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FRINGE WAVES IN AN IMPEDANCE HALF-PLANE
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Abstract—The uniform expressions of scalar fringe waves which are
based on the physical theory of diffraction (PTD) were obtained for
the impedance half plane in terms of the Fresnel integrals. Asymptotic
and uniform forms of the fringe fields were compared. The radiated
fields of the fringe expressions were analyzed numerically.

1. INTRODUCTION

Physical optics (PO) is based on the integration of surface currents
which are induced by the incident fields. This concept is valid and
accurate for metallic scatterer surfaces and gives exact geometric optics
(GO) waves in the high frequencies. There are lots of studies in the
literature about the application of the PO method [1–3]. The edge
diffracted fields which are found from the contribution of the PO
surface integral are not correct. In addition PO currents just consider
the illuminated part of the scatterer and ignore the shadow regions.
The physical theory of diffraction (PTD) method was proposed by
Ufimtsev to overcome the first defeat [4]. The PTD consists of two
main parts. The first part is the uniform part which is obtained from
the PO and the second part is the contribution of the non-uniform
or fringe part. The fringe part is the result of the fringe currents.
It is pointed out that the fringe currents are obtained by dividing
the induced surface currents into two parts. The fields, radiated
by the fringe currents, can be found by subtracting of uniform part
from the exact solution. The method is widely used in the literature
for investigation of the scattering problems [5–8]. Using the uniform
fringe fields instead of the non-uniform version is more reliable. Non-
uniform fringe fields can be obtained by the subtraction of asymptotic
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PO fields from asymptotic exact solutions. Similarly, uniform fringe
fields can be obtained by subtraction of uniform PO fields from
uniform exact solutions of the related geometry. Umul showed in a
study by making comparison that the values used by Ufimtsev were
quite large and not giving the correct results for the fringe fields.
According to Umul’s work, approximate expressions are not valid in the
transition regions. Therefore, the solutions that are represented by the
Fresnel functions must be used for the scattering problems [9]. Syed
and Volakis derived PTD formulation for investigation of radar cross
section (RCS) and they presented their formulation for impedance and
coated structures [10]. Although PTD results for different impedance
structures were presented by Syed and Volakis, fringe field expressions
were not studied analytically and numerically. In addition, the work
does not include the uniform version of the fringe field expressions and
results were analyzed in terms of the total fields. In the literature,
there are lots of applications on the diffraction analysis for impedance
surfaces such as land-sea transition, solar cell panels on satellites and
edges of high performance antennas [11–14]. The aim of this paper
is to investigate the uniform fringe field expressions for impedance
half-plane. Although the diffraction from a half-plane was studied by
many researchers according to our knowledge, there is no study on the
application of the PTD method to an impedance-half plane. Moreover,
uniform expressions of fringe fields were not examined for an impedance
half-plane. It is first examined in this study. Additionally, uniform and
non-uniform expressions were also derived and compared numerically.
Differences were examined according to the distribution of fringe field.

The time factor of exp(jωt) is assumed and suppressed throughout
the paper where ω is the angular frequency.

2. THEORY

In this section the PO expression for the half plane geometry
will be obtained from the Huygens-Kirchhoff integral with the
impedance boundary condition. The geometry of the half plane
is given in Figure 1. The half plane is lying on the surface
{x ∈ [0,∞], y = 0, z ∈ [−∞,∞]}.

We consider the E-polarization case for the incident field in this
study. The method can also be applicable for the H-polarization case.
The half-plane is illuminated by the plane-wave of

ui = u0e
jk(x cos φ0+y sin φ0) (1)

where the u0 is the complex amplitude factor and ui is any component
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Figure 1. The geometry of the half-plane.

of the electric field. The total field can be written as
ut = ui + ur (2)

where ur is the reflected field from the surface. The PO takes the
reflected fields as a geometric optics (GO) fields so the reflected field
can be described as

ur = Γu0e
jk(x cos φ0−y sin φ0) (3a)

where Γ is the reflection coefficient and equal to

Γ =
sinφ0 − sin θ

sinφ0 + sin θ
(3b)

according to [15]. When taking into account the reflection coefficient
which is given in Equation (3b), the angle θ determines the surfaces
polarization case. When sin θ take the values between one and infinity
electric polarization case is observed and if sin θ take the values between
zero and one magnetic polarization case is observed.

