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Abstract—Based on the observation that sparsity assumption is well
satisfied in the synthetic aperture radar (SAR) imaging applications,
there is increasing interest in utilizing compressive sensing (CS) in
SAR imaging. However, there are still several problems which should
be concerned in CS-based imaging approaches. Firstly, inevitable noise
and clutter challenge the performance of CS algorithms. Secondly, the
super-resolving ability of CS algorithms is not sufficiently exploited
in most cases. Thirdly, nonideal characteristics of mutual coherence
affect the performance of CS algorithms in complex scenes. In this
paper, a novel CS imaging framework is proposed for the purpose
of improving the imaging performance of stepped frequency SAR.
Meanwhile, a super-resolving imaging algorithm is proposed based on
the nonquadratic optimization technique. Simulated and rail SAR
measured data are applied to demonstrate the effectiveness of the novel
framework with the proposed super-resolving algorithm. Experimental
results validate the superiority of this method over previous approaches
in terms of robustness in low SNR, better super-resolving ability and
improved imaging performance in complex scenes.
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1. INTRODUCTION

Synthetic aperture radar (SAR) is a microwave sensor which is
capable of producing high-resolution images of the earth’s surface [1–
5]. Having the advantage of weather independence and all-day
operation capability, it is widely used in many military and civilian
applications [6–8].

Conventional SAR imaging schemes usually process the received
signal using matched filter (MF) [9–11]. Although they are easy
to implement, one common shortcoming of these MF based schemes
is the resolution limitation to system bandwidth, which complicates
localization of point scatterers for automated recognition tasks. In
order to overcome this disadvantage, linear frequency modulation
(LFM) and stepped frequency (SF) waveforms are often utilized for
generating wide bandwidth. Compared to LFM waveform, the SF
waveform reduces the requirement on hardware and thus has been
widely employed to increase system bandwidth. Unfortunately, as
there exists some tradeoff between resolution and imaging range
width [12], the bandwidth of SF system can not be increased infinitely.
Therefore, how to acquire super-resolution imaging ability under
limited bandwidth has attracted widespread concerns in recent years.

One idea to overcome this limit is to use compressed sensing
(CS) theory. As an emerging technique, CS has brought about
a breakthrough to sparse signal reconstruction. According to this
theory, the exact recovery of an unknown sparse signal can be
achieved from limited measurements by solving a sparsity constrained
optimization problem. Furthermore, this method possesses super-
resolving ability, overcoming the limitation imposed by bandwidth and
synthetic aperture [13]. Recent publications have shown the great
potential of CS theory in various applications. In [14], it is argued
that a radar system can eliminate the need for the matched filter in
the radar receiver and reduce the required receiver analog-to-digital
conversion bandwidth by utilizing CS theory. In [15, 16], CS theory is
applied to ground penetrating radar imaging, although only a small
subset of the measurements are used, the CS theory still obtains
sparser and sharper target images compared to the standard back-
projection method. For wide-angle imaging, where the isotropic point
scattering assumption is violated, the CS is employed to improve the
resolution [17, 18]. In tomographic SAR (Tomo-SAR), CS theory is
exploited to overcome the poor resolution and aliasing effect brought
by limited overall baseline and non-uniform inter-track distance, and
better tomographic reconstruction results of man-made objects such as
buildings and stadiums have been acquired [13, 19]. For SAR imaging,
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especially the imaging of man-made targets, the scattered signal can
be deemed as a few point-like scatterers’ contributions. In this sense,
sparsity assumption is well satisfied for SAR imaging [20], which paves
the way for utilizing CS theory in SAR imaging. However, there are
still several problems that should be concerned.

Firstly, some researchers have realized the problem that the
performance of CS-based imaging algorithms degrades as the SNR
decreases [21, 22]. Therefore, how to obtain robust reconstruction in
the presence of strong noise is challenging. Secondly, there are various
methods to implement CS imaging, such as basis pursuit (BP) [23],
matching pursuit (MP) [24], orthogonal matching pursuit (OMP) and
so on. Among them, the OMP and its variations are most widely
used for their convenience and effectiveness [1, 25–27]. Nevertheless, as
special cases of greedy methods, the super-resolving abilities of OMP
and its variations are poor [21, 28], i.e., the super-resolving ability of
CS is not exploited sufficiently in many occasions. Thirdly, rather
than realistic SAR scenes, simple and clean test scenes are usually
investigated [29–31]. In these scenes, simple targets such as several
isolated point scatterers take up only a small part of the scene, while
the rest part of the scene is free of strong targets. In this case, only the
small part of the scene including strong targets should be investigated
and the influence from other parts of the scene can be negligible, which
is too ideal.

