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Abstract—Numerical calculations based on finite-difference time-
domain (FDTD) simulations for metallic nanostructures in a broad
optical spectrum require an accurate modeling of the permittivity
of dispersive materials. In this paper, we present the algorithms
behind B-CALM (Belgium-CAlifornia Light Machine), an open-source
3D-FDTD solver simultaneously operating on multiple Graphical
Processing Units (GPUs) and efficiently utilizing multi-pole dispersion
models while hiding latency in inter-GPU memory transfers. Our
architecture shows a reduction in computing times for multi-pole
dispersion models and an almost linear speed-up with respect to the
amount of used GPUs. We benchmark B-CALM by computing the
absorption efficiency of a metallic nanosphere in a broad spectral range
with a six-pole Lorentz model and compare it with Mie theory and with
a widely used Central Processing Unit (CPU)-based FDTD simulator.

1. INTRODUCTION

Finite-Difference Time-Domain (FDTD) simulations play a prominent
role in numerical electromagnetic calculations [1, 2]. Many problems in
nanophotonics require three dimensional full-field simulations. When
applying optimization schemes that require a full-field solution at each
iteration step, such as genetic algorithms [3] or adjoint optimization
methods [4, 5], the ability to find a solution is often limited by the speed
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of the full-field simulator. Also FDTD simulations are often limited
by the available computational power. While the use of multiple
Graphical Processing Units (GPUs) to accelerate FDTD simulation
has been reported before [6, 7], the results have been, to our knowledge,
so far limited to the implementation of flat or single-pole Drude-
Lorentz dispersion material models in the microwave regime. At optical
frequencies, the permittivity of metals can have more intricate features,
which require including multiple resonances to obtain an accurate
material model [8] that so far have only been implemented on a single
GPU [9–11]. Moreover, to our knowledge, no multi-GPU-enabled
FDTD simulator has been shared with the scientific community under
an open source license.

The cell update in finite difference algorithms usually requires
information on the state of their neighboring cells [12]. When
solved on multiple GPUs this requires data transfers between the
GPUs as neighboring cells can be located on different cards. Those
memory transfers can potentially reduce performance due to memory
bandwidth limitations or latency. This is particularly the case when
the cards are located on different hosts [13]. To hide the latency, we
structured B-CALM in such a way that memory transfers occur almost
asynchronously with the execution of the simulation kernels. In this
paper, we thus present an open-source GPU-based FDTD simulator
that implements an algorithm to simulate multi-pole Lorentz materials
on multiple GPUs while minimizing thread divergence and latency
in the memory transfers between different GPUs. This enables fast
simulations of complex materials. Also, as the memories of the different
GPUs are aggregated, larger simulations are possible. As an example,
we use B-CALM to simulate the absorption cross-section of a gold
nanosphere and compare the results with Mie theory. Compared with
Mie theory, we obtain an error of less than 5% on a broad spectral
range and a 50-fold speedup per card compared to Meep [14], a widely
used CPU-based FDTD simulator. In addition, the speed-up is almost
linear with respect to the number of cards when the simulation space
is large enough.

2. LORENTZ MODEL FOR DISPERSIVE MEDIA

A complex permittivity ε(ω) = ε′(ω) + iε′′(ω) can be approximated
over a broad range of wavelengths using the Lorentz multi-pole
approximation. The permittivity of the dispersive material is then
modeled as the sum of the spectral response of several damped
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harmonic oscillators or poles, following expression (1) [1].

εL(ω) = ε∞ +
P∑

m=0

ω2
pm

ω2
m − ω2 + iωΓm

(1)

As the number of poles P is increased, εL(ω) can be approximated
more accurately and over a larger bandwidth. For example, to fit the
relative permittivity of gold the between wavelengths of 300 nm and
1200 nm, 6 poles are needed [15]. The exact fitting values of the pole
frequency ωm, the pole strength ωpm and the pole damping Γm are
listed in Table 1 and will be used throughout this work.

Table 1. Exact fitting values of ωm, ωpm and Γm for gold between the
wavelengths of 300 nm and 1200 nm [15].

