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Abstract—With the renewed application of millimeter technology
in remote sensing, radio astronomy, and meteorological satellite,
millimeter wave antennas of electrically large aperture are frequently
deployed. Shaping techniques are accordingly developed to meet
different requirements. In this paper, a shaping technique for the
scanning reflector antenna system of a remote sensing spacecraft is
presented. The shaping technique is based on Fourier optical theory
to control the maximal radiating direction of the antenna system. To
implement such functionality, a new shaping technique of the sub-
reflector has been developed. In addition, rotation of the shaped
sub-reflector can achieve scanning purpose with identical footprints
in all scanning angles. Case studies have been performed to verify the
shaping technique.

1. INTRODUCTION

Millimeter wave techniques have been widely employed in remote
sensing, radio astronomy, meteorological satellite, and so forth. A
number of missions have been deployed with millimeter wave system.
For instance, the UK Meteorological Office funded AMSU-B [1], Planck
and Herschel spacecrafts launched in 2009 [2], millimeter and sub-
millimeter wave acquisitions for stratosphere/troposphere exchange
research (MASTER) [3], Chinese Feng-Yun series of meteorological
satellites [4] have all deployed with millimeter wave sounding systems.
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To detect the signal from target area, the scanning mechanisms
vary with different missions. AMSU-B equipped with a downward-
looking earth remote sensing radiometer can repetitively do cross-
track scanning of the boresight of the radiometer’s antenna [1].
Planck is rotating the whole spacecraft to map the cosmic background
radiation. Herschel uses a nodding/morphing sub-reflector providing
limited image scanning. Since using gross movement can change the
observation section, by combination of moving sub-reflector and gross
movement, larger area scanning can be achieved.

Nevertheless, the aforementioned scanning mechanisms are mainly
achieved through mechanical movement of either the antenna or the
spacecraft or both, without imposing any requirement on antenna
design. Mechanical scanning brings a problem of stability of the
spacecraft. The movement of the whole antenna system produces
momentum that needs to be balanced using counter-momentum
components, which complicates the design and operation of the whole
system. If the momentum can be reduced by introducing proper
antenna design technique, the stringent demand on spacecraft can be
relaxed. To meet this requirement, shaping techniques can be brought
in. The shaping of reflector is to numerically define the surface of
reflectors by conforming to specific rules. The shaping technique has a
long history, dating back to early 1960s. Later on, a number of shaping
techniques have been developed to meet different applications [5–15].
Collins [5] investigated the shaping technique to maximize the aperture
efficiency of Cassegrainian Antennas. Lee et al. [6] used geometrical
optics to design offset-fed dual-reflector antennas, where satisfactory
sidelobes and aperture efficiency were obtained. Kildal [8] developed
a dynamic ray tracing technique to analyze multi-reflector antennas
of numerically specified reflectors. Bucci et al. [11] proposed a new
synthesis algorithm for shaped, double-reflector antennas with complex
array feed to improve the efficiency of synthesis techniques without
missing the required accuracy. Chou [13] developed an approach of
a shaped reflector antenna synthesis using a steepest decent method.
Gonzalez-Valdes et al. [15] proposed a physical optics based approach
to compensate the surface distortion due to thermal and gravitational
effects.

In this work, we present a different shaping technique to achieve
scanning purpose for the prototype of a remote sensing spacecraft. The
mission requires a conventional Cassegrain antenna structure, with the
main reflector a circular symmetric surface, while the sub-reflector a
shaped one. Differently to conventional Cassegrain antenna, the output
beam is demanded slightly tilted off the axis of the main dish. By
rotating the sub-reflector, the antenna can form a series of footprints



Progress In Electromagnetics Research B, Vol. 51, 2013 67

on the Earth of identical radiation pattern. In addition, rotating the
sub-reflector can reduce the gross momentum compared to rotating
the whole antenna system. The aforementioned shaping techniques
do not fit these requirements completely. For instance, the method
presented by Collins [5] did not consider the functionality of scanning;
Lee’s method [6] is suitable for offset structure, which is not employed
in the mission; Bucci’s [11] method is suitable for cases where feed
array is utilized. In this regards, a new shaping scheme has to be
developed. The following parts of this paper are organized as follows:
Section 2 discusses the fundamental theory; Section 3 describes the
procedures of the shaping technique; Section 4 presents representative
case studies; Conclusions are in Section 5.