Aiming at aforementioned problems, this paper focuses on the
improvement of SF SAR imaging quality based on the CS theory.
The contribution of this paper can be summarized as follows. Firstly,
we propose a new CS imaging framework for SF SAR imaging, in
which an operator is introduced to counter the influence of noise
or clutter. Secondly, in order to exploit the super-resolving ability
of the CS algorithms sufficiently, we provide an extension of the
nonquadratic optimization technique [32] which was proposed by Cetin
to the application of SAR imaging. Consequently, the super-resolving
ability of the proposed algorithm is much better than that of OMP
and MF based algorithms. Thirdly, in the proposed framework, the
mutual coherency characteristic is more satisfactory. Therefore, even
if a complex scene considered, the influence from other targets can be
excluded. In this paper, a complex scene including a vehicle and some
trihedral corner reflectors is investigated, and better imaging results
are obtained using the proposed framework.
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2. SIGNAL MODEL

In SF SAR, wide bandwidth is generated with a series of pulses with
carrier frequencies increasing from pulse to pulse. Therefore, we do
not require the wide instantaneous bandwidth, which will mitigate
the hardware burden for the radar system. Assuming the SF signal
transmitted by radar is

sT (τ) = wr

(
τ

Tp

)
exp (j2πfτ (m) τ) (1)

where fτ (m) = f0 + m∆f denotes the carrier frequency of mth pulse;
f0 is the start carrier frequency; ∆f is the frequency step; the range
of m is 1 ∼ B/∆f and B stands for the synthetic bandwidth; Tp

is the pulse width; τ is the range time; wr(τ/Tp) is the envelope of
transmitted pulse which is usually chosen as rectangular pulse or LFM
pulse signal as described in Figure 1.
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Figure 1. Two kinds of time-frequency profiles for stepped frequency
radar. (a) Rectangular pulse envelope, (b) LFM pulse envelope.

For a point scatterer situated at (x, y), its echo can be expressed
as

sR(τ, t) = g(x, y)wr

(
τ − 2R(t; x, y)/c

Tp

)
wa

(
t− y/v

Ts

)

exp
(

j2πfτ (m)
(

τ − 2R(t; x, y)
c

))
(2)

where c is the velocity of light; t is the slow time; wa((t− y/v)/Ts)
is the azimuth envelope (azimuth beam pattern); Ts is synthetic
aperture time; v is velocity of radar platform; g(x, y) denotes the
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reflectivity amplitude of the target situated at (x, y) and x stands
for range coordinate, y stands for azimuth coordinate; R(t, x, y) =√

x2 + (vt− y)2 is the traveling path of electromagnetic wave from
radar to target at slow time t.

Taking sref (τ, t) = exp(j2πfτ (m)τ) as the reference signal, the
demodulated signal can be expressed as

sRD(τ, t)=sR(τ, t)s∗ref (τ, t)

=g(x,y)wr

(
τ−2R(t;x,y)/c

Tp

)
wa

(
t−y/v

Ts

)
exp

(
−j

4πfτ (m)R(t;x,y)
c

)
(3)

where the superscript * stands for conjugate. In order to take
advantages of digital signal processing, the demodulated signal should
be sampled at range time to get discrete signal. Assuming rectangular
pulse envelope is used, the range time sampled signal can be expressed
as

sRD (fτ , t) = g (x, y) wa

(
t− y/v

Ts

)
exp

(
−j

4πfτ (m)R (t;x, y)
c

)
(4)

Then, we perform the Fourier transform on sRD(fτ , t) and get the
expression of two-dimensional frequency spectrum as

sRD (fτ , ft) = g (x, y) wa


−

cxft

Ts

(
2v2fτ (m)

√
1− c2f2

t
4v2f2

τ (m)

)




exp

(
−j

4πxfτ (m)
c

√
1− c2f2

t

4v2f2
τ (m)

)
exp

(
−j2π
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v
ft

)
(5)

Up to now, the signal model for a point target situated at (x, y) has
been derived. Nevertheless, for a scene consisting of many targets, the
measured signal should be represented as a superposition of the echoes
reflected from all targets which are illuminated by the radar’s beam.
In this sense, the received signal should be written as

sRD(fτ , ft)=
∫∫

G

g(x, y)wa


−

cxft

Ts

(
2v2fτ (m)

√
1− c2f2

t
4v2f2

τ (m)

)




exp

(
−j

4πxfτ (m)
c

√
1− c2f2

t

4v2f2
τ (m)

)
exp

(
−j2π

y

v
ft

)
dxdy(6)

where G stands for the scene illuminated by the radar’s beam.
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In order to apply CS algorithm to two-dimensional SAR imaging,
the two-dimensional distribution of targets’ reflectivity should be
sampled to get the discrete form as

G =




g (x1, y1) . . . g (x1, yQ)
...