Equation (2) is rearranged according to Equation (1) and
Equations (3a), (3b) and redefined on the scattering surface as

ut|y′=0 = (1 + Γ)u0e
jkx′ cos φ0 . (4)

The impedance boundary condition for the Cartesian coordinates is
defined as

ut|s =
1

jk sin θ

∂ut

∂n

∣∣∣∣
s

(5)

where s is the y = 0 plane, n the unit normal vector of the scattering
surface, sin θ equal to Z0

Z , and Z0 the impedance of the vacuum and
Z is the impedance of the scatterer. According to Equation (4) and
Equation (5) derivative of the field expression is written as

∂ut

∂y′

∣∣∣∣
y′=0

=
2jku0 sin θ sinφ0

sinφ0 + sin θ
ejkx′ cos φ0 . (6)
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For the 2-D case if the geometry is symmetric according to the z′
coordinates a further expression of the Huygens-Kirchhoff integral can
be given by

u (P ) =
1
4π

∫

l′

(
u

∂G

∂n
−G

∂u

∂n

)
dl′ (7)

where P is the observation point and G the Green’s function. The 2-D
Green’s function is given as

G =
π

j
H

(2)
0 (kR) . (8)

The PO integral is constructed as

uPO (P ) =
1
4π

∞∫

x′=0

(
2u0 sinφ0

sinφ0 + sin θ
ejkx′ cos φ0

∂G

∂y′

−2jku0 sin θ sinφ0

sinφ0 + sin θ
ejkx′ cos φ0G

)
dx′ (9)

according to Equations (4), (6), (7) and the geometry of the problem.
The term ∂G

∂y′ can be found from the chain rule as

∂G

∂y′
∼= π

j

∂H
(2)
0 (kR)
∂R

∂R

∂y′
(10)

where R is the ray path and equal to [(x− x′)2 + (y − y′)2]1/2. The
derivative operation of the ray path according to the normal vector is
written as

∂R

∂y′

∣∣∣∣
y′=0

= − y

R
(11)

where − y
R is written as − sinβ from the geometry of the problem.

Equation (9) is obtained

∂G

∂y′
∼= kπ

j
H

(2)
1 (kR) sin β (12)

with inserted Equation (11) into Equation (10) and the derivative

operation ∂H
(2)
0 (kR)
∂R is equal to −kH

(2)
1 (kR). Hence the PO integral

which is given in Equation (9) is reconstructed as

uPO(P )=
1
2

ku0 sinφ0

sinφ0+sinθ

∞∫

x′=−∞
(sinβ−sin θ)ejkx′ cos φ0H

(2)
1 (kR1)dx′ (13)
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where R1 is the ray path and equal to [(x− x′)2 + y2]1/2. Debby
asymptotic expansion of the Hankel function is written as

H
(2)
1 (kR1) ≈

√
2

πkR1
e−jkR1ej 3π

4 (14)

where kR1 À 1. As a result, Equation (13) yields

uPO(P )=
ku0 sinφ0

sinφ0+sin θ

ej π
4√

2π

∞∫

x′=0

(sinβ−sin θ) ejkx′ cos φ0
ejkR1

√
kR1

dx′ (15)

where R1 is equal to [(x− x′)2 + y2]1/2. The integral expression can
be transformed into

uPO (P )=
ku0 sinφ0

sinφ0 + sin θ

ej π
4√

2π

∞∫

x′=0

1
sinφ0

[
cos

β + φ0

2
sin

β − φ

2

− cos
β−φ0

2
sin

β+φ

2

]
(sinβ−sin θ)ejkx′ cos φ0

e−jkR1

√
kR1

dx′ (16)

by using [16] for separately investigation of the incident and reflected
diffracted fields with using the trigonometric relation of sin(a− b) =
sin a cos b − cos a sin b. The incident and reflected diffracted fields can
be written as

uid
PO (P ) =

ku0

sinφ0 + sin θ

ej π
4√

2π

∞∫

x′=0

(sinβ − sin θ) cos
β + φ0

2

× sin
β − φ

2
ejkx′ cos φ0

e−jkR1

√
kR1

dx′ (17a)

and

urd
PO (P ) =− ku0

sinφ0 + sin θ

ej π
4√

2π

∞∫

x′=0

(sinβ − sin θ) cos
β − φ0

2

× sin
β + φ

2
ejkx′ cos φ0

e−jkR1

√
kR1

dx′ (17b)

respectively. The asymptotic evaluation of Equation (17a) can be
found by using the edge point technique. The edge point technique
is given as