Parameter ωm × 1016 (1/s) ωpm × 1016 (1/s) Γm × 1015 (1/s)

m = 0 0 1.1959 0.0805

m = 1 0.0630 0.2125 0.3661

m = 2 0.1261 0.1372 0.5241

m = 3 0.4510 0.3655 1.3216

m = 5 0.6538 1.0634 3.7887

m = 6 2.0235 2.8722 3.3633

3. DESCRIPTION OF THE GPU ARCHITECTURE AND
KERNEL CONCURRENCY

GPUs contain several hundreds of cores that can allow for massive
parallelization. The main difference compared to CPUs is that
GPUs typically exploit the Single Instruction Multiple Data (SIMD)
computer architecture [16]. This implies that all the cores assigned to
an instruction set execute identical commands at each clock cycle, but
on data stored at different memory addresses. The instruction set is
referred to as a kernel. So, when a kernel is executed, all the cores
that execute the kernel compute the same instruction but on different
data in the GPU RAM (random access memory). The execution speed
of a kernel on GPUs is often limited by memory bandwidth, memory
latency and divergence [16].
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Divergence occurs when, within a kernel, different threads have
to perform different instructions, e.g., through an if-statement. Both
paths of the if-statement are then performed sequentially since different
instructions can not be computed at the same time under the SIMD
architecture. This slows the program down significantly as the cores
assigned to one path of the if-statement are busy waiting while the cores
assigned to the other path are completing their instruction set [16].

The memory bandwidth and latency on a GPU is strongly related
to the coalescence of the memory calls. Coalesced memory calls occur
when cores request data that is located on adjacent addresses in the
GPU-RAM [16]. If the data is not located on adjacent addresses, and
memory calls are made to scattered locations of the GPU-RAM, the
kernel is significantly slowed down, as non-coalesced memory calls are
performed sequentially.

Applications using the Compute Unified Device Architecture
(CUDA) manage concurrency through streams. A stream is a sequence
of commands (possibly issued by different host threads) that is
executed in a well-defined order. Different streams, on the other hand,
may execute their commands out of order with respect to one another
or concurrently [16]. Kernels that are allocated to different streams
can therefore be executed at the same time. Streams can also be
synchronized with each other.

4. MAPPING THE FDTD ALGORITHM ON MULTIPLE
GPUS

The FDTD algorithm allows the calculation of propagating electromag-
netic waves by alternately calculating the discretized electric and mag-
netic fields using a first-order spatial and temporal difference equation
from Maxwell’s equations [1]. For non-magnetic materials, the electric
and magnetic field update equations in a cell with the permittivity
described by Equation (1) are

En+1 = Es + C1En + C2∇×Hn+1/2

︸ ︷︷ ︸
≪UpdateEA≫

+CE
pml

(
Ψn

E⊥1
+ Ψn

E⊥2︸ ︷︷ ︸
≪UpdateEA≫

)

−C3En−1 +
1
2

P∑

p=1

αpJn
p + ξpJn−1

p

︸ ︷︷ ︸
≪UpdateEB≫

(2)

Jn+1
p = αpJn

p + ξpJn
p + γp

(En+1 −En−1)
2∆t︸ ︷︷ ︸

≪UpdateEB≫

(3)



Progress In Electromagnetics Research, Vol. 138, 2013 471

Hn+3/2 = Hs + C4Hn+1/2 + C5∇×En+1

︸ ︷︷ ︸
≪UpdateH≫

+CH
pml

(
Ψn

H⊥1
+ Ψn

H⊥2︸ ︷︷ ︸
≪UpdateH≫

)
(4)

where n denotes the time step, ∆t the time increment at each time
step, E the electric field, Es the source term and H the magnetic
field. CE

pml, CH
pml, are scaling constants specific to the Perfectly

Matched Layer (PML) while Ψn
E⊥1

, Ψn
E⊥2

Ψn
H⊥1

and Ψn
H⊥2

are recursive
accumulators only stored in the PML regions [1]. C1, C2, C3, C4, C5

αp, ξp, γp are material-specific parameters and C3, αp, ξp, γp are only
used in dispersive materials. Finally, Jn

p and Jn−1
p denote recursive

accumulators only stored for the electric field of dispersive materials.
The update Equations (2) and (3), which account for dispersion, are
constructed by adding the dispersion terms that are underscored with
≪ UpdateEB ≫ to the regular FDTD update terms underscored by
≪ UpdateEA ≫ [1]. The update of the magnetic field H is essentially
analogous to the update of E that is indicated as ≪ UpdateEA ≫.

