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Abstract—According to literature, a significant and up to date
research direction to increase the performance level of automatic target
recognition (ATR) systems is focused on the use of information coming
from an appropriate set of EM sensors and high-quality decision
fusion techniques, respectively. Consequently, in this paper a genetic
optimized version of Sugeno’s fuzzy integral is discussed. In addition,
using a real database belonging to the high-resolution radar (HRR)
imagery, the superiority of the proposed decision fusion technique
related to its standard version and other well-known decision fusion
methods is also demonstrated.

1. INTRODUCTION

The automatic target recognition (ATR) represents key technological
capability of importance for a wide spectrum of military and non-
military (civilian) applications. This high-level function enables
systems to real-time process a large amount of information acquired
by sensors, and allows to readily identify threats that may otherwise
be missed for example, by a human operator, respectively. In addition,
ATR has become increasingly significant in modern defense strategy
because it permits precision strikes against certain tactical targets
with reduced risk and increased efficiency, while minimizing collateral
damage to other objects [1].

Generally, there are several types of sensors (and their associated
imageries) which are usually implemented in an ATR system, such
as: visual (video), IR (thermal), laser, radar (SAR, polarimetric
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SAR/PSAR, ISAR, GPR) etc. However, due to their all weather,
day or night, long stand-off capability, technological advances in this
domain, etc., the radar sensors are preferred to be used in the modern
ATR system [2]. Consequently, the basic architecture for an integrated
system for radar-based situation assessment is synthetically illustrated
in Fig. 1.

Figure 1. Integrated system for radar-based situation assessment.

The standard approach for radar automatic target recognition
is to extract some appropriate features, quantify these features from
the targets or target classes to be recognized at every viewing angle
anticipated, and finally use these features to train a proper classifier [3].
The recognition performance level is determined by the quality of
the extracted target features. In addition, the more precisely they
represent the characteristics of the targets, the better classification
results are [4]. Consequently, in high-resolution radar (HRR) theory,
a lot of methods to accuracy describe the target characteristics are
reported [5, 6], but HR range profiles are often used [7–9].

To improve the performance level of an (radar) ATR system,
another very interesting research direction is focused on the use of
information coming from a proper set of EM sensors and advanced data
(decision) fusion techniques, respectively [10]. The quality assigned
to a pattern recognition process also increases in the same time with
the quantity of the available (multispectral) information. In addition,
by reasons belonging to the electronic warfare theory [11], a fusion
technique makes classification systems to become more efficient and
powerful at the actions of some noisy factors (e.g., electronic jamming
etc.) because each sensor from available data flows provides a different
(spectral) robustness.
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Generally, the high-level data fusion techniques (also known as
hard decision fusion) combine the decisions provided by some experts
(e.g., neural classifiers etc.). By extension, it can discuss about decision
fusion even though the experts assure only a trust parameter and not
a decision (i.e., a soft decision fusion). The experts (classifiers) may be
of the same or different types, and may also accept similar or different
input feature sets [12]. In addition, although a lot of (standard or
advanced) classifiers are described in the theory, a single classifier use
may not be satisfactory for a concrete classification task. Consequently,
an appropriate set of classifiers could be used and their outputs to be
next mixed by different fusion techniques in order to assure the best
pattern recognition performances, respectively.

To design a powerful decision fusion process, a lot of interesting
methods are indicated in the theory [13–15]. However, the major
challenge of all these fusion procedures is to develop optimal (as
classification results) algorithms which are able to combine in a proper
manner the answers provided by different types of classifiers. For this
reason, in the last period of time, other techniques much more efficient
based on Dempster-Schafer, possibility or fuzzy logic theories [14–
16], and on some hybrid (e.g., fuzzy-genetic etc.) decision fusion
algorithms [17–19] respectively, are discussed in data fusion literature.

This paper presents as novelty, a genetic optimized version of
Sugeno’s fuzzy integral in order to increase the performance level
assigned to a HRR ATR system. Consequently, in the first part of
the paper, a comprehensive overview of the standard fuzzy integral is
presented. Next, using an appropriate genetic algorithm, an optimized
version of fuzzy integral is described. In the last part of the paper,
using a real database belonging to HRR imagery, some experimental
results confirming the significant potential of the proposed decision
fusion algorithm related to other well-known data fusion techniques are
indicated. Finally, the most important conclusions are also discussed.