. . .
...

g (xP , y1) . . . g (xP , yQ)


 (7)

where P is the number of samples in range direction and Q the number
of samples in azimuth direction. For the purpose of super-resolving, the
sample interval should be smaller than the Fourier resolution cell. In
the following experiments, the sample interval is chosen as one-third
of the Fourier resolution cell. Therefore, P and Q are usually large
numbers.

Based on (7), the received signal in (6) can be expressed as

sRD(fτ (m), ft)=
P∑

p=1

Q∑

q=1

g(xp, yq)wa


−

cxpft

Ts

(
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exp
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)
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(
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(8)

Following, the two-dimensional signal shown in (8) are sampled in the
ft direction (the signal is already discrete in the fτ direction) to get

sRD(m,n) =
P∑

p=1

Q∑

q=1

g(xp, yq)wa


−

cxpft(n)

Ts

(
2v2fτ (m)

√
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t (n)
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τ (m)

)




exp

(
−j
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c

√
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t (n)
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τ (m)

)
exp

(
−j2π

yq

v
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)
(9)

After that, the two-dimensional signals sRD(m, n) and g(xp, yq)
are expressed in lexicographically ordered vector as

sRD =




sRD(1, 1)
...

sRD(N, 1)
...

sRD(1,M)
...

sRD(N,M)




g =




g(x1, y1)
...

g(xP , y1)
...

g(x1, yQ)
...

g(xP , yQ)




(10)
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where sRD is a MN × 1 vector, g is a PQ× 1 vector.
Then Equation (9) can be expressed as

sRD = Ag (11)

where A is a MN × PQ dictionary which can be expressed as

A = [a (1, 1) , . . .a (N, 1) , . . . ,a (1,M) , . . .a (N,M)]T (12)

where the superscript T stands for transpose.

a (m,n) = [a (m,n, 1, 1) , . . . , a (m, n, P, 1) , . . . ,

a (m,n, 1, Q) , . . . , a (m,n, P, Q)]T (13)

a(m,n,p,q)=wa
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In the presence of noise, we should solve equations

sRD = Ag + n (15)

to reconstruct the two-dimensional distribution of the targets’
reflectivity g. Since the set of equations in (15) are conventionally
underdetermined, the CS theory is usually resorted to.

3. CS THEORY

According to CS theory, it is possible to recover sparse signal from
a number of measurements which are much less than the number of
Nyquist rate samples. Nevertheless, the key condition for CS theory
to hold up lies in the sparsity or compressibility of the signal. A vector
x ∈ CL is said to be K sparse when there exists a basis Ψ satisfying
x = Ψs while s ∈ CL has only K ¿ L nonzero elements. Comparing
to sparsity, compressibility requires the elements of s follow a power
decay law with K strongest coefficients [33], which is less rigorous and
can be satisfied by more real-world signals.

Now, let us consider a measurement matrix (sensing matrix)
Φ ∈ CM×L with M ¿ L, then the measurement equations can be
written as

y = Φx = ΦΨs = Θs (16)

where Θ = ΦΨ is called dictionary. However, since this set of
equations is underdetermined, exact solution of s from Equation (16) is
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challenging. In mathematical sense, underdetermined equations have
infinitely many solutions. Within CS theory, the K sparse vector can
be estimated from M ≥ O(K · log L) measurements by utilizing the
sparsity of the signal, which means solving the following optimization
problem:

(P0) s̃CS = arg min
s
‖s‖0 subject to y = Θs (17)

where, ‖s‖0 returns the number of nonzero elements in the vector
s. Unfortunately, (P0) is a N-P hard problem and is computational
difficult. Instead, the problem is usually solved by a relaxed version

(P1) s̃CS = arg min
s
‖s‖1 subject to y = Θs (18)

where ‖s‖1 returns the sum of the absolute values of all the elements
in the vector s.

In practice, the noise and clutter from measuring and background
are inevitable, therefore the actual problem we should solve is

(P ε
1 ) s̃CS = arg min

s
‖s‖1 subject to ‖y −Θs‖2 ≤ ε (19)

where ε stands for the noise level.
From above discussion, it is possible to note that (P1) is the

approximate solution of (P0) and (P ε
1 ) takes the influence of noise

into account. Two natural questions are whether the approximation
holds up and what is the performance of the algorithm in the presence
of noise. One sufficient condition for both (P0) and (P1) to have the
same solution and for (P ε

1 ) to stably recover the sparse signal in the
presence of noise is known as the restricted isometry property (RIP).
A matrix Θ is said to satisfy the RIP provided there exists a constant
δs ∈ (0, 1) making

(1− δs) ‖v‖2
2 ≤ ‖Θv‖2

2 ≤ (1 + δs) ‖v‖2
2 (20)

holds up for any K sparse vector v. The RIP essentially states that any
subsets of K column chosen from Θ are nearly orthogonal. Generally,
the smaller δs, the better noise resistance performance of the algorithm.