2. FUNDAMENTAL THEORY OF SHAPED ANTENNA

2.1. General Consideration

The function of a shaped reflector antenna is transforming the
amplitude and/or phase distribution of incident fields to desired ones.
Whichever the shaping technique is, two general rules have to be
observed rigorously. One is the conservation rule of energy, and the
other is equal optical path. The formal and the later rules dedicate
the amplitude and the phase distribution, respectively.

In general, the farfield of an antenna is the Fourier transform of its
near field [16, 17]. Mathematically, the near field is a spatial function,
which can be decomposed to a series of plane wave propagating in
different directions

F (kx, ky) =

+∞∫

−∞

+∞∫

−∞
E (x, y) · ej(kxx+kyy)dxdy, (1)

where kx, ky are wavenumbers in the x and y directions. The
components of each individual direction can be referred to as angular
spectra. The farfield is therefore the superposition of the plane waves
in a certain distance sufficiently far from the near field. As shown
in [17], the farfield can be asymptotically expressed as

E (R, θ, ϕ) =
jk0 cos θe−jk0R

R
F (kx, ky) . (2)

And kx, ky can be written as
{

kx = k0 sin θ cosϕ

ky = k0 sin θ sinϕ
(3)
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where k0 is the wavenumber in free space. It is clearly seen that
the magnitude of the farfield is largely determined by its plane wave
spectra. By making use of this principle, one can design antennas of
specific requirements. If a certain direction of the angular spectra is
larger enough than other directions, the maximal gain is most likely to
appear in this direction.

2.2. Fourier Transform of Near Field

Considering an aperture, over which the amplitude of the electric field
is uniformly distributed and the phase is a linear function of y, as shown
in Figure 1. Mathematically, the field distribution can be expressed as

E (x, y) = ejk0yy, −T < x, y < T, (4)

where T defines the boundary of the aperture, and k0y defines an equal
phase plane. The angular spectra can be calculated by applying Fourier
transform

F (kx, ky) =

+T∫

−T

+T∫

−T

E (x, y) · ej(kxx+kyy)dxdy

=
2 sin (T · kx)

kx
· 2 sin [T · (k0y + ky)]

k0y + ky
. (5)

The first and second terms of Equation (5) are sinc functions
having their maximal value when the variable is zero. Therefore, the
maximal spectrum finds to be

⇀

k = (kx, ky, kz) =
(
0,−k0y,

√
k2

0 − k2
0y

)
, (6)

x

y

z

Arg[E(x,y)]=k   y, -T<x,y<T0y

x

y

z

Amp[E(x,y)]=1, -T<x,y<T

(a) (b)

Figure 1. A field distribution. (a) Unifrom amplitude distribution.
(b) Linear phase distribution.
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where, k0 is the wavenumber in free space. The corresponding maximal
radiation direction (ϕ, θ) can be calculated using Equation (3), with
ϕ = 90◦, θ = − arcsin(k0y/k0). It can be seen from Equations (4)
and (6) that the maximal radiation direction is determined by the
equal phase plane. To investigate the effect of the aperture size on the
radiation pattern, the spectral components in the y-axis are plotted
against T . As shown in Figure 2, when T increases, the magnitude
of the spectra at ky = k0y becomes increasing dominant. If the
aperture is infinite large, ky = k0y is the only spectral component,
and subsequently, the farfield becomes a plane wave.
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Figure 2. Angular spectra of different T .

