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Abstract—This paper presents a new approach to calculate the 1–
4th order Doppler parameters for Geosynchronous Synthetic Aperture
Radar (Geo-SAR). To get accurate calculation results, the Earth is
modeled as an ellipsoid and the relative motion between the sensor in
an elliptical orbit and the rotating Earth is analyzed. The J2, J3 and J4

orbital perturbation items and attitude steering are analyzed. Ignoring
the perturbation force would produce errors of the Doppler parameters
for spaceborne SAR because it can influence the six orbital elements.
Since the Doppler parameters are related to the antenna beam pointing
directions and influenced by attitude of SAR platform, the calculation
results before and after attitude steering are shown. Furthermore, the
Doppler parameter properties during the whole orbital periods of Geo-
SAR are compared with those of Low-Earth-Orbital SAR (Leo-SAR).
Finally, the effects on Doppler parameters stemmed from the radar
beam pointing accuracy are analyzed.

1. INTRODUCTION

Currently, most of the spaceborne SAR systems are considered as Leo-
SAR since they fly at altitudes of 560–870 km. Observation of Earth
surface needs large swath widths and short revisit cycle, however, Leo-
SAR systems are limited by the low flying altitudes. The Geo-SAR,
proposed by Tomiyasu et al., exhibits distinctive advantages which
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provide an enormous instantaneous field of view with orbital period
equal to one Earth day [1–9].

A main problem of it is the super-long integration time to traverse
the long non-linear synthetic aperture distance. For example, it needs
up to 23 min in some conditions. This is quite different from Leo-SAR.
Since a more accurate range model and a different azimuth compression
reference function are required for generating high quality images,
the 1–4th order Doppler parameters are necessary. Various Doppler
parameter calculation algorithms have been reported for Leo-SAR,
but show large errors when applied to Geo-SAR due to geometrical
approximation [10–13]. Actually, in the satellite case, the geometry is
more complicated, as the orbit is elliptical and the Earth is modeled
as an ellipsoid rotating independently of the sensor trajectory. An
accurate approach of calculating the 1–4th order Doppler parameters
in Geo-SAR, which utilizes the data such as the spacecraft ephemeris
and attitude, is proposed in this paper.

Furthermore, we analyze the error of Doppler parameter
calculation results caused by ignoring orbital perturbation. Due
to a variety of perturbing effects, the so-called six orbital elements
describing the orbit increase or decrease with time, and the satellite
orbit could not be considered as an ellipse strictly in an invariant plane.
As a result, the state vectors of sensor and target will be different
from those in a strict elliptical orbit [15]. As a result, the Doppler
parameters, without considering the perturbation force, will not be
accurate enough for precision focusing for the spaceborne SAR data.
In Leo-SAR condition, the influence from the Earth shape perturbation
is the main part. As a result, we analyzes the varieties of the orbital
elements under orbital perturbative force when the terms J2, J3 and J4

are all considered, and the values of Doppler parameters are analyzed.
It should be emphasized that the attitude steering is necessary for

Geo-SAR. Since the Doppler parameter calculation results depend on
the beam pointing considerably, the effects of antenna yaw and pitch on
the Doppler parameters are simulated and analyzed. Finally, the beam
pointing errors of 0.05◦ for yaw, pitch and roll angles are assumed, and
the effects of pointing errors on the 1–4th order Doppler parameters
are illustrated.

This paper is structured as follows. In Section 2, a 3D geometry
model is illustrated, and the state vectors of sensor and target are
derived based on the model. The 1–4th order Doppler parameter
calculation expressions are then advanced. The orbital perturbation is
analyzed in Section 3. In Section 4, we discuss the attitude steering.
The simulation results are shown in Section 5. Finally, the conclusion
is given in Section 6.
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2. FOURTH-ORDER DOPPLER PARAMETERS
CALCULATION

2.1. Accurate Geometry Model

A satellite’s orbit can be described by six orbital elements, which are
constants of the ellipse and of its orientation relative to the Earth
Centered Inertial coordinate system (ECI). They are: a, the semi-
major axis of the orbit; e, the eccentricity of the orbit; θi, the
inclination of the orbit; Ω, the longitude of the ascending node; ω,
the argument of perigee; M , the mean anomaly. As depicted in Fig. 1,
consider a satellite local coordinate (SLC) system with origin at the
center of the Earth. The X axis of SLC always points to the sensor,
the Z axis is perpendicular to the orbital plane, and the Y axis obeys
the Cartesian right hand rule. The angle f is true anomaly.