However, in practice, there is no computational feasible way to
check RIP properly, as it is combinatorial in nature [20]. Fortunately,
there exist some alternatives. One of them is mutual coherence, which
is defined as

µ (Θ) = max
i 6=j

|〈ρi,ρj〉|
‖ρi‖2 ‖ρj‖2

(21)

where ρi stands for the ith column of matrix Θ. From another aspect,
the mutual coherence can be viewed as the largest off-diagonal element
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of matrix Θ̃HΘ̃, where Θ̃ is obtained by normalizing each column of
Θ [34]; superscript H denotes the complex conjugate.

However, the mutual coherence µ (Θ) only provides the largest
coherence between different columns of Θ, which occurs between two
close columns. In other words, mutual coherence µ(Θ) only describes
the local characteristic of Θ̃HΘ̃ but not its full characteristics. It is
suitable when targets only take up a small part of the scene, while
the rest part of the scene is free of strong targets. Nevertheless, when
a large scene which comprises targets deployed dispersively in it is
investigated, the influence of other targets (i.e., the coherence between
other columns) can not be negligible. In this situation, the mutual
coherence µ (Θ) is not sufficient to ensure stable reconstruction.

In this paper, the full characteristics of matrix Θ̃HΘ̃ are
investigated but not only its largest off-diagonal element. Comparing
to µ(Θ), Θ̃HΘ̃ is more robust in predicting the performance of the CS
algorithm, especially in situation where a large scene comprises targets
deployed dispersively in it. In the following sections, it can be noted
that the mutual coherence characteristic is improved by the proposed
algorithm.

4. NUMERICAL ITERATIVE SUPER-RESOLVING
IMAGING ALGORITHM

As mentioned earlier, the MF based algorithms face the problem
of Fourier resolution limited by the radar bandwidth and synthetic
aperture. Nevertheless, the radar resolution is very important to the
understanding of the image, especially for the application to man-made
structures, which motivates the approaches for enhanced resolution.

The super-resolving ability of CS algorithm has been represented
in many literatures [32, 35, 36]. However, there are various
implementations for CS, and the resolving abilities of different
implementations differ. For example, the OMP and its variations
are widely exploited for their convenience and effectiveness. However,
the super-resolving ability of these algorithms are poor [21]. In this
paper, a regularization method is proposed based on nonquadartic
optimization technique proposed by cetin [32]. The derivation of this
algorithm can be summarized as follows.

First, we formulate the imaging problem as the following
regularization problem

ĝ = arg min
g

(
‖sRD −Ag‖2

2 + µ ‖g‖k
k

)
(22)

where term ‖sRD −Ag‖2
2 is used for preserving the data fidelity of the
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solution; µ is the scalar parameter to balance the emphasis on data
fidelity or signal energy; ‖·‖k denotes the lk-norm. In this algorithm,
we constraint k ≤ 1 since the smaller value of k implies less penalty
on large pixel values as compared to larger k and results in better
preservation of the scatter magnitudes [32].

In a following, we denote

J (g) = ‖sRD −Ag‖2
2 + µ ‖g‖k

k (23)

as the objective function. In order to minimize J(g), we should first
calculate the differential of J(g) with respect to g. However, in order
to eliminate the nondifferentiablity of the lk-norm around the origin
when k ≤ 1, J(g) should be modified as

J (g) = ‖sRD −Ag‖2
2 + µ

PQ∑

i=1

(
|gi|2 + ξ

)k/2
(24)

where ξ is a constant small enough not to affect ‖g‖k
k and is chosen

as ξ = 10−5 in our experiment. Then the differential of J (g) can be
expressed as

∇J (g) = H (g)g − 2AHsRD (25)

where H(g) = (2AHA + µkΛ(g)), superscript H denotes the complex
conjugate, Λ(g) = diag{1/(|gi|2 + ξ)1−

k
2 }. The objective is to find

a g satisfying ∇J(g) = 0. Noting that H(g) is the function of
unknown targets’ scattering reflectivity g, we can not simply obtain the
estimation of g by letting g = 2H−1(g)AHsRD. Instead, an iterative
algorithm should be utilized for solving this problem. Examining the
gradient expression of (25), H(g) resembles as a “coefficient” matrix
multiplying g. Consequently, H(g) is taken as the Hessian matrix.
Then the iterative algorithm can be expressed as

gn+1 = gn −H−1 (gn)∇J (gn) (26)

We terminate iteration (26) when ‖gn+1 − gn‖2
2/‖gn‖2

2 < δ. Where δ
is a small positive termination constant and is set as δ = 10−6 in our
experiment. The geometry demonstration of this iterative algorithm
is shown in Figure 2.

