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Abstract—In this paper, a novel second-order transmission condition
is developed in the framework of non-conformal finite element domain
decomposition method to meet the challenges brought by complex
and large-scale electromagnetic modeling. First, it is implemented
efficiently on the non-conformal interface via a Gauss integral
scheme. Then, the eigenvalue analysis of the DDM system show a
more clustered eigenvalue distribution of this transmission condition
compared with several existing transmission conditions. After that, it
is applied to large-scale complex problems such as S-type waveguides
in the high frequency band and dielectric well-logging applications in
the low frequency band. The final numerical results demonstrate that
this transmission condition has high efficiency and huge capability for
modeling large-scale problems with multi-resolution in any frequency
band.

1. INTRODUCTION

In numerical modeling of electromagnetic (EM) problems, the solution
domain of practical concerns usually consist of sensors, antenna arrays,
or propagating structures with complex details. Traditional numerical
methods, such as the finite element method (FEM) [16, 17, 19, 20],
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which is adaptive to the arbitrary-shaped problems, are now challenged
by the problems such as excessive memory cost, long computation
time, and limited modeling capability. However, based on the idea
of Schwartz Method and Lagrange Multiplier, these methods such as
FEM are now combined with a more efficient domain decomposition
method (DDM) [1–15]. Under this domain decomposition framework,
large-scale EM problems can now be modeled with high parallel
efficiency, especially with the aid of improved transmission conditions
(TCs) at subdomain interfaces.

At first, when Schwartz Method is introduced to the EM numerical
modeling, Dirichlet boundary condition and Neumann boundary
condition are used to couple fields between different subdomains.
This is well known as FETI-DP method. Then, in order to
overcome some convergence problems in FETI-DP and make domain
decomposition more flexible, Lagrange Multiplier was introduced to
combine these boundary conditions together to form transmission
conditions between subdomains. These transmission conditions can
have a better convergence and modeling flexibility, while they can
still keep the original continuity of electromagnetic fields at interface
between different subdomains. In the past, there are several
transmission conditions implemented in DDM in the EM area. At the
beginning, the first-order transmission condition (FOTC) is invented
such as the Robin-type transmission condition. This Robin-type
transmission condition has a good convergence performance when there
is only propagating mode involved on the interfaces [1–7]. However,
it is reported later that when there is TE or TM evanescent mode
on the interface, the convergence of this FOTC becomes poor and
a second-order TC (SOTC) which could successfully converge with
TE evanescent mode on the interface is implemented [9, 12]. And
later on, an SOTC which could perform well with both TE and TM
evanescent modes on the interface has been well developed [13, 14].
The progress of these TCs can be concluded mathematically from
their eigenvalue distributions. Each time a better TC is developed,
its eigenvalue distribution becomes more clustered in the center of the
unit circle. In this paper, a novel SOTC is derived and then compared
with the aforementioned TCs. The comparison is done by analyzing
the eigenvalue distribution and the iterative convergence with both
normal mesh size and extremely dense mesh size to mimic the high-
frequency and low-frequency applications. The results of the eigenvalue
distribution illustrate that the SOTC derived in this paper has a more
clustered eigenvalue distribution. To extend its implementation in
the non-conformal finite-element-based domain decomposition method
(NC-FEM-DDM), Lagrange interpolation is introduced to realize the
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Gauss integral on the non-conformal interface, which is evidently more
efficient compared with the treatments of integral on the interface
before.

Finally, the proposed SOTC in NC-FEM-DDM is applied to
model an S-type waveguide with complex propagating structures in the
high-frequency band and a dielectric well-logging tool with complex
sensor arrays in the low-frequency band. The modeling results not
only demonstrate a remarkable agreement of the method with other
methods, but also show highly efficiency of our proposed TC compared
with other TCs.