Figure 1. Geo-SAR geometry model in SLC.

To get the 1–4th order Doppler parameters, the 1–5th order state
vectors of sensor and target should be presented. The symbols r,
v, A, A′ and A′′ are respectively the state vectors of position,
velocity, acceleration, rate of acceleration, and the second derivative
of acceleration. The five state vectors of Geo-SAR can be separately
expressed as follows, where the subscript s means satellite:

rs = (Rs, 0, 0)T (1)
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µ
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where µ is the gravitational constant, Rs instantaneous distances
between sensor and the Earth center, R′

s the first-order temporal
derivative of Rs, R′′

s the second-order temporal derivative of Rs, ωs

instantaneous angular velocity of sensor, ω′s the first-order temporal
derivative of ωs. According to Kepler’s second law, Rs, R′

s, R′′
s , ωs,

and ω′s all change with the true anomaly during the whole orbital
periods [2], and they can be respectively presented as:

Rs =
[
a

(
1− e2

)]/
(1 + e cos f) (6)
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√
µ
/
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/[
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)2
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ωs =
√

µ
/
[a (1− e2)]3 (1 + e cos f)2 (9)

ω′s = −2µe sin f(1 + e cos f)3
/[

a3
(
1− e2

)3
]

(10)

When the satellite moves in the orbit, the radar beam center line
intersects with the Earth surface to form a group of points, known as
targets. As depicted in Fig. 2, the five state vectors of the targets are
presented as follows, where the subscript t means targets.

Figure 2. Geo-SAR geometry in 3D space.
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rt = AreAea (−r, 0, 0)T + rs (11)
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where Aea, Are, Arv and Avo are the Euler transformation matrixes:

Aea=

( cos γ 0 −k sin γ
0 1 0

k sin γ 0 cos γ

)
(16)

Are=

(1 0 0
0 cos θy sin θy

0 − sin θy cos θy

)(cos θp sin θp 0
− sin θp cos θp 0

0 0 1

)(cos θr 0 − sin θr

0 1 0
sin θr 0 cos θr

)
(17)

Arv=

( cos f sin f 0
− sin f cos f 0

0 0 1

)
(18)

Avo=

(cosω sinω 0
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)(1 0 0
0 cos θi sin θi
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)(cosΩ sin Ω 0
− sinΩ cosΩ 0
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(19)

where ωe is rotational angular velocity of the Earth, γ the elevation
angle, θy the yaw angle, θp the pitch angle, and θr the roll angle, and
k the beam pointing direction (k = 1 for right look, and k = −1 for
left look). The value of r is the instantaneous range from sensor to
targets, Ra the local Earth radii of the targets, and θlat and θlong

are respectively local latitudes and longitudes of the targets. The
expressions of r, Ra, θlat and θlong can be derived in the Earth centered
inertial coordinates (ECI) directly. According to the discussions above,
the sensor’s coordinates in ECI is:(

xs

ys

zs

)
=

(
Rs cos (f + ω)

Rs sin (f + ω) cos θi

Rs sin (f + ω) sin θi

)
(20)
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After a series of derivations, the coordinates of the targets in ECI
can be expressed as: (

Xt

Yt

Zt

)
=

(
Ar + xs

Br + ys

Cr + zs

)
(21)

where A, B and C can be respectively given as:
A = − cos (f + ω) cos θp cos (γ + θr)

+ sin (f + ω) cos θy sin θp cos (γ + θr)
+k sin (f + ω) sin θy sin (γ + θr) (22)

B = − cos θi sin (f + ω) cos θp cos (γ + θr)
− cos θi cos (f + ω) cos θy sin θp cos (γ + θr)
−k cos θi cos (f + ω) sin θy sin (γ + θr)
− sin θi sin θy sin θp cos (γ + θr) + k sin θi cos θy sin (γ + θr) (23)