Another idea to overcome the resolution limit is to use modern
spectral estimation methods such as MUSIC (Multiple Emitter
Location and Signal Parameter Estimation), ESPRIT (Estimation of
Signal of Parameters Via Rotational Invariance Techniques) rather
than MF based methods. The modern spectral estimation achieves
super resolution in direction of arrival (DoA). Images generated by
these approaches are inherently free of sidelobes, and the resolution
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Figure 2. Geometry demonstration of the iterative algorithm.

relies on the precision of estimation. Wherein, ESPRIT [37, 38] exploits
the rotational invariance of sub-array to realize the estimation of DoA.
Comparing with MUSIC, ESPRIT has the advantage of computational
efficiency, and eliminates the demand of spectral peak searching.
Furthermore, the ESPRIT algorithm can achieve the Cramer-Rao
lower bound (CRLB) on location error variance for the sum-of-
reflectors model with sufficiently high signal-to-noise ratio [39, 40].
Therefore, in this paper, the super-resolving results of ESPRIT are
provided to demonstrate the super-resolving ability of the proposed
algorithm.

From above discussion, it can be noted that the proposed
algorithm is an iterative frequency domain CS algorithm. Therefore,
for simplicity, it is acronymized as IFCS in the following discussion.

5. EXPERIMENT RESULTS

In this section, the superiority of IFCS is demonstrated using simulated
and real data. The imaging results of Omega-K algorithm and
time domain CS (i.e., the CS theory is applied directly to the time
domain echo) imaging algorithm proposed in [12] are also represented
for comparison. Among them, Omega-K [41–43] algorithm is a
representative MF based imaging algorithm. Since the data are
processed in the 2D frequency domain with little approximations in
Omega-K algorithm, it is often deemed as an accurate algorithm and
used as a reference to evaluate other imaging algorithms.

5.1. Noise Resistant Capability

Firstly, we demonstrate the noise resistant capability of IFCS on
a simple simulated scene which consists of four point scatterers
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Table 1. Scatterer properties.

Range Azimuth Amplitude
Scatter 1 54.5 0 0.5
Scatter 2 52.4 0 1
Scatter 3 56 1.5 0.3
Scatter 4 55.4 −1.5 1

Table 2. Simulation parameters.

Parameter Value
Carrier Frequency 10 GHz

Bandwidth 500MHz
Radar Velocity 0.1m/s
Frequency Step 1MHz
Sweep Period 120 ms
Radar Height 2.5m

Azimuth Beam Width 2.5◦

with different reflectivity amplitude. The coordinate and reflectivity
amplitude of these scatterers are listed in Table 1. The simulation
parameters are listed in Table 2.

Figure 3 shows the color-coded (color are coded by the reflectivity
amplitude of the scatterers) imaging results of the simulated scene with
different imaging algorithms. For IFCS, the parameters are chosen as
k = 0.1 and µ = 1000 empirically. Considering the inevitable noise
from measuring and background, the simulated data are added with
white Gaussian noise, which is commonly used for radar measurement
noise. From up to down, the SNR levels are 0 dB, 10 dB and −10 dB
respectively.

From the color-coded images shown in Figure 3(a) to Figure 3(c),
it can be noted that when SNR is high, both the time domain CS
algorithm and IFCS can reconstruct the scatterers well. Namely not
only the positions of scatterers are correctly reconstructed but also
their reflectivity amplitude information is well preserved. Furthermore,
comparing to the imaging result of the Omega-K algorithm, the
absence of sidelobes makes the images generated by the time domain
CS and IFCS much preferable, considering that the sidelobes will
prevent a better discrimination of closely located targets. However,
when SNR degrades to 0 dB, artifacts will appear in image provided
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Figure 3. Color-coded imaging results of a simulated scene with 4
scatterers having different reflectivity amplitudes under different SNR
levels, color is coded by the reflectivity amplitude of the scatterers.
(Upper plots) SNR = 10 dB. (Middle plots) SNR = 0dB. (Lower
plots) SNR = −10 dB. (a) Omega-K, (b) time domain CS, (c) IFCS,
(d) Omega-K, (e) time domain CS, (f) IFCS (g) Omega-K, (h) time
domain CS, (i) IFCS.

by the time domain CS algorithm (shown in Figure 3(e)) while the
image provided by IFCS is still free of artifacts (shown in Figure 3(f)).
When SNR further degrades to −10 dB, the amplitude of artifacts will
rise, making the weak scatterer (i.e., scatterer 3 situated at the top
right part of the scene) submerged in artifacts. Nevertheless, IFCS
exhibits its robustness and stability in strong noise cases (shown in
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Figure 3(i)), in which targets are detected with accurate amplitudes at
the right positions, and no artifacts appear.