2. NON-CONFORMAL FEM-DDM WITH
TRANSMISSION CONDITIONS

2.1. Formulation of NC-FEM-DDM with Transmission
Conditions

For EM problems with interior sources and truncated boundaries,
applying the testing function to the vector wave equation and
transferring the first curl to the testing function yields〈∇×Wi, µ

−1
ri ∇×Ei

〉
v
− k2

0〈Wi, εriEi〉v + ki〈Wi, ji〉s
= −jωµ0〈Wi,Jinc

i 〉v (1)

where 〈a,b〉v denotes the volume integration of the scalar product
between a and b, and 〈a,b〉s denotes the surface integration of the
scalar product between a and b. Wi is the testing function, Ei the
electric field in domain i, ji the auxiliary current on the interface of
domain i, and Jinc

i the excitation source inside domain i.
The transmission conditions are used to couple the fields between

subdomains. In this paper, we first review three commonly used TCs
for DDM. They are summarized as follows.

The first-order TC (FOTC) is expressed as

kijji+αei = −kijjj+αej on ∂Sij (2)

and the second-order TC for TE evanescent mode (SOTC-TE) [12] is
expressed as

kijji+αei+β∇t×∇t×ei =−kijjj+αej+β∇t×∇t×ej on ∂Sij (3)

whereas the second-order TC for both TE and TM evanescent mode
(SOTC-Full) [14] is expressed as

kijji+αei+β∇t×∇t×ei+γ∇tpi

= −kijjj+αej+β∇t×∇t×ej−γ∇tpj on ∂Sij . (4)
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Here kij = k0
√

µrijεrij , µrij =
√

µriµrj , and εrij =
√

εriεrj ,

and the variables used in these equations are defined as follows

ji =
1
ki

ni ×
(
µ−1

ri ∇×Ei

)
(5)

ei = ni ×Ei × ni. (6)

pi =
1
ki
∇t · ji (7)

or pi = −En
i (8)

where En
i denotes the normal component of the electric field on the

interface. The tangential field ei can be expanded using the existing
curl-conforming basis function Wk for electric field Ei, while the
surface current ji can be expanded as follows

ji =
∑

k

SkJk (9)

where Sk is the basis function for the current, which may be derived
from the curl-conforming basis function Wk

Sk = n× (∇×Wk) (10)
or Sk = n× (Wk) (11)
or Sk = Wk (12)

It is recommended that a divergence-conforming basis function such as
RWG or Eq. (11) should be used to expand the current in the integral
equation method. However, the curl-conforming basis functions such
as Eq. (10) and Eq. (12) would make the eigenvalue distribution of the
DDM system more clustered. As a result, Eq. (10) or Eq. (12) is usually
chosen to expand the surface current ji in a domain decomposition
method.

Finally, the auxiliary variable pi can be expanded as follows

p =
∑

k

φkPk (13)

where

φk =
1
8
(1 + uku)(1 + vkv)(1 + wkw). (14)

In Eq. (14), (u, v, w) is the local coordinate of a unit cube transferred
from an arbitrary hexahedral element via Jacobi transform. From
Eq. (14) we can see that the second-order term ∇tpi in Eq. (4) can
be easily calculated as well.

Equation (8) can be derived from (7) by noting that
∇t · ji = (∇−∇n) · ji.
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Since ji has only a tangential component and ∇n has only a normal
component, their scalar product vanishes: hence

(∇−∇n) · ji = ∇ · ji.
Expanding ji using (5) and invoking the vector identity, we obtain

∇t · ji = ∇ · ji =
1
ki
∇ · [ni × (∇×Ei)] = − 1

ki
ni · (∇×∇×Ei).

Assuming that on the interface there is no excitation source, the vector
wave equation can be written as

∇×∇×Ei − k2
i Ei + kiji = 0.

Again, since ji has only tangential component, we finally obtain

∇t · ji = − 1
ki

ni ·
(
k2

i Ei − kiji
)

= −kiE
n
i .

The expression in (8) derived in this paper has a clearer physical
meaning compared with (7) because the normal component of the
electric field has taken place of the divergence of the auxiliary current
ji. Moreover, (8) can be implemented in a straightforward manner
by using the components of the electric field normal to the interface.
As it is illustrated later, the second-order TC using (8) has a more
clustered eigenvalue distribution and consequently the resulting DDM
has a better iterative convergence. Since pi has two forms as shown
in (7) and (8), SOTC-Full in (4) can be expressed as SOTC-Full-J
by using (7) and SOTC-Full-En if (8) is used instead If the value of
complex coefficients α, β, and γ are restricted within a certain range,
the continuity for both the electric and the magnetic fields on the
interface can be guaranteed. Here, α = −jk, while the expressions for
β and γ are given in [14].