C = − sin θi sin (f + ω) cos θp cos (γ + θr)
− sin θi cos (f + ω) cos θy sin θp cos (γ + θr)
−k sin θi cos (f + ω) sin θy sin (γ + θr)
+ cos θi sin θy sin θp cos (γ + θr)− k cos θi cos θy sin (γ + θr)(24)

As the Earth surface is modeled as an ellipsoid:
X2

t

R2
e

+
Y 2

t

R2
e

+
Z2

t

R2
p

= 1 (25)

where Re = 6378.137 km and Rp = 6356.752 km are the equatorial and
polar radii of the ellipsoidal Earth [1]. Substituting (21)–(24) into (25)
and simplifying, r can be calculated as:

r =
−K2 −

√
K2

2 − 4K1K3

2K1
(26)

where K1, K2 and K3 can be given as:


K1 = R2
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2
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2
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p

Finally, the local latitudes, longitudes and Earth radii of the
targets can be separately calculated as:

θlat = arctan

[
Zt√

X2
t + Y 2

t

]
(27)

θlong = Ω +





arctan [Yt/Xt] , (Xt > 0, Yt > 0)
arctan [Yt/Xt] + 2π, (Xt > 0, Yt < 0)
arctan [Yt/Xt] + π, (Xt < 0)

(28)
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Ra =

√
R2

eR
2
p

[Rp cos θlat]
2 + [Re sin θlat]

2 (29)

Substituting (26)–(29) into (11)–(15), the five state vectors of the
targets can be obtained.

2.2. Doppler Parameter Calculation

This section gives a rigorous derivation of Doppler parameter
expressions based on the geometry model above. The range vector
from the target to the sensor in SLC can be given as:

r = rs − rt (30)

The expression (30) may be rewritten as:

r2 = (rs − rt) (rs − rt) (31)

Differentiating both sides of (31) with respect to time from the
first-order to the fourth-order, we can get r′, r′′, r(3) and r(4). The
1–4th order Doppler parameters can then be presented as:

fdc =−2r′
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= − 2

λ
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r
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where λ is the radar wavelength. Substituting (1)–(5) and (11)–(15)
into (32)–(35), the 1–4th order Doppler parameters can be calculated.

3. PERTURBATION OF ORBIT

Since the Earth is an oblate ellipsoid, bulging at the equator, with
even higher order non-sphericity, the gravitation field on the sensor
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can never be considered as a central one. As a result, the six orbital
elements are affected by perturbation force, and the satellite trajectory
is not a simple ellipse in an invariant plane. The J2, J3 and J4

perturbation terms and their effect on the Doppler parameters are
analyzed in this paper. The gravitational potential function of the
Earth is written as [15]:

U =
µ

r

[
1− J2R

2
e

2R2
s

(
3 sin2 ϕ− 1

)− J3R
3
e

2R3
s

(
5 sin3 ϕ− 3 sin ϕ

)

−J4R
4
e

8R4
s

(
35 sin4 ϕ− 30 sin2 ϕ + 3

)]
(36)

where ϕ is the local latitude of nadir, and it is convenient to be
expressed as follow:

ϕ = arcsin [sin θi sin(f + ω)] (37)

According to (36), the perturbation potential function due to the
Earth’s oblateness is given by:

UP = U − µ

r
(38)

The perturbation force of satellite at the corresponding orbital
position can then be represented as:

F = grad (Up) (39)

Its influence upon the satellite orbit is illuminated by Kozai, and
the periodic perturbations of the first order and secular perturbations
up to the second order are derived. The symbol χ represents the six
orbital elements (a, e, θi, Ω, ω and M). Based on the conclusion
above, the expressions of the six orbital elements under perturbation
force have the same form as Equation (40).