For a circular aperture, i.e.,
√

x2 + y2 < T , it can be proved
that the peak radiation direction is the same as Equation (6). If the
amplitude distribution is a Gaussian type, while the phase is that of
Figure 1(b), for example

E (x, y) = e−(ax2+by2) · ejk0yy. (7)

Fourier transform yields

F (kx, ky) =
π√
ab
· exp

[
−k2

x

4a
− (k0y + ky)

2

4b

]
. (8)

Again, the maximal radiation direction is that given by Equation (6).
Gaussian type distribution is a good approximation in many systems,
such as the output field of a Cassegrain antenna.

These two examples are of practical importance in the design of
antenna system. To generate a reflector antenna with desired radiation
direction, a possibility is to make the equal phase plane perpendicular
to the desired radiation direction.
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3. SHAPING PROCEDURES

The scanning antenna system is designed to rotate the sub-reflector and
subsequently forming a scanning loop, as shown in Figure 3. Each loop
consists of a few identical footprints. The main reflector is a circular
symmetric surface about the boresight direction of the antenna, while
the output rays are at an angle of θ0 to the boresight direction. The
shaping technique is to numerically define the sub-reflector so as to
fulfill such functionalities. The diagram of synthesis of the scanning
antenna system is schematically illustrated in Figure 3. To implement
such a shaping technique, the main dish has to be known as a prior.
Also the optical centers of the sub-reflector and the aperture, and the
location of the feed have to be defined before starting the shaping
procedures. The synthesis procedures are as follows.

Apert ure cen ter
Optic centre of sub-
reflector
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reflector

Point of main reflector 

Point of aperture

! 0

Point of sub-
ref lect or

Focal point of the main 
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D 
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Rotating sub-reflector

Each spot stands for a footprint. By 
rotating the sub-reflector, the footprints 
form a scanning circle.
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Figure 3. The scanning scheme of the antenna system. The main
reflector has a symmetry structure, the sub-reflector is a shaped dish.
By rotating the sub-reflector, the scanning can form a loop with
identical footprints. The equal phase plane is perpendicular to the
output rays.



Progress In Electromagnetics Research B, Vol. 51, 2013 71

Step 1: Determine the surface profile of the main reflector

z =
x2 + y2

4f
, (9)

where f is the focal length of the parabolic, or the main reflector. And
z-direction is assumed to be the boresight direction of the antenna. It
has to be mentioned that, the surface of the main reflector does not
necessarily need to be a paraboloid. Any circularly symmetric surface
can do in this method. The only difference is the normal vector of the
surface;

Step 2: Determine the optical centers of the main reflector, sub-
reflector, and the aperture, ⇀

r 0m, ⇀
r 0s,

⇀
r 0a, and the position of the feed

⇀
r f . The optical center of the main reflector is the geometrical center
of the surface. The optical center of the aperture is defined as

⇀
r 0a = f · (− sin θ0, 0, cos θ0) . (10)

This can ensure the reflected ray from the optical center of the main
reflector going through the optical center of the aperture meanwhile at
an angle of θ0 to the boresight direction of the antenna. The optical
center of the sub-reflector is chosen as

⇀
r 0s = af · (sin θ0, 0, cos θ0) , (11)

with 0.5 < a < 1. In Equation (11), a is used to define the optical
center of the sub-reflector. The reason for choosing this range for
a is that (1) for a conventional Cassegrain antenna, the focus of the
hyperboloidal reflector has to be coincide with that of the paraboloidal
reflector, which requires that the vertex of the hyperboloidal reflector
lays between the two foci of the hyperboloidal reflector (a < 1); and (2)
The vertexes of the two branch of the hyperboloidal reflector have to
be separate with each other (0.5 < a);

Step 3: Calculate the optical path from the feed to the aperture
center

T =
∣∣⇀
r 0s − ⇀

r f

∣∣ +
∣∣⇀
r 0m − ⇀

r 0s

∣∣ +
∣∣⇀
r 0a − ⇀

r 0s

∣∣ . (12)

Step 4: Choose a set of points on the surface of the main reflector,
we use parabolodial surface as an example