The better noise resistant capability of IFCS can be owed to the
azimuth Fourier transform included in it. After Fourier transforming,
the signal energy will concentrate to several Doppler bins, while the
noise energy is still spreading over the whole frequency domain, leading
to the improvement of SNR. However, for the time domain CS imaging
algorithm, it has been proven that the estimation error of the unknown
signal is approximately proportional to the noise level [44]. Therefore,
it is not difficult to understand that the performance of the time
domain CS imaging algorithm degrades and artifacts increases as SNR
decreases.

5.2. Super-resolving Performance

In order to evaluate the super-resolving performance of IFCS, scenes
which comprises two closely separated scatterers in range/azimuth
direction are simulated with the parameters listed in Table 2.
Afterwards, different algorithms are applied and the imaging results
are presented in Figure 4 to Figure 11. The SNR is set to 10 dB.
The Fourier resolutions for range and azimuth direction are 0.3m
and 0.35 m respectively. For IFCS, the parameters are still chosen
as k = 0.1 and µ = 1000 empirically.

Firstly, the situation of two closely separated scatterers in range
direction is investigated, and the results are presented in Figure 4 to
Figure 7. From Figure 4 it can be noted that the Omega-K imaging
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Figure 4. Imaging results of two closely separated scatterers in range
direction using the Omega-K algorithm. One scatterer situated at
(54.5, 0), the other one situated at (54.9, 0), (54.8, 0), (54.7, 0) or
(54.6, 0) from left to right. (Upper plots) Two-dimensional imaging
results. (Lower plots) Range profiles corresponding to Upper plots.
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Figure 5. Imaging results of two closely separated scatterers in range
direction using the OMP algorithm. One scatterer situated at (54.5,
0), the other one situated at (54.9, 0), (54.8, 0), (54.7, 0) or (54.6, 0)
from left to right. (Upper plots) Range profiles of 100 Monte Carlo
runs. (Lower plots) Range profile corresponding to 100th Monte Carlo
Run.
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Figure 6. The imaging results of two closely separated scatterers in
range direction using the IFCS algorithm. One scatterer situated at
(54.5, 0), the other one situated at (54.9, 0), (54.8, 0), (54.7, 0) or
(54.6, 0) from left to right. (Upper plots) Range profiles of 100 Monte
Carlo runs. (Lower plots) Range profile corresponding to 100th Monte
Carlo Run.

algorithm cannot resolve the scatterers falling into one resolution cell
and suffers from sidelobes. Comparing to Omega-K imaging algorithm,
the images obtained by the OMP algorithm is free of sidelobes.
However, the super-resolving ability of the OMP algorithm is still
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Figure 7. Imaging results of two closely separated scatterers in range
direction using ESPRIT algorithm. One scatterer situated at (54.5,
0), the other one situated at (54.9, 0), (54.8, 0), (54.7, 0) or (54.6, 0)
from left to right.
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Figure 8. Imaging results of two closely separated scatterers in
azimuth direction using the Omega-K algorithm. One scatterer
situated at (54.5, 0), the other one situated at (54.5, 0.4), (54.5,
0.3), (54.5, 0.2) or (54.5, 0.1) from left to right. (Upper plots)
Two-dimensional imaging results. (Lower plots) Range profiles
corresponding to upper plots.

limited. When two scatterers move into one resolution cell, the results
become unsatisfactory. Firstly, the scatterers are not right located in
reconstructed images. For example, the scatterers situated at (54.5, 0)
and (54.7, 0) are located at (54.4, 0) and (54.6, 0) instead. Secondly,
the amplitude information of the scatterers is not well preserved by
the OMP algorithm. As a result, the reconstructed amplitude of
two scatterers with equal amplitude appears to have considerable
discrepancy. Figure 6 shows the imaging results of IFCS. It is pleased
to see that the super-resolving performance is much improved by
using IFCS. Two scatterers are stably reconstructed with accurate
position and amplitude until the range direction distance between them
is closer than one-third Fourier resolution cell. Figure 7 shows the
imaging result using the ESPRIT algorithm with a priori information
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Figure 9. Imaging results of two closely separated scatterers in
azimuth direction using the OMP algorithm. One scatterer situated
at (54.5, 0), the other one situated at (54.5, 0.4), (54.5, 0.3), (54.5,
0.2) or (54.5, 0.1) from left to right. (Upper plots) Azimuth profiles
of 100 Monte Carlo runs. (Lower plots) Azimuth profile corresponding
to 100th Monte Carlo run.
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Figure 10. Imaging results of two closely separated scatterers in
azimuth direction using the IFCS algorithm. One scatterer situated
at (54.5, 0), the other one situated at (54.5, 0.4), (54.5, 0.3), (54.5,
0.2) or (54.5, 0.1) from left to right. (Upper plots) Azimuth profiles
of 100 Monte Carlo runs. (Lower plots) Azimuth profile corresponding
to 100th Monte Carlo Run.