The calculation of En and Ψn
E⊥1,2

requires Ψn
H⊥1,2

and H fields
of neighboring cells as illustrated in Fig. 1(a). In contrast, as is clear
from Equation (3), the calculation of Jn+1

p requires Jn
p, Jn−1

p , En and
En−1, which are associated with the calculated cell only. Therefore,
their update is entirely local as no fields associated with neighboring
cells are needed, as illustrated in Fig. 1(b).
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Figure 1. Data needed for the update of a dispersive cell. (a) The
field update of the electric field E and Ψn+1

E⊥1,2
(in blue) requires the

neighboring H fields (in red) to be loaded. Some of those fields are
shared. (b) The update of Jn

p (in blue) requires no knowledge of the
neighboring fields, but only of the electric field in the same direction
(in red).
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4.1. An Additional Kernel to Alleviate Thread Divergence

In previous GPU implementations of FDTD [17], the update equations
are split into two kernels, one for the electric and one for the magnetic
field update equation as illustrated in Fig. 2(a). However, as Jn

p
only needs to be updated for dispersive materials, the electric field
update creates a slow diverging path, since, in general, not all cells
are dispersive. The situation is exacerbated for materials with a
higher number of poles, as the calculation is done sequentially for the
diverging paths. As described in references [9–11], B-CALM separates
the electric field update equation into two separate kernels (labeled
≪ UpdateEA ≫ and ≪ UpdateEB ≫ in Fig. 2(b)) to alleviate
this issue. The cost per field is one extra read and write operation to
the device memory to store the intermediate result as both kernels are
called sequentially. As ≪ UpdateEB ≫ only uses fields of one cell, it
is only responsible for 2(P +1) read-write operations per field† making
the split kernel approach faster as soon as the number of poles P > 1.

<<< UpdateE >>> <<< UpdateH >>>

n = n + 1

<<< UpdateEA >>> <<< UpdateEB >>> <<< UpdateH >>>

n = n + 1

start end

start end

(a) Original approach with two kernels

(b) Modified approach with split of kernels

Figure 2. Comparison of the original approach (a) with the split
kernel approach where computation and communication overlap (b).

4.2. Memory Scheme

To allow for multi-GPU implementation, the simulation space is split in
equal parts along the Z direction and each part is allocated to a specific
GPU as depicted in Fig. 3(a). On each GPU, the slower and large
device memory is only used to store the fields E, H and the recursive
accumulators for the CPMLs and the dispersive material parameters.
To minimize memory transfers, the material parameters C1, C2, C3,
C4, C5, αp, ξp, that remain constant throughout the simulation, are
stored in a fast read-only texture memory. Also, fast shared memory
is used as described in reference [12], so that the electromagnetic fields
† This corresponds to En, En−1 for each field and Jn

p, Jn−1
p per pole per field.
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Figure 3. Mapping of the FDTD simulation space on different GPUs.

in neighboring cells are only loaded once per update and that those
loads are coalesced. In this way, multiple fields can be loaded during
the same cycle, which allows for a more efficient use of the memory
bandwidth.

As depicted in Fig. 3 the bottom layer of electric fields Ex,y in each
GPU needs the magnetic fields Hx,y in the top layer of the previous
GPU. Conversely, for the update of Hx,y in the top layer of each
GPU, the bottom Ex,y in the previous GPU is required. There are
two possible ways to organize these transfers. The simplest way is to
make the transfers synchronously with the rest of the simulation as it
is done [6]. After the execution of ≪ UpdateH ≫ the updated H
fields on the boundary between two GPUs are copied to the next GPU
so that it can be used by ≪ UpdateEA ≫ and ≪ UpdateEB ≫
to calculate the electrical fields. Finally the updated Ex,y on the
lower borders are transferred back so they can be used in the next
update of ≪ UpdateH ≫. Both simulation and transfer kernels
are associated with one dedicated stream per card. These streams
are synchronized with each other after every transfer step. The main
advantage of this technique is its simplicity. However its disadvantage
is that the simulation kernels are idle while the transfers between the
cards are performed. This idle time can be significant depending on
the simulation size and on how the cards communicate. This situation
is exacerbated when the GPUs are located on different hosts. It is
possible to hide this latency by using a slightly more complicated
asynchronous transfer mechanism [13]. The main difference with the
synchronous mechanism is that the cells that need to be transferred to
another GPU are computed and transferred asynchronously with the
cells that do not. This is illustrated in Fig. 4(b). Two streams per
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card are defined: stream 1 is associated with the update and transfer
of the border cells and stream 2 is associated with the update of the
remainder of the simulation space. All the streams are synchronized
with each other after each transfer. As can be seen from Fig. 4(b) the
transfer time between GPUs can be hidden by the main simulation
computed in stream 2.