If we use kijji to test (4), we will obtain

k2
ij〈ji, ji〉+ αkij〈ji, ei〉+ βkij〈∇t × ji,∇t × ei〉+ γkij〈ji,∇tpi〉

= −k2
ij〈ji, jj〉+ αkij〈ji, ej〉

+βkij〈∇t × ji,∇t × ej〉 − γkij〈ji,∇tpj〉. (15)
Multiply (15) with coefficient ki/αkij and results in

kijki/α〈ji, ji〉+ ki〈ji, ei〉
+βki/α〈∇t × ji,∇t × ei〉+ γki/α〈ji,∇tpi〉

= −kijki/α〈ji, jj〉+ ki〈ji, ej〉
+βki/α〈∇t × ji,∇t × ej〉 − γki/α〈ji,∇tpj〉. (16)

If we use pi to test (8), we will obtain
〈pi, pi〉+ 〈pi, E

n
i 〉 = 0. (17)
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Combine (1), (16) and (17), we can get the final quasi-symmetry
functional matrix for domain i:






Ai Ci 0 0
Ci Bi Di 0
0 Di Ti 0
0 0 0 Pi


 +




0 0 0 0
0 0 0 0
0 D

′
i 0 TPi

TEn
i 0 0 0










Ei

EBi

Ji

Pi




=




Fi

0
0
0


 +




0 0 0 0
0 0 0 0
0 TBij TTij TPij

0 0 0 0







Ej

EBj

Jj

Pj


 . (18)

In (18), matrix [ Ai Ci

Ci Bi
] represents the original functional matrix

derived from vector wave Eq. (1), while

Di = ki〈ei, ji〉 (19)

D
′
i = βki/α〈∇t × ji,∇t × ei〉 (20)

Ti = kijki/α〈ji, ji〉 (21)
Pi = ki〈pi, pi〉 (22)

TPi = −γ〈ji,∇tpi〉 (23)
TEn

i = 〈pi, E
n
i 〉 (24)

TBij = ki〈ji, ej〉+ βki/α〈∇t × ji,∇t × ej〉 (25)
TTij = −kijki/α〈ji, jj〉 (26)
TPij = −γki/α〈ji,∇tpj〉. (27)

The matrix on the left side of Eq. (18) is segmented in to two parts
so that the major calculation on the symmetrical matrix can be saved
by half. Eqs. (25), (26) and (27) have to be calculated on the non-
conformal interface. In Part B, an efficient Gaussian integration on
the non-conformal interface will be introduced.

2.2. Gauss Integral on the Non-conformal Interface

There are few papers discussing about the integration on the non-
conformal interface when terms in (25)–(27) need to be calculated, in
which the basic functions for variables such as ji and ej are locally
defined within different subdomains. It is reported that the treatment
of integration on the non-conformal interface is done by recreating a
uniform set of mesh cells which would be compatible with the dual-
cells on both sides of the interface. As a result, ji and ej will still
share the same Gauss nodes in a smaller cell. However, this process
not only suffers from the limitation of its capability on arbitrary shaped
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Figure 1. Gauss nodes on non-conformal interface.

interface, but also increases a lot of complexity by geometrical re-
meshing and Gauss integration on much more cells. In this paper, we
find a more generalized and easier scheme to compute the integration
on the interface without special geometrical treatment, as shown in
Fig. 1. Use 〈ji, ej〉 on surface cell of domain i as an example:

1) Using Jacobi transform, get Gauss node ri(u, v, w) on the surface
cell;

2) For each Gauss node ri(u, v, w), calculate the value of
ji(ri(u, v, w));

3) Transform the local coordinates of Gauss node into global
coordinates:

ri(u, v, w) Lagrange interpolation−−−−−−−−−−−−−−−−−→ ri(x, y, z). (28)

Since domain i and domain j share the same global coordinate
system:

ri(x, y, z) → rj(x, y, z) (29)

we can transform the global coordinates of Gauss node into local
coordinate on surface cell of domain j:

rj(x, y, z) Lagrange interpolation−−−−−−−−−−−−−−−−−→ rj(u′, v′, w′). (30)

4) Calculate the value of ej(rj(u′, v′, w′)) on surface cell in domain j.
5) Calculate Gauss integration of 〈ji, ej〉 on the interface of domain

i;

Comparing the above non-conformal scheme with the integral on
conformal interface, the only extra time for non-conformal integral
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in this process is to transform the coordinate of each Gauss node in
Domain i and j in step 3, which only involves Lagrange’s interpolation
on the surface. This process is obviously more efficient and convenient
than the one mentioned before.

