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Abstract—In this paper we present seasonal results of the effective
earth radius factor distribution in South Africa using recently (2007—
2009) acquired radiosonde data from the South African Weather
Service (SAWS) for seven locations in South Africa. Two data
modeling methods are used to formulate the solution for the
distribution of the effective earth radius factor.  The seasonal
effective earth radius factor statistics obtained from the radiosonde
measurements are then interpolated, gridded and presented in contour
maps to cover the rest of the country for the four seasons defined by
ITU-R recommendation P.453-10. The Integral of Square Error is used
to check the performance of the data modeling techniques while the
Root Mean Square Error is used to compare the performance of the
different interpolation methods used.

1. INTRODUCTION

1.1. Radio Refractivity and the Effective Earth Radius
Factor (k-factor)

The vertical profile of the radio refractivity is defined in terms of the
atmospheric parameters of pressure, humidity and temperature and is
given by [1-8]:
77.6 e

N=-—""P+33x10°—; 1
where P is the atmospheric pressure (hPa), e is the water vapour
pressure (hPa), and T is the absolute temperature (K). Equation (1)
is valid for radio frequencies up to 100 GHz with errors of less than
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0.5% [9,10]. From Equation (1), we see that the radio refractivity
consists of a dry and wet part [9-12]:

77.6
Ndry = TP (2)
and,
Nuer = 3.3 x 10° ;2 (3)

If the radio refractivity varies linearly with height h for the first few
tenths of a kilometer above the earth’s surface and doesn’t vary in
the horizontal direction, then the vertical refractivity gradient is given
by [13-15]:

dN 1dP 4810 de
=776 =— — 4
dh 776(1 dh+ 72 dh) )

Electromagnetic waves travelling through the atmosphere are usually
bent due to radio refractivity. For ease of geometrical analysis, these
waves are represented as straight lines then compensation is done by
assuming an imaginary earth radius, otherwise referred to as effective
earth radius, r. [15]. The ratio between the effective and true earth
radius is referred to as the effective earth radius factor (k-factor) and
is given by [10, 16, 17]:

Te dn
k=-2=1 — 5
ro T Todn (5)
where k is the effective earth radius factor and r. is the effective earth

radius and r, is the true earth radius and Z—Z is the refractive index

gradient. The k-factor is a function of the vertical refractivity gradient,
dN/dh, and can also be determined from [13, 15, 18]:

dN/dh]™*
k=1
]

(6)

1.2. Diffraction (k-factor) Fading

When a radio wave travelling from the transmitting antenna to the
receiving antenna is intercepted by an obstacle, the signal is diffracted
and consequently fading occurs. This type of fading occurs when the
signal encounters either a single or multiple obstacles along its path.
If the choice of both the median and effective values of the effective
earth radius factor for link design is not appropriate for the particular
topographical setting, the signal may be obstructed by the Earth and
consequently little or no signal is detected at the receiver. This scenario
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is common when the k-factor assumes very low values (sub-refraction)
and hence the need to determine the appropriate minimum k-factor
for any particular link application [19]. This is the commonly referred
to as the k-factor exceeded 99.9% of the time (effective k-factor) value.
Both the median and effective values of the k-factor are essential in
the determination of the appropriate antenna heights necessary to
achieve adequate path clearance for the particular link application.
ITU-R recommendation P.530-14 [20] outlines the procedure for the
determination of appropriate antenna heights to avoid over or under
estimations that could lead to unnecessarily long or short antennas.
The procedures outlined in this recommendation underscore the need
for appropriate determination of the accurate values of the k-factor
for link design applications whenever local data is available. This
procedure is key to avoiding wastage of resources in expensive re-
designs and loss of revenue incase outage is experienced for example in
Global System for Mobile communications (GSM), Universal Mobile
Telecommunications System (UMTS) and Long Term Evolution (LTE)
networks which are the key modes of land mobile communications
currently.