<<< H >>>

<<< EA >>>

<<< EB
>>>

<<< H A
>>>

<<< E A >>>

<<< E
B

>>>

<<< H >>>

<<< E A >>>

<<< EB
>>>

Stream 1 on GPU n

start

Stream 1 on GPU n

start

Stream 2 on GPU n

Update Border

Update Update

Copy  Border H in GPU n

    to Buffer in GPU n+1

Copy  Border H in GPU n

    to Buffer in GPU n+1

Update Border

Update Border

Update
UpdateCopy  Border E in GPU n

    to Buffer in GPU n-1

Copy  Border E in GPU n

    to Buffer in GPU n-1

Update
Update

Sync streams Sync streams

Sync streams Sync streams

Sync streams

Sync streams

loop back loop back

(a) (b)

Figure 4. Schemes for the FDTD-implementation on multiple GPUs
with (a) synchronous and (b) asynchronous data transfers.

5. RESULTS

We use B-CALM to calculate the absorption efficiency of a metallic
sphere of 80 nm diameter under plane wave illumination and compare
it with Mie theory [18] using the modeled values of the permittivity.
We use a uniform mesh of 0.5 nm and 208 × 208 × 400 cells with
two symmetry planes and a 15-cell-wide PML. We calculated the
absorption efficiency of the sphere by first integrating the Poynting
vector on each face of a closed box surrounding the sphere. Then
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we subtracted the output flux from the input flux through the box
surrounding the sphere. As shown in Fig. 5, the absorption efficiency
obtained using B-CALM closely matches the analytical value obtained
by Mie theory, with a relative error smaller than 5% over the entire
simulated spectrum.

The simulation speed is 1.82 × 1010 cells/min for a six-pole
dispersion model on a single NVIDIA C-2075 GPU, which is 50 times
faster than with Meep [14] on a Quad Core Intel(R) Xeon(R) CPU
X5650 processor.

In order to test the speed as a function of the grid size, we perform
the same simulation but we vary the mesh size and consequently the
amount of cells in the grid. These simulations are run on 1, 2, 3 and 4
cards at the same time to test scalability. The results are compiled in
Fig. 6 where the speed of Meep and B-CALM is compared for different
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Figure 5. Simulated absorption efficiency of a gold nanosphere with
a diameter of 80 nm. The simulated absorption cross-section closely
matches the theoretical value over a broad wavelength range.
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simulation sizes and for a different number of cards with and without
dispersion. When we use 4 cards this scales up to 6.94×1010 cells/min
which is 3.8 times faster than the simulation on one card and 187
times faster than Meep. Note that while the introduction of dispersion
in Meep significantly slows down the simulation speed, it only slightly
reduces the simulation speed of B-CALM. We attribute this to the
introduction of a dedicated kernel for dispersive cells. Also, the
speedup is somewhat reduced for smaller grid sizes. We believe that
this is due to the parallelization overhead becoming dominant and
because the simulation is too small to efficiently hide memory transfers
inside the GPU.

6. CONCLUSIONS

We have shown that dispersive materials with complex wavelength
dependence can be accurately simulated using a multiple-GPU-based
FDTD while preserving the speed and the low-cost advantage of GPUs.
B-CALM, our GPU-accelerated open-source 3D-FDTD simulator,
allows us to quickly simulate complex metal structures over a broad
wavelength range and on multiple GPUs while hiding the latency
involved in the memory transfers. B-CALM currently supports any
user-defined sources, dedicated 2D kernels, variable grid size and PML,
and is structured to easily allow the implementation of non-linearity
and anisotropy. B-CALM and its user-friendly interface with Matlab
can be freely downloaded at http://b-calm.sf.net.
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