3. EIGENVALUE DISTRIBUTIONS WITH DIFFERENT
TRANSMISSION CONDITIONS

To show the differences between the FEM-DDMs using FOTC, SOTC-
TE, SOTC-Full-J, and SOTC-Full-En for modeling an EM problem,
we first consider an air box with mesh size of λ/20 and the eigenvalue
distributions using different TCs are shown in Fig. 2. From Fig. 2, we

(a) (b)

(c) (d)

Figure 2. Eigenvalue distributions of the FEM-DDM systems using
different TCs with the mesh size of λ/20. (a) The first-order TC.
(b) The second-order TC for TE. (c) The second-order TC-Full using
J. (d) The second-order TC-Full using En.
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can conclude that the SOTC-Full-En is the best TC among these TCs
because all the eigenvalues are clustered near the center of the unit
circle.

To mimic the low-frequency application, we decreased the mesh
size to λ/3000. The eigenvalue distributions are shown in Fig. 3. In
this case all the eigenvalues are suppressed onto the real axis. It
is evident that the best TC is still SOTC-Full-En because of the
clustered eigenvalues. The eigenvalues for SOTC-Full-J are also located
within the unit circle, however in a complex and mutil-scaled problem,
they have more chance to cluster toward the zero eigenvalue and
consequently cause near singularity.

(b)(a)

(d)(c)

Figure 3. Eigenvalue distributions of the FEM-DDM systems using
different TCs with the mesh size of λ/3000. (a) The first-order TC.
(b) The second-order TC for TE. (c) The second-order TC-Full using
J. (d) The second-order TC-Full using En.
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4. NUMERICAL RESULTS OF COMPLEX
WAVEGUIDES AND WELL-LOGGING PROBLEMS

4.1. Modeling of S-type Waveguides in High-frequency Band

In this part, an S-type rectangular waveguide in the high frequency
band is taken into consideration as shown in Fig. 4. The parameters in
the x- and y-directions of port A are 22.86 mm and 10.16 mm. Assume
z = 0mm at port A, the waveguide linearly enlarges its port cross
section from z = 10mm to z = 20 mm. While the parameters in
the x- and y-directions after z = 20 mm are 32 mm and 16mm. The
electromagnetic wave will have to pass through a dielectric layer at the
end of the S-type waveguide. The parameters of the dielectric layer in
the x-, y- and z-directions are 36mm, 20 mm, and 6mm. Its relative
dielectric constant is 2.25. The working frequency is 10 GHz. The
excitation mode is TE10 mode with polarization in the y-direction.

Figure 4. S-type rectangular waveguide.

At first, we will extend the incident port and the output port to
illustrate how the wave propagates in the S-type waveguide.

The model and accordingly mesh cells are shown in Fig. 5(a) and
the field distribution along the waveguide is shown in Fig. 5(b).

Then we will add the dielectric layer at the end of the port. As can
be seen from Fig. 6, the end port of waveguide in Fig. 6(a) stretch into
the hole of the structure in Fig. 6(b) and connect with the dielectric
layer with a non-conformal interface. The electric field distribution
of the YOZ section in this wave guide is compared with FEKO as in
Fig. 7, which one can see great agreement of our method with FEKO.

The iterative convergence history of different TCs is given in
Fig. 8.

As the convergence history in Fig. 8, SOTC-Full-J and SOTC-
Full-En have better iterative convergence than FOTC and SOTC-TE
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(a) (b)

Figure 5. Extended S-type waveguide. (a) Model of the extended
S-type waveguide. (b) Field distribution of the extended S-type
waveguide.