∞∫

x

f (α) ejkg(α)dα ∼= − 1
jk

f (x)
g′ (x)

ejkg(x) (18)
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where the detailed explanation can be found in [16]. The phase
function of Equation (17a) is written as

g
(
x′

)
= x′ cosφ0 −R1 (19)

The first derivative of the phase function can be found as

g′
(
x′

)
= cosφ0 +

x− x′

R1
. (20)

The stationary phase values of the phase functions are found as

g (xe) = −ρ (21)

and

g′ (xe) = cosφ0 +
x

R1
(22)

where x
R1

is written as − cosβe from the geometry of the problem and
keep in mind that βe which is the reflection angle’s value at the edge
is equal to π − φ. The amplitude function can be written as

f (xe) = (sinβe − sin θ) cos
βe + φ0

2
sin

βe − φ0

2
1√
kρ

(23)

at the edge. Hence the asymptotic incident diffracted PO field is
obtained as

uid
PO(P )=− u0

sinφ0+sin θ

e−j π
4√

2π

(sinφ−sin θ)sinφ−φ0

2 cos φ+φ0

2

cosφ0 + cosφ

e−jkρ

√
kρ

(24)

with using the edge point method. Equation (24) is simplified as

uid
PO (P ) = − u0

sinφ0 + sin θ

e−j π
4√

2π

(sinφ− sin θ) sin φ−φ0

2

2 cos φ−φ0

2

e−jkρ

√
kρ

(25)

with using the trigonometric relation of cos a+cos b = 2 cos a+b
2 cos a−b

2 .
The diffracted field, in Equation (25) is not uniform since it approaches
to infinity at the shadow and reflection boundaries. The uniform theory
is based on the asymptotic relation of

sign (x) F [|x|] ∼= e−j π
4

2
√

π

e−jx2

x
(26)

for x À 1 [17, 18]. The sign(x) is the signum function equal to 1 for
x > 0 and −1 for x < 0. The F [x] is the Fresnel function and can be
defined by the integral of

F [x] =
ej π

4√
π

∞∫

x

e−jy2
dy. (27)
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In order to obtain the uniform version of the diffracted fields two new
parameter are introduced as

ξ− = −
√

2kρ cos
φ− φ0

2
(28)

ξ+ = −
√

2kρ cos
φ− φ0

2
(29)

for using instead of x in Equation (26). Hence the uniform version of
Equation (25) can be obtained as

uid
PO (P )

=
u0

sinφ0+sin θ
(sinφ−sin θ) sin

φ−φ0

2
ejkρ cos φ−φ0sign(ξ−)F [|ξ−|] . (30)

The same procedure is valid for the reflected diffracted field so the
uniform version of the reflected diffracted field is directly written as

urd
PO (P ) =− u0

sinφ0 + sin θ
(sinφ− sin θ)

sin
φ + φ0

2
ejkρ cos(φ−φ0)sign (ξ+) F [|ξ+|] (31)

If the scattering geometry is symmetric according to the z′ coordinate,
the generalized PO integral for an arbitrary impedance surface is
written as

uM (P ) = −k

2

∫

l′

u (Q)i q (α, π − β)H
(2)
0 (kR) dl′ (32)

from [19] where α is the incident angle and β the reflection angle.
According to Figure 1, Equation (32) can be rewritten as

uM (P ) =
−ku0

2

∞∫

x′=−∞
ejkx′ cos φ0q (φ0, π − β) H

(2)
0 (kR1) dx′ (33)

where q(φ0, π − β) is the compositions of the Maliuzhinetz function
and equal to

q (φ0, π − β) =
ψ (φ)

ψ (π − α)
sin

α

2

[
ψ (−φ)

(
sin

φ

2
− cos

α

2

)

+ψ (2π − φ)
(

sin
φ

2
+ cos

α

2

)]
(34)

where ψ(x) is written as

ψ (x) = ψπ

(
x +

3π

2
− θ

)
ψπ

(
x +

π

2
+ θ

)

×ψπ

(
x− π

2
− θ

)
ψπ

(
x− 3π

2
+ θ

)
(35)
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and the term ψπ(x) is the Maliuzhinetz function and can be described
as