1.3. Previous Work on the Effective Earth Radius Factor in
Africa

Various reports have been presented on the refractivity and k-factor
for Nigeria. The authors have worked on refractivity and k-factor
statistics for various locations across the country using measurements
from meteorological sensors either mounted on TV towers or ground
measurements [2,3,5,10,18]. Palmer and Baker [13-15] have used
regression analysis on data for summer inland rainfall areas of South
Africa to develop a cumulative distribution model of the k-factor.
Using this model they were also able to obtain contours of the k-factor
exceeded 0.001 of the time annually. Odedin and Afullo [19,21, 22]
have also worked on the seasonal and annual k-factor variations and
models for Durban in South Africa and Maun in Botswana. They have
been able to develop curve fitting models of the k-factor for Durban
and curve fitting and kernel models of the k-factor for Maun Botswana
using eight months and three years data respectively. Most recently
Fulgence [23] has worked on k-factor statistics for Central Africa,
particularly Rwanda and North-Western Tanzania for seven locations.
He was able to obtain the doubly truncated and kernel models of the
k-factor for the seven locations studied. He also extended the k-factor
statistics to cover the rest of the region by using kriging implementation
in ArcGIS to produce contours of the k-factor not exceeded for 0.5 of
the time.
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2. DISTRIBUTION MODELING

Two different methods of modeling the seasonal k-factor statistics for
South Africa have been applied. These are the kernel and the curve-
fitting methods.

2.1. Curve-fitting Method

The curve-fitting method used here is based on an algorithm developed
by Odedin and Afullo [19,21] for modeling the probability density
function (pdf) of the k-factor. A Gaussian distribution of the measured
data is assumed and then the parameters A, o, and ug, as defined
in [19,21] are computed. The pdf model used has the following basic
form [19, 21]:

£ (k) = Aexk—m)® (7)

ITU-R Recommendation P.453-12 [11] contains world refractivity
gradient maps for the months of February, May, August and November
but recommends that where local reliable data is available, the
same should be determined. Using three years (2007-2009) recent
meteorological radiosonde measurements obtained from the South
African Weather Service (SAWS), k-factor curve-fitting models for
the four months (seasons) of the year recommended in [11], that is;
February, May, August and November have been formulated for the
seven locations studied at a height of 200 m above ground level.

2.1.1. Curve-fitting Results and Discussion

Figures 1-28 show the seasonal curve-fitting model plots of the k-
factor distribution for the seven locations where measurements were
taken. Table 1 shows the values of the parameters obtained both from
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Table 1. Seasonal curve-fitting values of A, uj and ISE.

Initial estimates Final estimates
Station from measurements from curve-fitting
Month ux A ISE Uk A ISE
Feb. 1.24 | 1.52 | 0.188 | 1.24 | 1.37 0.184
. May 1.21 | 249 | 0338 | 1.22 | 1.6 0.244
Bloemfontein
Aug. 1.21 | 2.7 0.425 | 1.21 | 1.79 0.334
Nov. 1.22 | 1.87 | 0.275 | 1.25 | 1.30 0.220
Feb. 1.26 | 1.17 | 0.105 | 1.27 | 1.16 0.104
C May 1.29 | 2.11 0.209 1.29 | 1.45 0.133
ape Town
Aug. 1.3 | 1.63 | 0.157 | 1.29 | 1.7 0.156
Nov 1.27 | 1.45 | 0.1153 | 1.27 | 1.48 0.115
Feb. 1.28 | 1.24 | 0.099 | 1.26 | 1.37 0.091
D May 1.26 | 1.45 | 0.133 | 1.26 | 1.37 0.131
urban
Aug. 1.26 | 1.51 | 0.141 | 1.25 | 1.64 0.137
Nov. 1.26 | 1.54 | 0.102 | 1.26 | 1.66 0.098
Feb. 1.27 | 2.32 | 0.228 | 1.24 | 1.66 0.124
May 1.27 | 1.26 0.20 1.24 | 1.55 0.174
Polokwane
Aug. 1.23 | 1.96 | 0.185 | 1.21 | 2.08 0.174
Nov. 1.23 2 0.191 1.21 | 1.79 0.178
Feb. 1.22 | 1.29 | 0.122 | 1.20 | 1.5 0.109
P . May 1.19 | 239 | 0.165 | 1.18 | 2.2 0.157
retoria
Aug. 1.19 | 3.01 | 0.258 | 1.17 | 2.45 0.209
Nov. 1.20 | 1.75 | 0.123 | 1.20 | 1.79 0.122
Feb. 1.14 | 1.63 | 0.152 | 1.13 | 1.46 0.146
. May 1.20 | 1.82 | 0.184 | 1.21 | 1.58 0.175
Upington
Aug. 1.19 | 1.6 0.224 | 1.19 | 1.59 0.223
Nov. 1.16 | 1.08 | 0.279 | 1.15 | 1.38 0.257
Feb. 1.16 | 2.09 | 0.370 | 1.20 | 2.09 0.333
Bethlehem May 1.21 | 1.23 2.06 1.21 | 3.53 1.27
Aug. 1.17 | 1.46 | 0.947 | 1.19 | 2.92 0.569
Nov. 1.14 | 4.15 1.51 1.21 | 2.03 0.623