(b)(a)

Figure 6. Two independent mesh parts of the S-type waveguide.
(a) Waveguide with pure metal structure. (b) Dielectric layer covered
by outer air space truncated by absorbing boundary.

(b)(a)

Figure 7. The electric field distribution of the YOZ section. (a) Result
by FEKO. (b) Result by non-conformal FEM-DDM.
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Figure 8. Convergence history of the NC-FEM-DDM using different
TCs for the simulation of an S-type rectangular waveguide.

obviously. However, SOTC-Full-En converges with only two steps
faster than SOTC-Full-J in this example. The reason is that in the
high-frequency band, although the eigenvalue distribution for SOTC-
Full-En is more clustered than SOTC-Full-J as illustrated in Fig. 2(c)
and Fig. 2(d), the eigenvalue distribution for both SOTC-Full-J and
SOTC-Full-En are clustered within the unit circle and there is no
eigenvalue clustered towards to the zero eigenvalue yet.

The accuracy loss of DDM compared with FEM is defined as
follows:

Error =
∥∥∥∥
xDDM − xFEM

xFEM

∥∥∥∥
max

(31)

where xDDM and xFEM are the field distributions at given point
calculated by DDM and FEM accordingly.

The accuracy of DDM, the time and memory cost of FEM, DDM

Table 1. Comparison of FEM and NC-FEM-DDM using different
transmission conditions.

Step FEM DDM-FOTC SOTC-TE SOTC-Full-J SOTC-Full-En

Unknowns 466389 437650 437650 437650 437650

Reading data 245 s 44 s 44 s 44 s 44 s

Geo-assembling 14 s 7 s 7 s 7 s 7 s

Filling Matrix 59 s 19 s 19 s 19 s 19 s

Solving 362 s 241 s 198 s 132 s 129 s

Peak Memory 13.86GB 6.69 GB 6.69 GB 6.69 GB 6.69 GB

Error - 0.6× 10−8 0.6× 10−8 0.6× 10−8 0.6× 10−8
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with FOTC, SOTC-TE, SOTC-Full-J and SOTC-Full-En are given in
Table 1.

4.2. Modeling of a Practical Dielectric Tool in
Low-frequency Band

To acquire more information and high resolution of the earth, induction
well-logging tools developed in recent years are all equipped with
large arrays with multi-dimensional coil sensors. An outstanding
well-logging tool developed recently is a dielectric scanning tool as
illustrated in Fig. 9 [18].

Figure 9. A schematic of the dielectric tool.

In a traditional electromagnetic well-logging application, the
conductivity of the object in the earth is the only parameter we
concerned because it has major impact on the response at low
frequencies. However, this single parameter-interpretation may lead
to misreading of the carbonate and heavy oil reservoirs because these
reservoirs may be interpreted as surrounding rocks since they share
the same high resistivity range. Also the pore-fluid analysis, matrix
analysis and geological structure analysis can all be ambiguous as
a result of the single parameter- interpretation of the earth. That
is why the idea of dielectric tool was brought out in 1980s to get
both permittivity and conductivity as the information for the final
interpretation.

{
ε
σ

⇒ k =
ω

c

√
µ

√
εr + j

σ

ωε0
⇒ response (32)

However, the dielectric scanning tool has not been put into practical
use until now because of measurement limitations, moderate accuracy
and insufficient quality control. As the development in the system
design and detecting technology, to model this kind of tool in order to
foresee the problems in designing and optimizing parameters becomes
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very important and necessary for practical needs. Luckily, the NC-
FEM-DDM is developed to solve this kind of problems efficiently. As
shown in Fig. 10, since the sensing arrays inside the borehole have
small details, fine mesh size is required inside borehole. However, it
is not necessary for the layers and objects outside borehole to use
the same mesh size. As a result, we divide the original problem
into two non-conformal subdomains at the first step: one inside the
borehole and the other outside it. The mesh inside the borehole
is shown in Fig. 11 and the mesh outside it is shown in Fig. 12.
To gain more efficiency and save computational cost, the subdomain
inside the borehole is further divided into 2 conformal subdomains and
the subdomain outside borehole is further divided into 4 conformal
subdomains, which results in totally 6 subdomains.