about the number of scatterers. Blue cross and red circle stand for
the true and estimated positions of the scatterers respectively while
their size is directly proportional to the amplitude of the scatterers.
Similarly to the results obtained using IFCS, two scatterers are well
reconstructed until they are closer than one-third Fourier resolution
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Figure 11. Imaging results of two closely separated scatterers in
azimuth direction using ESPRIT algorithm. One scatterer situated at
(54.5, 0), the other one situated at (54.5, 0.4), (54.5, 0.3), (54.5, 0.2)
or (54.5, 0.1) from left to right.

cell, which demonstrates the super-resolving capability of IFCS from
another aspect. However, comparing to the ESPRIT algorithm, IFCS
eliminates the step of model order selection, i.e., IFCS “adaptively”
chooses the number of scatterers.

Afterwards, the situation of two closely separated scatterers in
azimuth direction is investigated. Since similar conclusion can be
established, the results shown in Figure 8 to Figure 11 are not analyzed
in detail here.

5.3. Improvement of Mutual Coherence Characteristics

In this section, not only the largest off-diagonal element of matrix
Θ̃HΘ̃, i.e., µ(Θ), but also its full characteristics corresponding to the
5.5m × 6m scene in Section 5.1 are investigated. Table 3 shows the
parameter µ(Θ) for the time domain CS algorithm and IFCS. It seems
that if only µ(Θ) is used for evaluation, the performance of the time
domain CS algorithm and the IFCS algorithm is comparable.

Table 3. The µ(Θ) parameter of different CS framework.

Time domain CS IFCS
µ(Θ) 0.31 0.34

Figure 12 shows the representation of Θ̃HΘ̃. It can be noted
that the elements of Θ̃HΘ̃ distribute following a band crossing
the matrix from the upper left corner to the bottom right corner.
Theoretically, the mutual coherence decreases as the distance between
the columns augments. Nevertheless, the elements of Θ̃HΘ̃ exhibit
some fluctuations in time domain CS framework when distance between
the columns augments (shown in Figure 12(a)). On the contrary,
the mutual coherence characteristic of IFCS is preferable. On one
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Figure 12. Representation of matrix Θ̃HΘ̃. (a) Time domain CS,
(b) IFCS

hand, the large mutual coherence concentrate around the principal
diagonal of matrix Θ̃HΘ̃. On the other hand, when distance between
the columns augments, the mutual coherence decreases dramatically,
indicating the negligible influence from further targets. The advantage
of the mutual coherence characteristic in IFCS is demonstrated in next
section using measured data.

5.4. Real Data Imaging Results

In this section, the measured X-band stepped frequency SAR data are
used to demonstrate the effectiveness of IFCS. The test scene located at
the suburb of Changsha, China, is a slightly undulated field covered by
weeds and a few bushes. In this test site, a rail SAR experiment system
is established with a vector network analyzer (VNA) mounted on the
platform which is moving along the rail with preset velocity. While
the platform is moving, the VNA transmits SF signal and collects
echoes under the control of a computer. The experiment parameters
are shown in Table 4. Figure 13 presents the photograph of the rail
SAR experiment system and its components.

Figure 14 shows photographs of the targets deployed in the
test scene. As having the ideal point-like scattering properties and
exactly scattering mechanism, the trihedral corner reflectors are widely
utilized to demonstrate the performance of imaging algorithm. In our
experiment, four trihedral corner reflectors are deployed in the test
scene, as shown in Figure 14(c) to Figure 14(e). Trihedral corner
reflector A is deployed on a metal stair with some corner structures.
It is expected to be stronger in SAR image as the contribution of
the metal stair included. Trihedral corner reflectors B1 and B2 are
two targets which almost locate at the same azimuth. However, since
B2 is deployed above ground with a height of about 1 m, these two
targets separate in range direction with about 0.7 m. Trihedral corner
reflector C deployed on the ground is the target closest to radar. In
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(a)

(b)

(c) (d)

Figure 13. The photograph of rail SAR experiment system.
(a) Overview of the experiment system. (b) Rail. (c) Agilent VNA
(PNX-5242A). (d) Transmitting and receiving antennas.

Table 4. Experiment parameters.

Parameter values Parameter values
Carrier

Frequency
10GHz

Depression
Angle

3.8◦

Radar
Bandwidth

500MHz
Reference
Antenna
Height

4.34m

Frequency
Step

1MHz
Intermediate
Frequency
Bandwidth

1MHz

Sweep
period

120ms
Source

Port Power
15 dBmw

Platform
Velocity

0.1m/s
Sweep
Type

Step
Frequency

Azimuth
Beam Width

18◦

addition to simple corner reflectors, a more complicated target, i.e., a
vehicle, is deployed in the test site to validate the performance of IFCS
in reconstructing complex targets. The photograph of the vehicle is
shown in Figure 14(b).