measurements and modeling. The initial estimate and final model
integral of square errors (ISE) are also calculated as shown in Table 1.
The final estimate is the best estimate since the error achieved is at
the very minimum. From this table, the curve-fitting median k-factor
values for Bloemfontein are found to be 1.24 for February, 1.22 for
May, 1.21 for August and 1.25 for November. For Cape Town, the
values are 1.27 for February, 1.29 for May, 1.29 for August and 1.27 for
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Figure 3. Gaussian curve-fitting
estimate, Bloemfontein, August,
200m a.g.l.

Figure 4. Gaussian curve-
fitting estimate, Bloemfontein,
November, 200 m a.g.l.
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Figure 5. Gaussian curve-fitting
estimate, Cape Town, February,
200m a.g.l.

Figure 6. Gaussian curve-fitting
estimate, Cape Town, May, 200 m
a.g.l.
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Figure 7. Gaussian curve-fitting
estimate, Cape Town, August,
200m a.g.l.

Figure 8. Gaussian curve-fitting
estimate, Cape Town, November,
200m a.g.l.

November. For Durban, the values are 1.26 for February, 1.26 for May,
1.25 for August and 1.26 for November. For Polokwane, the values are
1.24 for February, 1.24 for May, 1.21 for August and 1.21 for November.
For Pretoria, the values are 1.20 for February, 1.18 for May, 1.17 for
August and 1.20 for November. For Upington, the values are 1.13 for
February, 1.21 for May, 1.19 for August and 1.15 for November. For
Bethlehem, the values are 1.20 for February, 1.21 for May, 1.19 for



Progress In Electromagnetics Research B, Vol. 51, 2013 7

+ Measured pdf ====- Initial estimate Final eslimale‘
2
1.8 .
Zie .
g 1.4 PP 3
1.2 b
z 1 XX
| ol
£ 82 -
£ U 0
] L}
£33 I 2
0 P o ¢ MR XX
0 0.5 1 L5 2 2.5
K-factor
Figure 9. Gaussian curve-

fitting estimate, Durban, Febru-
ary, 200m a.g.l.

* Measured pdf ===== Initial estimate Final estimate‘
2.5
. -
g 2 ’..
-
215 £\
z2
z 1 ?""
=] b
=3 -
Z k)
QQ_ 0.5 3 X3
J b
0
0 0.5 1 15 2 2.5
K-factor

Figure 11. Gaussian curve-
fitting estimate, Durban, August,
200m a.g.l.
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Figure 13. Gaussian curve-
fitting estimate, = Polokwane,
February, 200 m a.g.l.
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Figure 10. Gaussian curve-
fitting estimate, Durban, May,
200m a.g.l.
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Figure 12. Gaussian curve-
fitting estimate, Durban, Novem-
ber, 200 m a.g.l.
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Figure 14. Gaussian curve-
fitting estimate, Polokwane, May,
200m a.g.l.