Considering it works at 20 MHz, the radius of the mandrel is
0.03m and the radius of the borehole is 0.1524m, the conductivity
inside the borehole is 1 × 10−4 S/m while the conductivity of the
layers are 1 × 10−3 S/m. The relative permittivity is set at 1 at
first. The electric field distribution at the Z-plane when only one
Z-oriented transmitter is excited is shown in Fig. 13. The convergence
history for the NC-FEM-DDM with SOTC-Full-En and SOTC-Full-J
are shown in Fig. 14. In this example, the NC-FEM-DDM with SOTC-
Full-J significantly slows down compared with SOTC-Full-En, which

Figure 10. The modeling of the sensing arrays.

Figure 11. Mesh of the dielectric tool inside borehole.
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Figure 12. Mesh of the layers outside borehole.

Figure 13. The field distribution at the Z-plane when only one Z-
oriented transmitter is excited.

proved our conclusion from the eigenvalue analysis. Since there are
some eigenvalues of SOTC-Full-J clustered near the boundary of the
unit circle as shown in Fig. 3(c), and there is a possibility that these
eigenvalues could be very close to the zero point, which makes the NC-
FEM-DDM matrix have near singularity, and consequently suffering
from a slow convergence.

Since the iterative convergence is much worse for FOTC and
SOTC-TE in this case, we just give the time and memory cost of
FEM, SOTC-Full-J and SOTC-Full-En in Table 2.

The amplitude attenuation and phase shift is defined on a single
receiving coil while different transmitters are excited.

Atti = Ampta
i /Amptb

i (33)

PSi = Phaseta
i − Phasetb

i (34)

where Atti is the amplitude attenuation defined on the ith receiver,
Ampta

i and Amptb
i are the amplitude of the voltage received on

the ith receiver when transmitter ta and transmitter tb are excited
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Figure 14. Convergence history of the NC-FEM-DDM using two
different TC.

Table 2. Comparison of FEM, NC-FEM-DDM using SOTC-Full-J
and SOTC-Full-En.

Step FEM SOTC-Full-J SOTC-Full-En
Unknowns 715948 637977 637977

Reading data 306 s 78 s 78 s
Geo-assembling 19s 12 s 12 s
Filling Matrix 96 s 42 s 42 s

Solving 930 s 482 s 376 s
Memory Cost 23.86 GB 12.3 GB 12.3 GB

Error - 7× 10−6 7× 10−6

respectively, and PSi is the phase shift defined on the ith receiver,
Phaseta

i and Phasetb
i are the phase of the voltage received on the

ith receiver when transmitter ta and transmitter tb are excited
respectively. To illustrate the response of the tool with respect to
the conductivity and dielectric parameter, the amplitude attenuation
and phase shift of a Z-oriented coil at the transmitter-receiver (T-R)
spacings of 0.12 m, 0.2 m, 0.28m and 0.36m are given in Fig. 15 and
Fig. 16.

From Fig. 15 and Fig. 16, we can conclude that the response
of dielectric tool is sensitive to both conductivity and permittivity
at 20 MHz. However, the curves of the response with respect to
the parameters are completely nonlinear in this case. As a result,
it requires lots of research into this kind of instruments in the
future so that we can optimize the tool parameters and get a better
interpretation of the response.
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Figure 15. The logging response with respect to the conductivity of
the layers.

Figure 16. The logging response with respect to the relative
permittivity of the layers.

5. CONCLUSION

Numerical modeling of applications both in the high-frequency band
and low-frequency band illustrate the advantage of the proposed
SOTC-Full-En in this paper. The NC-FEM-DDM developed in
this paper using an improved SOTC can significantly alleviate the
difficulties for real-life applications. First of all, each subdomain,
which may contain arbitrarily shaped structures, has been modeled
accurately. Secondly, each non-conformal subdomain is meshed
independently, which makes mesh generation easier and permits
inconsistency of mesh cells at the interface of subdomains with different
scale. Besides, DDM method itself can reduce the memory usage and
have high parallel efficiency. Finally, the improved SOTC for DDM
has enabled a faster solution by accelerating the iterative convergence.
With all the aforementioned advantages, the proposed SOTC-Full-En
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in the framework of NC-FEM-DDM has a great potential in dealing
with highly sophisticated practical problems in EM applications.
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