ψπ (x) = exp


− 1

8π

x∫

0

π sin η − 4π cos π
4 sin η

2 + 2η

cos η
dη


 . (36)

Hence using Debby asymptotic form of the H
(2)
0 (kR) which is

equal to

H
(2)
0 (kR) =

√
2
π

ej π
4
e−jkR

√
kR

(37)

the scattering integral takes the form

uM (P ) = −u0k
ej π

4√
2π

∞∫

x′=0

ejkx′ cos φ0q (φ0, π − β)
e−jkR1

√
kR1

dx′ (38)

where R1 is the ray path and equal to [(x− x′)2 + y2]1/2. The phase
function and the amplitude function of Equation (38) are written as

g
(
x′

)
= x′ cosφ0 −R1 (39)

f
(
x′

)
= q (φ0, π − β)

1√
kR1

. (40)

The first derivative of the phase function is derived as

g′
(
x′

)
= cosφ0 − dR1

dx′
(41)

where dR1
dx′ can be found x−x′

R1
and this expression is written as − cosβ

from the geometry of the problem. The edge point contribution of
Equation (38) can be obtained as

uM (P ) = u0
e−j π

4√
2π

q (φ0, π − βe)
1√
kρ

1
cosφ0 − cosβe

e−jkρ (42)

with using the edge point technique which is given in Equation (18).
The reflection angle β takes the βe value in the edges and equal to
π − φ. Equation (42) is rewritten as

uM (P ) = u0
e−j π

4√
2π

q (φ0, φ)
cosφ0 + cosφ

e−jkρ

√
kρ

. (43)

Equation (43) can be separated into incident and reflected diffracted
part with using the trigonometric relation which is previously given.
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After the trigonometric separation operation Equation (43)’s uniform
version can be written as

urd
M (P ) = −q (φ0, φ)

sinφ0
ejkρ cos(φ+φ0) sin

φ + φ0

2
sign (ξ+) F [|ξ+|] (44)

and

uid
M (P ) =

q (φ0, φ)
sinφ0

ejkρ cos(φ−φ0) sin
φ− φ0

2
sign (ξ−)F [|ξ−|] (45)

with using Equation (26) and Equation (27). According to the PTD,
fringe fields can be obtained with subtracting the PO fields from the
exact solution so the total fringe field expression can be obtained as

uf (P ) = uM (P )− uPO (P ) (46)

where the uM (P ) is the exact edge diffracted fields expression from the
impedance half plane and formed as

uM (P ) = uid
M (P ) + urd

M (P ) (47)

with addition of Equations (44), (45). Also u(P )PO is the edge
contribution of the PO method and formed as

uPO (P ) = uid
PO (P ) + urd

PO (P ) (48)

with addition of Equations (30), (31). The expressions of the incident
and reflected diffracted fringe fields can be written as

uid
f (P ) = uid

M (P )− uid
PO (P ) (49a)

and
urd

f (P ) = urd
M (P )− urd

PO (P ) (49b)

respectively taking into account Equations (30), (31), (44) and
Equation (45). Equation (46) is valid for obtaining the asymptotic
fringe field expression. In the beginning asymptotic PO contribution
can be obtained from the evaluation of Equation (15) according to
Equation (18). After this evaluation asymptotic PO field can be found
as

ua
PO (P ) = − u0 sinφ0

sinφ0 + sin θ

e−j π
4√

2π

sinφ− sin θ

cosφ0 + cosφ

e−jkρ

√
kρ

. (50)

The asymptotic fringe field expression can written as

ua
f (P )=

u0

cosφ0+cos φ

e−j π
4√

2π

[
q(φ0, φ)+

sinφ0(sinφ−sin θ)
sinφ0 + sin θ

]
e−jkρ

√
kρ

(51)

with using the subtraction of Equation (50) from Equation (43).
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3. NUMERICAL ANALYSIS

In this section fringe field expressions will be analyzed numerically. In
order to investigate the far field radiation, the observation distance
is taken reasonably away from the scatterer. The high frequency
asymptotic techniques can be used under the condition of kρ À 1 where
ρ and k are the observation distance and wave numbers respectively.
The wave number k is equal to 2π