August and 1.21 for November. Also, for Bloemfontein, the largest
error is found to be 0.334 for the month of August while the least error
is found to be 0.184 for the month of February. For Cape Town, the
largest error is 0.156 for the month of August while the least error is
found to be 0.104 for the month of February. For Cape Town, the
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Figure 15. Gaussian curve-
fitting estimate, Polokwane, Au-
gust, 200m a.g.l.
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Figure 17. Gaussian curve-
fitting estimate, Pretoria, Febru-
ary, 200m a.g.l.
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Figure 19. Gaussian curve-
fitting estimate, Pretoria, August,
200m a.g.l.

Figure 16. Gaussian curve-
fitting  estimate, = Polokwane,
November, 200 m a.g.l.
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Figure 18. Gaussian curve-
fitting estimate, Pretoria, May,
200m a.g.l.
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Figure 20. Gaussian curve-
fitting estimate, Pretoria, Novem-
ber, 200 m a.g.l.

largest error is 0.156 for the month of August while the least error is
found to be 0.104 for the month of February. For Durban, the largest
error is 0.137 for the month of August while the least error is found to
be 0.091 for the month of February. For Polokwane, the largest error
is 0.178 for the month of November while the least error is found to
be 0.124 for the month of February. For Pretoria, the largest error is
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Figure 21. Gaussian curve-
fitting estimate, Upington, Febru-
ary, 200m a.g.l.
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Figure 22. Gaussian curve-
fitting estimate, upington, May,
200m a.g.l.
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Figure 23. Gaussian curve-
fitting estimate, upington, Au-
gust, 200m a.g.l.
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Figure 26. Gaussian curve-
fitting estimate, Bethlehem, May,
200m a.g.l.

Gaussian curve-

Bethlehem,

Figure 25.
fitting  estimate,
February, 200m a.g.l.

0.209 for the month of August while the least error is found to be 0.109
for the month of February. For Upington, the largest error is 0.223 for
the month of August while the least error is found to be 0.146 for
the month of February. For Bethlehem, the largest error is 1.27 for
the month of August while the least error is found to be 0.333 for the
month of February. Table 2 shows the curve-fitting models obtained.
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Table 2. Seasonal Gaussian curve-fitting k-factor distribution models.

Location | Month Distribution Model
Feb. f(k) = 1.37¢—5:9(k—1.24)?

Bloemfontein | May f(k) = 1.6¢~8040:=1.22) z
Aug. | f(k) = 1.79¢10-07(k—1.21)

Nov f(k) = 1.30¢—5-31(k—1.25)7

Feb. f(k) = 1.16e—423(k—1.27)

= —6.61(k—1.29)"

Cape Town May f(k) =1.45¢ ( z
Aug. f(k.) — 1.76_9'08(k_1'29)

Nov flk) = 1.48¢—6-88(k—1.27)

Feb. fk) = 1.37¢—5-9(k—1.26)7

Durban May f(k) = 1.37e~>9(k~1.26) ]
Aug. f(k) = 1.64¢—8-45(k—1.25)

Nov flk) = 1.66¢—8-66(k—1.26)”

Feb. f(k) = 1.66¢—866(k—1.24)

= —7.55(k—1.24)?

Polokwane May f(k) = 1.55e ( )z
Aug. f(k) = 2 08¢ 13-59(k—1.21)

Nov f(k) = 1.79¢—10.07(k—1.21)

Feb. f(k) = 1.5¢—7-07(k—1.20)"

— —15.21(k—1.18)?