2. SUGENO’S FUZZY INTEGRAL

Based on the fuzzy measure concept, Sugeno defines for the first time
the fuzzy integral notion that is in fact, a nonlinear functional similar
to Lebesgue’s integral [18].

If Q is a finite set and h : Q → [0, 1] a fuzzy subset of this set,
then the fuzzy integral of the function h on Q defined in relation to
the fuzzy measure g, is given by:
∫

Q

h(q)◦g(·)=max
A⊆Q

{
min

[
min
q∈A

(h(q), g(A))
]}

= max
α∈[0,1]

[min(α, g(hα))], (1)
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where hα = {q |h (q) > α} .
Function h(q) represents the decision of classifier q related to the

membership of the unknown patterns to a given input class. Generally,
this value quantifies the degree whereby the concept h is accomplished
by q.

Term min
q∈A

h(q) quantifies the degree whereby the concept h is

accomplished by all the elements of subset A (i.e., A is a classifier
subset of Q). Also, g(A) represents the importance attached to the
classifiers from subset A on the final decision or equivalently, the degree
whereby this classifier group accomplishes the concept g.

According to [15], the result achieved by the min comparison
between the previous two values will point out the degree whereby
the classifiers from subset A accomplish the above described criteria.
Consequently, the fuzzy integral tries to find the maximum level of
the matching between the real possibilities and expectations, values
measured by the functions h and g, respectively.

Generally, assuming that the values h(qi) are already sorted in
descending order: h(q1) ≥ h(q2 ≥ . . . ≥ h(qNq), where Nq represents
the total number of the classifiers, the fuzzy integral is given by
equation:

χ =
∫

Q

h (q) ◦ g (·) = max
i=1,Nq

[min (h (qi) , g (Ai))] , (2)

where Ai = {q1, q2, . . . , qi} ∈ Q, and the fuzzy densities g(Ai) are

Figure 2. Decision fusion of Nq classifiers through Sugeno’s fuzzy
integral.
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calculated using the recursive equations:{
g (A1) = g ({q1}) = g1

g (Ai) = gi + g (Ai−1) + λgi · g (Ai−1) , i = 2, Nq

. (3)

Consequently, the algorithm describing the decision fusion of Nq

classifiers through Sugeno’s fuzzy integral is presented below and
synthetically illustrated in Fig. 2.

2.1. Training Stage

1) Using the achieved classification performances, the calculus of the
fuzzy density gi

k = gj({qi})i=1,Nq ,k=1,M for each classifier and input
class, respectively (in this case, gi

k represents the classification rate of
the classifier qi for the input class ωk). Generally, the values of the
fuzzy densities can be assigned by an expert (e.g., a proper genetic
algorithm etc.) or are fixed as a function by the performances of each
individual classifier etc.

2) The calculus of the corresponding value λk for each input class
ωkk=1,M

by equation:

g(Q) = 1 ⇒ λk + 1 =
Nq∏

i=1

(
1 + λk · gi

k

)
, k = 1, M. (4)

2.2. Classification Stage

1) The calculus of the outputs hk(qi)k=1,M,i=1,Nq
for each classifier and

input class, respectively.
2) The forming of the subsets Qk = {qk

1 , qk
2 , . . . , qk

Nq
}, and the

calculus of the fuzzy integral values for each class, where gk(Ai) is
calculated using (1):

χk = max
i=1,Nq

[
min

(
h

(
qi
k

)
, gk (Ai)

)]
. (5)

3) The membership of the input pattern x is decided using the
following rule:




if max
k=1,M

χk ≥ χ0 and m = arg
[

max
k=1,M

χk

]
⇒ x ∈ ωm

if max
k=1,M

χk<χ0 ⇒ x — unknown vector
, (6)

where χ0 represents a trust threshold under which an input pattern
is considered as unknown. In addition, this threshold can be set for
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example, as the lowest value of the fuzzy integral χk obtained during
the training stage [16].

More theoretical details about the fuzzy integral and its basic
properties can be found in [15].