⇀
rm (m,n) = (xm, ym,

x2
m + y2

m

4f
), (13)

and calculate the unit normal vector at this point. For a parabolodial
surface

n̂ =
(−xm

2f ,−ym

2f , 1)√
x2

m+y2
m

4f2 + 1
. (14)
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Step 5: Determine the point on the aperture
⇀
ra (m,n) = ⇀

rm (m,n) + sŝo, (15)

where ŝo is the direction of output rays

ŝo = [− sin (θ0) , 0, cos (θ0)] , (16)

where, θ0 is the polar angle of the output rays, i.e., the desired radiation
direction. The aperture plane can be represented using

ŝo ·
[⇀
ra (m,n)− ⇀

r 0a

]
= 0. (17)

This immediately gives s as

s =
[⇀
r 0a − ⇀

rm (m,n)
] · ŝo. (18)

Step 6: Calculate the input ray using Snell’s law

ŝi = 2 (ŝo · n̂) n̂− ŝo. (19)

Step 7: Represent the point on the sub-reflector using
⇀
r s (m,n) = ⇀

rm (m,n) + tŝi, (20)

where t is the distance between the point on the main reflector and the
corresponding point on the sub-reflector. So, t is the only unknown
needed to determine the point on the sub-reflector.

Step 8: The equal path principle dedicated that each ray from
the feed to the aperture plane must has the same optical path length,
which results in an equal phase plane on the aperture. Using the equal
path principle, it holds that

∣∣⇀
ra (m,n)− ⇀

rm (m,n)
∣∣ + t +

∣∣⇀
r s (m,n)− ⇀

r f

∣∣ = T. (21)

It can be written as∣∣⇀
ra (m, n)− ⇀

rm (m, n)
∣∣ + t +

∣∣⇀
rm (m,n) + tŝi − ⇀

r f

∣∣ = T. (22)

After mathematical manipulation, t finds to be

t =

[
T − ∣∣⇀

ra (m,n)− ⇀
rm (m,n)

∣∣]2 − ∣∣⇀
rm (m,n)− ⇀

r f

∣∣2

2ŝi ·
[⇀
rm (m, n)− ⇀

r f

]
+ T − ∣∣⇀

ra (m,n)− ⇀
rm (m, n)

∣∣ . (23)

Inserting Equation (23) to Equation (20), the point on the sub-reflector
can be found.

Step 9: Since the surface of the sub-reflector is to be numerically
defined using discrete points, and we always start the procedure from
the main reflector, the main reflector has to be represented using
discrete points. Here we use polar-grid discrete points

⇀
rm (m,n) = (m∆ρ, n∆φ) , (24)
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where n and ∆φ can be functions of m. And ∆ρ is the maximal
distance between two neighboring points. Therefore, the Cartesian
coordinates can be written as

xm (m,n) = m∆ρ cos (n∆φ) , ym (m,n) = m∆ρ sin (n∆φ) (25)

where, ∆φ and n can be determined by
{

m∆ρ∆φ ≤ ∆ρ ⇒ ∆φ ≤ 1
m

n ≥ 2π
∆φ = 2πm

. (26)

By circulating m and n, and repeating Step-4 to Step-8, the shaped
sub-reflector can be defined.

4. CASE STUDY

To verify this shaping technique, we have simulated two models using
the commercial software GRASP 10.0, which is based on physical
optical theory.

CASE-1: The main dish is a paraboloidal reflector. The main
parameters are as follows:

(1) The focal length of the main reflector f = 0.8m. The aperture
size of the main reflector is D = 2 m;

(2) The scanning angle θ0 = 1.6◦;
(3) The optical centers of the main reflector, sub-reflector, the

aperture, and the location of the feed are




⇀
r 0m = (0, 0, 0)
⇀
r 0s = 0.65 [sin (θ0) , 0, cos (θ0)]
⇀
r 0a = 0.8 [− sin (θ0) , 0, cos (θ0)]
⇀
r f = (0, 0, 0)

. (27)

By inputting these parameters to the procedures in Section 3, the
shaped dish can be defined.