Figure 15 shows a 2D image of the test site obtained by the



Progress In Electromagnetics Research, Vol. 140, 2013 83

(a)

(b) (c)

(d) (e)

Figure 14. The photograph of targets deployed in test scene. (a) The
overview of the targets. (b) The vehicle. (c) Trihedral corner reflector
A. (d) Trihedral corner reflectors B1 and B2. (e) Trihedral corner
reflector C.
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Figure 15. (a) Imaging result of the test site obtained by Omega-K
algorithm. (b) Ground truth.

Omega-K algorithm and the ground truth. A remarkable consistency
can be found between them. Therefore, in the following discussion,
the image shown in Figure 15(a) is taken as a reference to evaluate
the performance of other algorithms. However, one aspect worth to
describe in Figure 15(a) is the “noisy” look, especially in areas without
strong point scatterers. The source of noise can be summarized as three
folds. Firstly, in order to accelerate frequency scan, the intermediate
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Figure 16. Color-coded imaging results of four corner reflectors.
Color is coded by the reflectivity amplitude of the scatterers.
(a) Omega-K, (b) time domain CS, (c) IFCS.

frequency bandwidth of VNA is set as 1 MHz in our experiment, which
will shorten the frequency scanning period. However, the SNR is
sacrificed instead. Secondly, the returns are inevitably interfered by
clutter. Thirdly, as the coherent nature of SAR system, the returns
are contaminated by the speckle noise.

Figure 16 shows the imaging results of four trihedral corner
reflectors (A, B1, B2, C) using different algorithms. From imaging
result of the Omega-K algorithm (shown in Figure 16(a)), it can be
noted that trihedral corner reflector A appears to be stronger than
the others, as the contribution of the metal stair included. For the
time domain CS algorithm, although four trihedral corner reflectors are
right reconstructed, the blurring of the image caused by some artifacts
is also obvious. On the contrary, IFCS generates image with much less
artifacts. Moreover, trihedral A appears to be stronger than the others,
i.e., the reflectivity amplitude information is preserved by IFCS.

Figure 17 shows the imaging results of a complicated target, i.e., a
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Figure 17. Color-coded imaging results of a vehicle. Color is coded
by the reflectivity amplitude of the scatterers. (a) Omega-K, (b) time
domain CS, (c) IFCS.
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vehicle, using different algorithms. For the time domain CS algorithm,
it can be seen that the outline and detail of the vehicle are not well
preserved and the image is contaminated by some artifacts. However,
the image obtained by using IFCS is much preferable. Firstly, the
shape and geometry features of the vehicle are well preserved, which
permits the effective use of region-based target recognition algorithm.
Second, the vehicle is represented as a set of scatterers in image
generated by using IFCS. Although precise super-resolving arguments
are not as easy for this complicated target, IFCS seems to capture
more details about the vehicle. Even some weak scattering centers
such as the one corresponding to the head of the vehicle (marked as
red rectangular in Figure 17(a)) which is weak in image obtained by
the Omega-K algorithm is enhanced in image obtained by using IFCS.
Thirdly, the sparse reconstruction obtained by CS-based algorithm has
been proven to be more effective than the images obtained by the
Omega-K algorithm when the automatic system is used for detection
and recognition [45]. Fourth, IFCS shows its robustness in the presence
of noise and clutter, as the image obtained by IFCS is dense and clean.

6. CONCLUSION

In this paper, a novel CS framework for stepped frequency SAR
imaging is proposed. Meanwhile, a super-resolving algorithm (i.e.,
IFCS) is proposed based on the nonquadratic optimization technique in
order to enhance super-resolving ability. The preferable characteristics
of the proposed framework with super-resolving algorithm are firstly
verified using a scene consists of four point scatterers with different
reflectivity amplitudes. In addition to the absence of sidelobes,
IFCS exhibits better performance than time domain CS under low
SNR. Afterwards, we simulate the scenes which comprise two closely
separated scatterers in range/azimuth direction to validate the super-
resolving ability of IFCS. The imaging results of OMP and ESPRIT are
also represented for comparison purpose. The results indicate that the
super-resolving ability of IFCS outperforms OMP and is comparable
to that of ESPRIT. Apart from simulated data, an X-band stepped
frequency rail SAR experiment system is established to demonstrate
the effectiveness of IFCS with real data. Another aspect worth to
mention is that not only simple corner reflectors but also a vehicle is
deployed in the test site, which is more persuadable. Consequently, in
images obtained by IFCS, the corner reflectors and the vehicle are right
located with accurate reflectivity and reduced artifacts. Furthermore,
more details about the vehicle are captured by IFCS.
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