3. A GENETIC OPTIMIZED VERSION OF SUGENO’S
FUZZY INTEGRAL

Having as starting point the above important remark that, the values
of the fuzzy densities can be generally provided by an expert, the
basic idea is to optimize these values using the solution given by an
appropriate genetic algorithm. Consequently, this new approach of
Sugeno’s fuzzy integral is in fact, a hybrid (i.e., fuzzy-genetic) decision
fusion method used to optimize the way to combine the outputs
given by many (neural) classifiers. Practically, this algorithm uses
the standard fuzzy integral to assure a proper mixing of the answers
provided by a set of classifiers based on the importance attached to
each by a specific genetic procedure.

Consequently, the chromosomes real encode the fuzzy den-
sities {gi

k}i=1,Nq ,k=1,M as a linear concatenated vector C =

(g1
1, g1

2, . . . , g1
M , . . . , g

Nq

1 , g
Nq

2 , . . . , g
Nq

M ), and its attached fitness was
calculated using the following equation:

E =
k

1+

[
∑

A∈Q

|g̃(A)−g(A)|
]−0.5

=
k

1+

[
∑

A∈Q

∣∣∣∣∣g̃(A)−λ−0.5
k · ∏

qi∈A

(
1 + λk · gi

k

)
∣∣∣∣∣

]−0.5 , (7)

where the fuzzy measures {g̃(A)}A were estimated using the solution
given by standard fuzzy integral, and k is a constant used for (fitness)
calibration.

To implement the parent selection procedure for the next
chromosomal generation, the well-known roulette method was used. In
addition, the continuous crossover (with two random splitting points
and a crossover probability inside [0.6, 0.85]) and uniform mutation
were implemented as basic genetic operators. Finally, to stop the
genetic algorithm, a specific criterion based on the exceeding of the
preset number (with a constant value) of chromosomal generations
was also used.
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Generally, it is well-known that, the most performant chromosome
(i.e., as fitness value) achieved in the last chromosomal generation
represents usually, the solution provided by a genetic algorithm.
However, it is very possible that a more performant individual to be
already obtained for example, in the previous chromosomal population.
To avoid this drawback and based on analogy with Gallant algorithm
described in the machine learning theory, at each chromosomal stage,
the best individual was kept into virtual pocket. Consequently, after
a final sorting process (in descending order), the best solution will be
certainly achieved etc.

More theoretical details about the involved genetic operators and
other specific procedures can be found in [18, 20].

4. EXPERIMENTAL RESULTS

4.1. Database Design

To confirm the significant potential of the proposed decision fusion
method related to other well-known decision fusion techniques (based
on possibility/Dempster-Shafer theory and standard fuzzy integral,
respectively), a concrete pattern recognition task (by HRR ATR type)
was proposed to be solved. Consequently, the real data (given by
an ISAR sensor) were obtained in the anechoic chamber of METRA
(Bucharest, Romania) using the experimental setup illustrated in
Fig. 3.

The eight targets were used in our experiment, and each target
represents an (military) aircraft scale-reduced model (1 : 52) made by
plastic with a metallic coating (Fig. 4).

In the acquisition phase, each target was illuminated with a
frequency stepped signal. The data snapshot contained 32 frequency

Figure 3. Primary database acquisition experimental setup.
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  (1) F-22   (2) Eurofigther   (3) Tornado     (4) B-1B

   (5)  B-2  (6) F-117      (7) F-16 (8) Mirage 2000

Figure 4. Scale-reduced aircraft models used into anechoic chamber
experiment.

steps, uniformly distributed into [12, 18.4] GHz range, which results
in a frequency increment of 200 MHz. Consequently, the slant range
resolution had the value of 2.3 cm and the ambiguity window had the
value of 0.75 m, respectively.

To generate the target HRR images, a specific procedure based on
superresolution ESPRIT-2D algorithm was used [21]. Consequently,
the main stages involved in the generation of the target scattering
centre locations by ESPRIT-2D method are given below:

(1) 2D array complex data acquisition;
(2) data reformatting (resampling and interpolation);
(3) estimation of the autocorrelation matrix using the spatial

smoothing method;
(4) eigenanalysis of the estimated autocorrelation matrix and

identification of the eigenvector matrices corresponding to the
signal subspace, for the case when the data are processed column
by column and row by row respectively;

(5) ESPRIT-2D reconstruction of the target image (i.e., estimation of
the target scattering centre coordinates) by applying of a suitable
diagonalization transform on the above determined eigenvector
matrices etc.