(4) The feed is a conventional Gaussian-type distribution with edge
taper of −14 dB at 13◦. It has to be mentioned that the edge taper
is choosing to achieve optimized aperture efficiency as explained
in [18];

(5) Simulation frequencies are 54, and 119 GHz.

The diagram of the whole system is shown in Figure 4. The shaped
sub-reflector is not a symmetrical structure as that in a conventional
front-feed Cassegrain antenna. In this case, the sub-reflector extends
from −156.8 to 260.5 mm in the Y -axis direction, while from −211.0 to
211.0mm in the X-axis direction. The reason for that the sub-reflector
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ϕ

Figure 4. The diagram of the shaped reflector system rendered in
commercial software GRASP.

is not symmetrical in the Y -axis direction is that, in this design, the
output direction is designed to (ϕ = 90◦, θ = −1.6◦), which makes the
sub-reflector looks tilting towards the positive-Y axis.

The near fields of the main reflector are plotted in Figure 4. It
is clearly seen that the sub-reflector blocks the output waves. The
edge of the sub-reflector produces a certain degree of diffraction. In
the blockage region, the amplitude is very small, averagely −20 dB
taper off. However, the amplitude is not our main concern. It is
shown in Figure 5(b) that except the blockage region, the phase slope
is 1.96 degree/mm (the results of 54 GHz), which is consistent with the
theoretical prediction by the optical path difference

slope =
sin θ0

λ
· 360 (◦/mm) , (28)

where, wavelength is in mm, and θ0 is the pointing angle as shown in
Figure 3. It has to be mentioned that the phase is only constrained to
the range of (−180◦, 180◦). Therefore a serrated profile is observed.
It is consequently more reasonable to observe the slope of the phase.
Regarding the slope of the phase, two points have to be noted. In to
(1) in the simulation, the near field plane is perpendicular to the z-axis
in Figure 3; (2) the equal-phase plane is at an angle of θ0 to the near
field plane. In consequence, the optical path difference between two
arbitrary points separated by unit distance in the y direction on the
near field plane is sin θ0, and in electrical length sin θ0/λ. Therefore,
the slope for the phase can be calculated by Equation (28).
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Figure 5. The near fields of the antenna. (a) 54 GHz amplitude.
(b) 54 GHz phase. (c) 119 GHz amplitude. (d) 119 GHz phase.

According to the theory of Section 2, the simulation results shown
in Figure 5 shall imply that the maximal gain direction is in the
direction of (ϕ = 90◦, θ = −1.6◦). Examining the farfield, as shown in
Figure 6, it is seen that the maximal radiation pattern in θ = −1.6◦,
which is in agreement of the theoretical prediction. It has to be
mentioned that, the farfield is referenced to the global system. We use
slightly different definition of the spherical system. Azimuthal angle ϕ
is restricted to [0, 180), while polar angle θ is extended to [−90, 90].

Further to this, it is seen the spillover range from the feed is in
the range of −10 to −16 dB, centered at −13 degree. The signal of
spillover is more than 60 dB below the main lobe, indicating that the
stray rays shall make very small difference to the performance of the
antenna. Besides, the 3 dB beam is a symmetrical spot, not shown
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Figure 6. The gain pattern of the antenna system of parabloidal main
reflector. (a) 54 GHz. (b) 119 GHz.

in the results. By rotating the sub-reflector, a scanning loop can
be formulated with identical footprints. Identical footprint is always
preferred for a scanning scheme, since that each scanning pixel has
the identical imaging quality. The main beam efficiency (main beam is
defined as 2.5 times 3 dB beamwidth) is calculated to be around 75.0%,
which is a typical value for a front-feed Cassegrain antenna.

For 119 GHz, the same observation can be made from the results.
The slopes of the phase also agree with the prediction. The maximal
radiation direction is (ϕ = 90◦, θ = −1.6◦). In addition, it is seen that
the diffraction looks less prominent than that of 54GHz.

