) +

2 (1 + α)
1− α

)√
K · σ0

√
log N

ρMNH
(59)

Formula (59) can be used to relate ‖x̂− x‖2 and the SNR defined by
(7). According to (7), (59) becomes

‖x̂− x‖2

‖x‖2

<

√
2 (1 + α) (1− α) + 2 (1 + α)

1− α
·
√

log N

SNR · ρMNH
(60)

As
√

2 (1 + α) (1− α) + 2 (1 + α) ≤ 4 holds for α ∈ (0, 1), it can be
derived from (60) that

‖x̂− x‖2

‖x‖2

<
4

1− α
·
√

log N

SNR · ρMNH
(61)

The relative mean square error (RMSE) can be defined as

RMSE =
‖x̂− x‖2

2

‖x‖2
2

(62)

Together with (52), (57), (61)–(62), we learn that

RMSE <

(
4

1− α

)2 log N

SNR · ρMNH
(63)

holds for a probability exceeding 1− 2/
√

N − 1/
√

π log N .
It can be found from (63) that RMSE is proportional to 1/SNR,

and the smaller α is, the more RMSE can be gained from SNR.
However, according to (44), a too small α will result in extremely large
sub-sampling ratio ρM for the same ρK . Accordingly, the parameter α
balances the demand for a more efficiently measurement radar system
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and the demand for a more recovery accuracy. Moreover, ρMNH in
the multiplication can seem as a gain from partial pulse compression
due to the sub-sampling.

Finally, combining the results of (44), (52), and (65), we can make
a conclusion that:

Statement 2: In the noisy sparse delay detection problem, if
ρM , ρK , SNR given by (5)–(7) satisfy

ρM ≥ C ′ (ρK , α) · ρK log N

where C ′ (ρK , α) =
3+ α

1+α
+2ρKNHµH

( α
1+α

−ρKNHµH)2 , and

SNR ≥
(

4
1− α

)2 log N

ρMNH

1
RMSEmax

choose as Lasso parameter as

γ =
1

1− α
2σ0

√
ρMNH log N

then the Lasso will preserve the support of targets in scene, and achieve
an upper bound for RMSE denoted by RMSEmax, with a probability
exceeding 1− 2/

√
N − 1/

√
π log N .

5. SIMULATIONS AND DISSUASIONS

5.1. Noiseless Case

To validate our first statement in Section 3, we assume that a radar
transmits a chirp signal demonstrated by (2) with T = 6 µs, K =
25MHz/µs towards an unknown sparse scene, which means that the
bandwidth of the chirp is B = 150 MHz and that the range resolution of
radar is 1 m. Let there be N = 10, 000 range cells with 1 m length in the
scene, and several point targets with equal backscattering coefficients,
i.e., “1”, are randomly put into different cells. Once the sparse scene is
fixed, the echo is randomly sampled below the rate that the Nyquist’s
theory demands. The noiseless sub-sampled data is then used to
recover the scene via Lasso to validate whether the signal support is
preserved, that is to check whether supp(x̂) ⊆ supp(x).

We make a large number of simulations with the above setting,
and then draw the ρM -ρK curve, which is also called phase transitions
by Donoho and Stodden [24], to discover the relationship between ρM

and ρK in noiseless case.
Firstly, let ρM vary in the interval [10%, 20%], and for each ρM ,

search for a proper ρK that is the maximum sparse ratio which ensures
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that in over 1 − 2/
√

N = 98% simulations the signal’s supports are
preserved. We use the bisearch method to accelerate the searching.
In each round of bisearching, there are 100 simulations of TwIST [25]
with Lasso parameter of γ = 0.1ρMNH to be performed to calculate
the successful rate of support preserving. After several rounds, the
searching process converges to the proper ρK .

Secondly, we calculate the proper ρK for a given ρM according
to the statement 1, and compare it with the simulation results. Due
to the aforementioned assumption, we have NH = BT = 900 and
µH = 0.0164. The compared results are shown by the following figure.

Figure 2 depicts the theoretical phase transitions predicated by
statement one and the empirical phase transitions given by simulations.
One can see that empirical phase transition matches closely with the
statement one prediction, which means that statement one gives a
sharp predication for the phase transitions of the noiseless radar delay
detection problem.

Figure 2. Comparing the simulation result and the result given by
statement one.

5.2. Noisy Case

To verify the second statement given in Section 4, we follow the same
assumption from the last sub-section except for adding some noise
in sub-sampled data. As the back scattering coefficient of the point
targets is set to “1”, the SNR can be calculated by SNR = 1/σ2

0.
Firstly, let ρM be one of the three values {10%, 15%, 20%}, and

for each choice of ρM , let ρK vary in the interval [0, ρK,noisefree],
where ρK,noiseless denotes the largest ρK which makes (41) hold. Once
ρK is given, a bisearch method is performed to find the smallest
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SNR, which ensures the support of original scene is preserved and the
RMSE ≤ RMSEmax = 0.1 in over 1 − 2/

√
N − 1/

√
π log N = 80% of

simulations. In each round of bisearch, the simulations are performed
100 times.

Secondly, once ρM and ρK are given, α can be calculated from (44).
Then theoretical demands for SNR which ensure support preserving,
and SNRLasso ≥ 10 dB is predicated by statement two.

Figure 3 compares the minimal demands for input SNR for
different ρM and ρK given by theoretical predication and simulations.
It is shown in the figure that the predication given by statement two
of noisy case is not so sharp, especially for small ρK . However, the
tendencies of the theoretical and empirical curves are still matched.

Figure 3. Comparing the simulation result and the result given by
statement two.

6. SUMMARY

In this paper, we investigate the Lasso based performance guarantee
for one-directional sparse microwave imaging problem. The problem
refers to recovery of a sparse scene from random samples of radar
returns via Lasso methods. The quantity relationship among three
important factors, the sufficient sub-sampling number ratio ρM , sparse
ratio ρK , and input signal-to-noise ratio SNR is discussed, which
explicitly demonstrates the performance guarantee of the mentioned
sparse microwave imaging radar. Although the theoretical bound is
not closed to the optimal value, numerical results support the claim
that the derived guarantee is at least reasonably well behaved.
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