More theoretical details about the effective structure of ESPRIT-
2D superresolution algorithm can be found in [18, 22].

Consequently, 90 HRR images/target (or input class) were
generated for aspect angles between 0◦ and 90◦, with an angular
increment between two consecutive images of 1◦. Each image (Fig. 5)
is obtained from the complex profiles acquired over an angular sector
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of 10◦, with an angular shift of 1◦. In addition, to apply the above
described decision fusion techniques, four types of complex HRR
signatures were available (i.e., HH, HV, VH and VV).

(a)

(b)

Figure 5. Target images from available HRR database (with
interpolation of the scattering points). (a) Target HRR images for
0◦ angle of sight and VV/HH polarization. (b) Target HRR images for
0◦ angle of sight and HH polarization.

To effective implement the classification chains, the polygonal
contour obtained from a suitable interpolation of the target scattering
centres was used (Fig. 5). In addition, as feature extraction method,
the generalized Flusser invariants described in [18] were used (i.e., 11
invariants were calculated and stored for final classification stage),
and as feature selection method, the standard Sammon projection
algorithm was also used (i.e., implementing a feature projection by
R11 → Rn type). Consequently, after feature selection stage, the
feature matrix assigned to each input class had a dimension of (n× 90),
one for each available radar data set.
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More details about the modality to generate HRR database can
be found in [18].

4.2. Simulation Results

The main objective of the experimental part of this paper was
to demonstrate the superiority of the genetic optimized version of
Sugeno’s fuzzy integral related to its standard form and other well-
known decision fusion techniques (i.e., possibility and Dempster-Shafer
theory-based decision fusion methods), respectively. In addition, the
robustness of the proposed decision fusion method at the noise action
was also investigated.

Using the above described HRR database, a supervised ART
neural network (SART) was next used to obtain the classification
performances for each of the four available HRR information flows.
Consequently, the block-diagram of the decision fusion experimental
setup is illustrated in Fig. 6.

Figure 6. Decision fusion experimental setup.

As can be seen from Fig. 6, to study the robustness of the proposed
decision fusion technique, the primary complex HRRPs were corrupted
by white gaussian noise. By fitting of the noise squared variance
σ2

n, SNRs between 0 and 30 dB were generated (afterwards, ESPRIT-
2D algorithm was employed to achieve the target radar images).
In addition, to obtain a high-quality target recognition process, the
final fusion of the four available fusion models was also made using
the proposed version of Sugeno’s fuzzy integral. Finally, unlike the
two versions of Sugeno’s fuzzy integral and possibility theory-based
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method, Dempster-Schafer theory-based technique was applied on the
decision of SART neural classifier (for each available recognition chain),
and not on the effective (numeric) output of this.

According to [23], the neural SART classifier uses a similar way
as well as ART neural networks, to generate the prototypes, but in a
specific supervised manner. In addition, its capacity to learn patterns is
faster because of the concrete modality to design local approximations
of the input classes and its working mechanism does not depend on
the any chosen parameters, respectively.

The basic learning process flowchart of SART neural classifier is
illustrated in Fig. 7.

Figure 7. Basic learning process flowchart of SART neural classifier.

The training algorithm of SART neural classifier starts by
randomly setting of one prototype for each input class. During this
process, a new prototype for a class is created whenever the actual
set of prototypes is not able anymore to classify the training data set
satisfactorily using the well-known nearest prototype rule. In addition,
this updating procedure is repeated as long as there are classification
errors (εmax) on the training pattern set and as long as it dynamically
changes the position of the prototypes, respectively.

Generally, the neural connectivity of SART classifier is similar to
the one used in case of RBF or LVQ neural networks (i.e., the number
of the neurons from the hidden layer (nh) is equal to the number
of prototypes, and each neuron from output layer is assigned to an
input class etc.). However, very useful, the internal operation of this
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supervised classifier needs no a priori setting of code book vectors or
some system parameter initialization. In addition, unlike the RBF or
LVQ neural networks, the (optimal) number and the final values of
the prototypes are automatically found during the training process of
SART classifier.