λ where λ is the wavelength. The
observation distance ρ was taken as 6λ in our computations. In this
case, the high frequency condition is found as 12π À 1. Hence, it
is satisfied by the distance 6λ. The angle of incidence φ0 was taken
as 60◦ and the sin θ term was taken as 4. Although in trigonometry
the function sin θ is defined in the range of [−1, 1], in the literature
for impedance boundary condition, it can take values from zero to
infinity. It should not be confused with trigonometry. It has been
used in this way in the literature by Maliuzhinetz [20]. Figure 2
shows the diffracted fringe fields whose expressions were given in
Equations (46), (49a) and Equation (49b). It can be seen that a
minor lobe occurs between the reflection and shadow boundaries.
Amplitudes at the reflection (120◦) and shadow (240◦) boundaries are
zero. The major radiation is observed in the illuminated and the
shadow regions. The amplitude variations of the incident diffracted
fringe fields go to zero at the 240◦ whereas the amplitude variation of
the reflected diffracted fringe fields go to zero at the 120◦. Furthermore,
it can be observed from Figure 2 that incident diffracted fringe fields
concentrate in the shadow regions so compensate the incident fields
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Figure 2. Total diffracted, incident diffracted and reflected diffracted
fringe fields.
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in the illuminated regions. Similarly, reflected diffracted fringe fields
concentrate in the illuminated regions so compensate the reflected
fields in the shadow regions.

Figure 3 shows that the uniform and asymptotic fringe fields.
The asymptotic fringe field was computed according to the expression
given in Equation (51). Although the amplitudes are equal in the
illuminated and shadow regions, they are different in the transition
regions. The amplitude of asymptotic fringe field is different than zero
at the 120◦ and 240◦ on contrary to the uniform fringe field. It is
a predicted scene for the asymptotic fringe fields for an impedance
structures. The reason of the enhancement at 120◦ is the result of
the asymptotic expression which is given in Equation (51). This
behavior was explained in Figure 4. According to the PTD, asymptotic
expression of fringe field can be obtained by the subtraction of PO
asymptotic expression from exact asymptotic solution. The values of
asymptotic expressions become infinity at the transition regions and
cause an uncertainty in the result of the subtraction process. However,
it yields finite field values. Although the fields compensate each other
in all direction of observation, the fields cannot compensate at the
reflection boundary. Therefore, the enhancement at 120◦ is observed.
Figure 4 shows the variation of the asymptotic fringe field amplitude
with respect to the observation angle. In Figure 4, the amplitude takes
a reasonable value at the 120◦ (reflection boundary). This behavior is
related to the reflection coefficient. Incident diffracted fields do not
depend on the surface reflection coefficient. Therefore, there is no
amplitude change at the 240◦.
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Figure 3. Uniform and nonuni-
form fringe fields.
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In the reflection coefficient when sin θ approaches to infinity in
Equation (51), surface acts as a perfectly conducting surface. It can be
observed from Figure 4 that reflected diffracted fringe field amplitude
go to equal point with respect to the incident diffracted fringe field.
Hence, at the 120◦ and 240◦ amplitudes take equal values. The
amplitude values for all plots were found as expected because diffracted
fields compensates the deficiencies of GO fields in the transition regions
and takes half of the amplitude value of GO fields.

4. CONCLUSION

In this study, uniform and asymptotic fringe field expressions were
derived for a half plane with the impedance boundary conditions by
using the method of PTD. First of all, the contributions of the PO fields
were derived by integrating the fields in the given surface. Then, the
field expression which had been obtained from the surface integral was
subtracted from the exact solution in order to obtain the asymptotic
form of the fringe fields. The asymptotic fringe fields were transformed
into the uniform fringe fields by using the method which is given in
Refs. [17, 18].

The derived uniform fringe fields were found to be more reliable
than the asymptotic forms because asymptotic expressions gives wrong
field values in the transition regions. It was observed that the separated
fringe fields compensate the reflected and incident fields in the shadow
regions. Numerical analysis showed that the uniform fringe fields
are in harmony with the theory. We observed that amplitudes of
the asymptotic fringe field are finite for all direction of observation
and nearly consistent with the uniform fringe fields except for the
reflection and shadow boundaries. In this respect, when compared
to Ufimtsev’s works, it appears that Ufimtsev’s amplitude values were
exaggerated [4, 21]. In Chapter 4, Figure 4.2 of [4], amplitude values of
asymptotic fringe field components take equal value with GO fields [4].
However, it is noticeable that diffracted fields amplitude values have
to be half of the GO amplitude values in the shadow and reflection
regions. The more rigorous expressions were presented and numerically
analyzed in this work.
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