To further verify this shaping algorithm, a spheroidal main
reflector has been modeled. As is mentioned, any symmetrical surface
can be used for the design of such a canning antenna system, while not
affecting the procedures of shaping. The only difference that needs
to be stressed to to be stressed is the normal unit vector of the main
reflector.

CASE-2: The main dish is a spheroidal reflector. The main
parameters are as follows:
(1) The radius of the spheroidal reflector R = 2.4m. The aperture

size of the main reflector is D = 2 m;
(2) The optical centers of the main reflector, sub-reflector, the

aperture, and the location of the feed are



⇀
r 0m = (0, 0, 0)
⇀
r 0s = 0.8 [sin (θ0) , 0, cos (θ0)]
⇀
r 0a = 1.2 [− sin (θ0) , 0, cos (θ0)]
⇀
r f = (0, 0, 0)

. (29)
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Other parameters are the same as that in Case-1. In this case, only
the farfields are presented, as shown in Figure 7. It is also seen that
the gain of farfields peaks in the direction of (ϕ = 90◦, θ = −1.6◦).
Again, it has symmetrical 3 dB beam spot (not shown). However, the
spillover of this design is much more prominent than that of CASE-1.
The reason may be attributed to the fact that in CASE-2, a smaller
sub-reflector has been synthesized, which may also explain the peak
gain is slightly smaller than that of CASE-1.
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Figure 7. The gain pattern of the antenna system of spherical main
reflector. (a) 54 GHz. (b) 119 GHz.

It has to be mentioned that in the preliminary design of the
scanning antenna, offset structure was proposed due to its higher
efficiency. However, offset Cassegrain antenna does not produce
identical footprints. Also, the scanning of an offset structure is more
complicated than a front-feed one. In the future work, efforts are being
taken to reduce spillover and increase main beam efficiency.

Since the main dish is a symmetrical paraboloidal structure, the
rotation of the sub-reflector about z-axis (see Figure 3) does not
actually modify the radiation pattern, but only change the radiation
direction. As shown in Figure 4, when the sub-reflector rotates about
Z-axis by an angle of ϕ, the whole system acts like rotating about
Z-axis by an angle of ϕ due to the symmetrical nature of the main
reflector. Therefore, the radiation pattern rotates by an angle of
ϕ about Z-axis. Indeed, in the simulation, we have observed this
phenomenon. Since the radiation pattern are identical (By identical, it
is meant, if one rotates the pattern by an angle of ϕ, the two radiation
patterns coincide with each other), the results are not shown. This
phenomenon can also be deduced from Equations (4) and (5). The
rotation of the sub-reflector in essence is changing the orientation of
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the equal-phase plane by an angle of ϕ. Mathematically, the near field
can be written as

E (x, y) = ejk0y(x cos ϕ+y sin ϕ), −T < x, y < T, (30)
The resultant spectra read

F (kx, ky)=

+T∫

−T

+T∫

−T

E (x, y) · ej(kxx+kyy)dxdy

=
2 sin [T · (k0y cosϕ+kx)]

k0y cosϕ + kx
· 2 sin [T · (k0y sinϕ+ky)]

k0y sinϕ + ky
. (31)

And the maximal spectrum moves to
⇀

k = (kx, ky, kz) =
(
−k0y cosϕ,−k0y sinϕ,

√
k2

0 − k2
0y

)
. (32)

From Equation (3), it can be seen that k0y = −k0 sin θ, which means,
azimuthal angle ϕ does not change the maximal radiation polar angle
θ. The rotation of the sub-reflector only rotates the radiation pattern
by the same angle of ϕ in the azimuthal angle direction.

5. CONCLUSION

A shaping technique based on Fourier Optics has been described in this
paper. To design the required maximal radiation direction, the equal-
phase plane has to be perpendicular the maximal radiation direction
angle. The simulated results of farfields indicated that the shaping
of sub-reflector using this shaping technical could manipulate the
maximal radiation direction, as well as achieving scanning purpose
with identical footprints in all scanning angles. Future work will focus
on reducing spillover and increasing main beam efficiency.
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