More theoretical aspects about the neural SART classifier can be
found in [18, 24].

To assure the learning process of the supervised SART classifier,
for each input class, and using an appropriate interlacing splitting
technique, the feature matrix was divided in two parts: one matrix
for training and other for testing, respectively. In addition, for each
input HRR data flow, as the most significant performance indicator,
the classification rate (CR) was also computed.

To achieve a very good estimation of the performance level for
each classification chain, the training process was repeated 15th times,
and finally, CRs were calculated as mean of the obtained partial
classification results.

Based on the available HRR data sets and the above described
decision fusion techniques, the achieved average classification (and
decision fusion) results (also, the running parameters of the genetic
algorithm) are presented in Table 1, and synthetically illustrated in
Fig. 8. In addition, the output values of standard fuzzy integral
and its genetic optimized version are comparative indicated in Fig. 9.
Finally, two examples related to the performance level (e.g., confusion
matrix and other SART training parameters etc.) assigned to each

Table 1. Simulation results.

Classification rate (CR [%]) 

HRR image database 1
class 

2
class 

3
class 

4
class 

5
class 

6
class 

7  
class 

8
class 

Mean 

HH 92 87 90 91 90 93 91 90 90.5 

HV 90 85 83 91 92 89 92 88 88.8 

VH 87 91 89 90 92 91 89 91 90.0 

VV 91 92 94 92 89 93 92 93 92.0 
        

Standard fuzzy integral/SFI 93.7 93.1 94.3 92.7 93.1 94.7 95.1 93.3 93.8 

Possibility theory-based
decision fusion/PT

(using mean operator) 

93.4 93.8 95.0 93.3 93.8 95.3 94.5 95.0 94.2 

Dempster-Shafer theory-based 

decision fusion/DST
94.1 94.5 95.7 94.0 94.3 96.0 95.5 95.7 95.0 

94.7 95.1 96.3 95.0 95.3 96.5 96.1 97.0 95.8 
Genetic optimized fuzzy 

integral/GFI 
4, 8, 0.75, 0.8q cN M p k= = = =

max 75, max 200, max 32pop gen string= = =

 

Final decision fusion/FDF 96.1 95.7 97.4 96.3 96.7 98.1 97.4 98.5 97.0 

st rdnd th th th th th
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(a) (b)

Figure 8. CR means calculated after the simulation process. (a) For
each testing cycle. (b) For each input target (after 15 testing cycles).

Figure 9. A comparative view of the output values assigned to the
tested decision fusion techniques — fuzzy integral (blue), its genetic
optimized version (red).

HRR classification chain are also shown in Fig. 10.
As can be observed from Table 1, all tested decision fusion

techniques give better results in average than every available
classification chain. At individual level, the best CR (about 95.8%) is
obtained in the case of proposed decision fusion method. In addition,
the final decision fusion process leads to a CR of 97% that means
an average increase of 2.3% related to the four tested decision fusion
techniques. Finally, for all the 15th testing/running cycles, the genetic
version of Sugeno’s fuzzy integral gives the best CRs related to the
same techniques (Fig. 8(a)).

On the other hand, CR means were calculated for each input
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Confusion matrix 

          

 Confusion matrix 

36 2 0 0 0 0 1 1 

1 37 0 0 0 0 0 2 

1 0 37 0 0 1 0 1 

0 0 1 36 1 0 2 0 

0 0 0 1 37 2 0 0 

0 1 1 0 0 37 0 1 

0 0 1 0 0 0 37 2 

0 0 2 0 0 0 1 37 

37 1 0 0 0 0 1 1 

2 35 0 0 0 0 1 2 

2 0 35 0 0 1 0 2 

0 0 1 36 2 0 1 0 

0 0 0 1 36 2 0 1 

0 1 1 0 0 37 0 1 

1 0 1 0 0 0 37 1 

0 0 2 0 0 0 2 36 

(a)

(b)