χP (t) = χ0 + χ1 (t− t0) + χ2 (t− t0) + χ(1)
s (t) + χ

(1)
L (t) (40)

where χP (t) is the orbital element under perturbation force, χ0 the
mean orbital element value, χ1(t − t0) the first-order secular term,
χ2(t − t0) the second-order secular term, χ

(1)
s (t) the first-order short

periodic term, χ
(1)
L (t) the first-order long periodic term, t the orbital

time, and t0 the start time. As a result, the actual six orbital elements,
which are under perturbation force, are denoted by aP (t), eP (t), θiP (t),
ΩP (t), ωP (t) and MP (t) respectively.

According to the theory in Section 2, the state vectors of sensor
and target are decided by the six orbit elements and radar’s beam
pointing direction. During one orbital period of the sensor, the
accumulated changes of the state vectors due to the varieties of six
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orbital elements can never be neglected. Assuming that the beam
pointing direction is invariant, the state vectors depend on the six
orbital elements only. The expression of the 1–4th order Doppler
parameter of spaceborne SAR is given by:

fnrP = Ψn [aP (t) , eP (t) , θiP (t) , ωP (t) ,ΩP (t) ,MP (t)] ,
(n = 0, 1, 2, 3) (41)

where fnrP is the nth-order Doppler parameter (f0rP means Doppler
centroid, fdc), the subscript P means “under perturbation force”, and
the symbol Ψn represents “function of some parameters”. The error
in percentage of fnr can be calculated by:

Efnr = (fnrP−fnr)
fnrP

× 100, (n = 0, 1, 2, 3) (42)

The results will be simulated and analyzed in Section 5.

4. ATTITUDE STEERING

In addition to the orbital perturbation, the beam pointing also has an
obvious effect on the Doppler parameters. Due to the Earth rotation
and orbital eccentricity, the periodic yaw and pitch angle are generated.
The attitude steering should be performed to get the zero Doppler
centroid over the entire swath during the whole orbital periods. The
approach proposed in [16] has a good effect on Geo-SAR. After attitude
steering has been applied, the beam center line direction will be quite
different, and the Doppler parameters change significantly. A block
diagram of steps to calculate the spaceborne SAR’s Doppler parameters
is shown in Fig. 3.

5. SIMULATION RESULTS

The Doppler parameter calculation error caused by ignoring orbital
perturbation is illustrated in Section 5.1. The simulation and
comparison of 1–4th order Doppler parameters before and after
attitude steering are described in Section 5.2. The effects on
Doppler parameters caused by attitude control error are presented in
Section 5.3. Since the Doppler parameter properties of Geo-SAR are
quite different from those of Leo-SAR, the comparison between them
is shown in this section. Without loss of generality, TerraSAR-X is
chosen as an example of Leo-SAR [14]. The simulation parameters are
listed in Table 1.
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Figure 3. Doppler parameter calculation block diagram of spaceborne
SAR.

Table 1. Simulation parameters.

Name Geo-SAR Leo-SAR
Orbital altitude (km) 35792 514

Inclination (◦) 60 97.42
Elevation angle (◦) 4.8 37.5
Wavelength (m) 0.24 0.03

Eccentricity 0.0011
Longitude ascending node (◦) 0

perigee argument (◦) 90
J2 1082.63× 10−6

J3 −2.5356× 10−6

J4 −1.62336× 10−6

5.1. Calculation Errors Caused by Orbital Perturbation

The error analysis shows that the satellite elliptical trajectory in
two-body condition could be mainly influenced by J2, J3 and J4

perturbation terms. If the perturbation force is ignored, the 1–4th
order Doppler parameters may have errors. Fig. 4 simulates the error
in percentage of the four Doppler parameters of Geo-SAR and Leo-
SAR.



Progress In Electromagnetics Research, Vol. 140, 2013 101

(a) Geo-SAR (b) Leo-SAR

Figure 4. Doppler parameter calculation error in percentage (Caused
by ignoring the orbital perturbation).