Pretoria May f(k) =2.2e ( ) i
Aug. f(k) = 9 45— 18.86(k—1.17)

Nov. f(k) = 1.79¢—10.07(k—1.20)*

Feb f(k) = 1.46\5,—6.7(1@—1.13)2

= —7.84(k—1.21)*

Upington May f(k) =1.58¢ ( z
Aug. f(k) = 1.59¢—7-94(k—1.19)

Nov f(k) = 1'386—5.98(k—1.15)1

Feb. f(k) = 9.09¢—13-72(k—1.20)

= —39.15(k—1.21)7

Bethlehem May | f(k) =3.53e ( )z
Aug f(k) = 92 09¢—26.79(k—1.19)

Nov f(k) = 2.036712.95(#1‘21)2
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fitting estimate, Bethlehem, Au-  fitting estimate, = Bethlehem,
gust, 200m a.g.l. November, 200m a.g.l.

2.2. Kernel Density Estimation

While histograms are traditionally the most common non-parametric
method of representing data distribution, there are serious limitations
associated with them. Some of these limitations are; that they depend
on the width of the bins and their end points and also lack continuity
(not smooth) [24]. Large bin sizes will result in only few regions
being represented while very small bins will result in some empty bins.
Kernel density estimators were introduced to deal with these challenges
associated with histograms. This implies that, as with histograms, the
kernel probability density function (pdf) is directly estimated from the
data sample and therefore has no fixed data structure [24]. Thus, non-
parametric methods avoid any restrictive assumptions about the form
of the data distribution. Hence, non-parametric estimators have the
advantage that they are able to reveal data structural features that
parametric methods may miss out. To alleviate the dependence on
bin end points experienced with histograms, kernel density estimators
centre a kernel function at each data point thereby spreading the
influence of each data point about its neighborhood. These kernel
functions on each data point are then summed up together resulting
in smooth curve. The kernel density estimate of a variable k whose
kernel function is K (k) is then given by [24-29]:

f(k)ZJhZZn;K(k;Xi) ®

where n is the number of samples, h the window width, and X; the ith
observation. The kernel function choice has no much influence on the
final density estimate as compared to the choice of the window width,
h, which determines the overall structure of the kernel density estimate.
The number of data samples as well as the type of kernel function will
particularly determine the optimal window width chosen for each data
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application. The kernel functions, their efficiencies and formulae for
calculating the optimum window width for the four kernels used in this
paper are shown in Table 3 [22, 26, 27]. However, none of these plug-in
formulae in Table 3 will produce the global minimum of the error and
so several iterations of computing the error will always be required to
achieve the best result. This window width is optimum in that the
error achieved between the measured and the kernel estimate is at its
minimum. As the number of data samples increases, the value of the
window width decreases. The most commonly used error criteria for
optimizing the window width are the integral of square error (ISE) and
the mean integral of square error (MISE). They are given by [28-30]:

SE= [ [f (k) 7 () (9)
and, _
MISE:E/ F (k) — £ (k)2 (10)

The ISE is the one chosen for this presentation. The kernel function
is a true pdf centered at zero and it follows that the resulting kernel
density estimate is also a true pdf. Therefore, kernels functions have
the following properties [25-27]:

+o0
K(k)dk =1 (11)

oo
/ kK (k)dk =0 (12)
/m E*K(k)dk >0 (13)

The four kernels in Table 3 are used to model the seasonal (February,
May, August and November)median k-factor () distribution across
the seven locations in South Africa using a code programmed in
MATLAB.

2.2.1. Kernel Results and Discussion

Due to space considerations, only kernel models that produce the least
error are plotted. The ISE error criterion is used to optimize the model
solutions. Figures 29-56 show the best kernel models for each season
and location. In Table 4, three values of the smoothing parameter
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Table 3. Kernels, Kernel functions and their efficiencies.