Figure 10. Classification results obtained in the case of the most two
performant HRR data sets (only for testing phase of SART classifier).
(a) VV data set (n = 8, M = 8, 40 vectors/class, CR ∼= 92%, SART:
nh = 32, εmax = 0.01, η = 0.1, 8.4 s). (b) HH data set (n = 9, M = 8,
40 vectors/class, CR ∼= 90%, SART: nh = 37, εmax = 0.01, η = 0.1,
13.5 s).

target. In this case, the best CR is also given by the proposed decision
fusion method. In addition, for all eight input targets, the genetic
version of Sugeno’s fuzzy integral gives the best CRs related to the
same techniques (Fig. 8(b)). Finally, the problematic targets are not
the same for each available classification chain. For example, the
Tornado is better recognized using VV dataset, and it is the contrary
for the B-2 etc. Consequently, by fusion of the tested models, these
differences can exploited well to obtain the best classification results.
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Generally, in case of the proposed genetic version of fuzzy integral,
an average CR increase of 5.5% related to singular use of each available
HRR data set is achieved. In addition, related to its standard
version, this average increase is 2% (Fig. 9). Not lastly, related
to other similar pattern recognition experiments indicated in radar
literature [7–19, 16, 22, 24], an important increase of performance level
(in fact, of CR) in radar target classification (i.e., around of 3%) was
achieved.

Using the previous described modality to generate noise inside
HRR ATR system (Fig. 6), a comparison as robustness at the noise
action (i.e., measured as mean (classification) error rate by SNR)
between proposed genetic version of Sugeno’s fuzzy integral (including
the final decision fusion technique) and its standard form is illustrated
in Fig. 11. Strong connected with this noise robustness test, an
interesting approach related to influence of the noise on the positioning
error of the target scattering points (i.e., measured as MSE by SNR/for
VV data set) using ESPRIT-2D algorithm is also indicated in Fig. 12.

As can be observed from Fig. 11, the robustness superiority of
the proposed fusion method either as singular decision fusion method
or as fusion method of models, related to its standard version is thus
demonstrated. In addition, in quantitative terms, the final decision
fusion procedure leads to an average robustness increase of 4 dB related
to the tested methods (estimated at 0.5 level), a possible explanation
could be connected by the nature of its internal (optimal) working
mechanism and the individual robustness of each available data fusion
model etc.

Figure 11. Decision fusion
results in the case of noisy
classification environment.

Figure 12. Positioning error of
the target scattering points using
ESPRIT-2D algorithm (for VV
data set).
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Despite the dependency from Fig. 12 is obtained into particular
case of VV data set (but the most performant as CR level), it can
be remarked the accurate estimation of the scattering centre locations
assured by this superresolution algorithm. In addition, a logical link
can be made between these two figures because the both indicate a
similar robustness to noise limit, located around of 4 dB. Consequently,
the robustness of ESPRIT-2D algorithm doubled by an adequate
selection of the classification chain structure and data fusion technique,
leads to a high-strength of the designed HRR ATR system into a noisy
(in fact, real) action environment.

All the applications described in this experimental section of the
paper were implemented into Matlab 7 package using specific functions
from nnet and gaot toolboxes.

5. CONCLUSION

This paper presents a novel and proper genetic optimized version of
Sugeno’s fuzzy integral used to improve the classification function
assigned to an ATR system. Based on a real HRR database, the
achieved experimental results confirmed an important increase of
CRs related to its standard version and other well-known decision
fusion models. In addition, related to each available information flow
and other fusion techniques, the robustness level of a radar system
incorporating this pattern recognition algorithm was also significantly
improved. Finally, the classification results achieved by simulations
were quite similar to the ones reported with other interesting
approaches from radar classification theory, and consequently, fully
justify an effective integration of the discussed processing ATR
technique in a concrete radar application.

On the other hand, the required computing resources to implement
this improved decision fusion technique are reasonable and thus, using
dedicated processing hardware tools (e.g., DSP, FPGA, technology
etc.), its practical implementation can also become an acceptable task.

In summary, the proposed decision fusion technique has been
demonstrated to be an effective algorithm to improve the performance
level assigned to a radar ATR system, having a great area of
applicability in the modern radar systems. In addition, this genetic
optimized version of Sugeno’s fuzzy integral can represent a good
starting point into investigation of new decision fusion models applied
on different radar classification chains.
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