As shown in Fig. 4(a), the perturbation force mainly has an
effect on Doppler FM rate (f1r) for Geo-SAR, and the largest error
in percentage of f1r is about 2.7%. Its influence on the other
three Doppler parameters is not significant, however, small error in
percentage below 0.7% can be observed. For Leo-SAR, the largest
error in percentage of f3r is about 9.8% and the errors of the other
three Doppler parameters are all below 4.8%. Since the semi-major
axis of Leo-SAR is around 1/6 of that of Geo-SAR, the perturbation
force has effect on the six orbital elements tremendously for the former.
As a result, it is reasonable that the calculation errors in percentage
of Leo-SAR’s Doppler parameters are larger than those of Geo-SAR’s.

5.2. The Effect of Attitude Steering on Doppler Parameters

Since the beam pointing direction changes, the Doppler parameters
may change significantly after attitude steering. The simulation results
are depicted in Fig. 5.

In Fig. 5, it is obvious that the absolute values of Leo-SAR’s
Doppler parameters are larger than those of Geo-SAR’s. In addition,
the absolute values of Geo-SAR’s change more sharply with respect
to time. Besides the Doppler parameter properties of Leo-SAR and
Geo-SAR are significantly different at the following two aspects:
• The Doppler centroid properties of both systems are similar, but

the characteristics of f1r, f2r and f3r are quite different.
• The attitude steering has an obvious effect on the values of fdc

and f2r for both Leo-SAR and Geo-SAR. However, f1r and f3r

are approximately independent of the beam pointing directions.
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(a) Geo-SAR f (b) Geo-SAR f (c) Geo-SAR f (d) Geo-SAR f 

(e) Leo-SAR f (f) Leo-SAR f (g) Leo-SAR f (h) Leo-SAR f

dc 1r 2r 3r

dc 1r 2r 3r

Figure 5. Doppler parameter properties comparison between Geo-
SAR and Leo-SAR.

(a) Geo-SAR f (b) Geo-SAR f (c) Geo-SAR f (d) Geo-SAR f 

(e) Leo-SAR f (f) Leo-SAR f (g) Leo-SAR f (h) Leo-SAR f

dc 1r 2r 3r

dc 1r 2r 3r

Figure 6. Doppler parameter error in percentage (Caused by attitude
control error).

5.3. Attitude Control Accuracy

Any mispointing of radar beam, caused by the attitude control error,
may lead to a shift of the Doppler parameters. The beam pointing
errors of 0.05◦ for yaw, pitch and roll angles are assumed in this paper.
The effects of pointing errors on the 1–4th order Doppler parameters
for Geo-SAR and Leo-SAR are analyzed and simulated in Fig. 6.

According to the simulation results in Fig. 6, we can get the
conclusions as follows:
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• For a constant attitude control error, the error in percentage of
Doppler centroid for Both Geo-SAR and Leo-SAR remains almost
constant during the whole orbital periods. However, the errors of
the other three Doppler parameters always change with time.

• All the errors of the three attitude angles could affect the Doppler
parameters of the two spaceborne systems.

• The error of percentage of fdc and f2r for Leo-SAR are larger than
those of Geo-SAR’s, however, the pointing accuracy could have an
obvious effect on the values of f1r and f3r for Geo-SAR.

6. CONCLUSION

It is necessary to obtain the accurate 1–4th order Doppler parameters
for Geo-SAR. The calculation expressions of the Doppler parameters
are derived based on an accurate geometry model. The J2, J3 and
J4 orbital perturbation terms could have an obvious influence on the
trajectory of satellite. If the orbital perturbation force is ignored, the
four Doppler parameters could have errors for both Geo-SAR and Leo-
SAR. The largest error in percentage of Geo-SAR’s Doppler parameters
is about 2.7%. However, this value of Leo-SAR is around 9.8% since
its orbital height is low and the effect of perturbation force is obvious.
The absolute values of Doppler parameters of Geo-SAR are quite small
and change evidently with respect to time compared with Leo-SAR.
Besides the properties of them except the Doppler centroid frequency
are quite different between Geo-SAR and Leo-SAR. For both Geo-SAR
and Leo-SAR, f1r and f3r are approximately not affected by attitude
steering, but the values of fdc and f2r, on the other hand, are sensitive
to the satellite attitude. Finally, the attitude control error could also
have an effect on the Doppler parameters for the two spaceborne SAR
systems.
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