Efficienc Optimal
Kernel Kernel function, K (k) %) Y window
’ width
K(k) =
: 3 1.2 2.340
Epanechnikov Tm(1=3k), V5 <k<V5 100 -
n
0, & elsewhere
Ba-k,-1<k<1 2.580
: P 16 ) — —
Triangular | K (k) = {O, & elsewhere 98.6 e
1 (%) 1.060
Gaussian K(k)= e \?/, —co<k<oo 95.1
(k)=—— 1 s
=, —-1<k<1 1.840
— 2 = =
Rectangular K (k) {O, & elsewhere 93 or;

have been presented in each case and the best choice of the smoothing
parameter is the one which produces the least error. The models
obtained show that the values of the smoothing parameter around
the optimal value produce models that are very similar in shape and
the only way to differentiate them is by comparing the errors. From
Figures 29-56, the best kernel models for Bloemfontein are Rectangular
for all the four seasons and the optimum window width, A, is 0.006 for
all the four months. For Cape Town, the best model is Rectangular
with an optimum window width of 0.006 for February and May while
it is Epanechnikov with an optimum window width of 0.006 for August
and November. For Durban, the best model is Rectangular with an
optimum window width of 0.006 for February and August while the
best for May is Triangular with an optimum window width of 0.006
and for November it is Epanechnikov with an optimum window width
of 0.006. Epanechnikov kernel model with an optimum window width
of 0.006 is the best for Polokwane in February and also in May with
an optimum window width of 0.007 and November with an optimum
window width of 0.005 while the Rectangular model with an optimum
window width of 0.006 is the best for August. The Rectangular model
with an optimum window width of 0.006 is the best for all the four
seasons in Pretoria. For Upington, the Rectangular model with an
optimum window width of 0.006 is the best for February and May
while the Gaussian (with an optimum window width of 0.007) and
Epanechnikov (with an optimum window width of 0.006) models are
the best for August and the Epanechnikov model with an optimum
window width of 0.005 is best for November. The rectangular model
with an optimum window width of 0.006 is the best for all the four
months in Bethlehem.
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From these models the median k-factor values are obtained. For
Bloemfontein the median k-factor value is 1.22 for February, 1.20 for
May, 1.21 for August and 1.20 for November. For Cape Town, it is 1.23
for February, 1.29 for May, 1.29 for August and 1.26 for November. For
Durban, it is 1.29 for February, 1.26 for May, 1.26 for August and 1.24
for November. For Polokwane, it is 1.25 for February, 1.26 for May, 1.23
for August and 1.22 for November. For Pretoria, it is 1.21 for February,
1.19 for May, 1.20 for August and 1.21 for November. For Upington,
it is 1.15 for February, 1.21 for May, 1.18 from Epanechnikov model

Table 4. (a) Seasonal kernel median k-factor, ISE and h comparison.
(b) Seasonal kernel median k-factor, ISE and h comparison.
(c) Seasonal kernel median k-factor, ISE and h comparison.

(a)

Kernel

Location Month h Gaussian Triangular | Epanechnikov | Rectangular

Me | ISE | Wy | ISE | Mg | ISE | Hy | ISE
0.006 | 1.23 | 0.0353 | 1.24 | 0.0343 | 1.24 | 0.0324 | 1.22 | 0.0321
Feb. | 0.007 | 1.23| 0.0343 | 1.24| 0.0345 | 1.24 | 0.0327 | 1.22 | 0.0330
0.02 | 1.240.0453| 1.25 | 0.0457 | 1.25 | 0.0478 | 1.24 | 0.0535
0.006 | 1.20 | 0.0350 | 1.21 | 0.0336 | 1.20 | 0.0317 | 1.20 | 0.0302
May | 0.007 | 1.20 | 0.0332 | 1.21 | 0.0331 | 1.20 | 0.0316 | 1.20 | 0.0326
0.008 | 1.20 | 0.0328 | 1.21 | 0.0336 | 1.20 | 0.0331 | 1.20 | 0.0349
0.006 | 1.22 | 0.0324 | 1.21 | 0.0313 | 1.22 | 0.0301 | 1.21 | 0.0300

Bloemfontein

Aug. | 0.007| 1.22| 0.0313 | 1.21 | 0.0316 | 1.22 | 0.0320 | 1.21 | 0.0339

0.02 | 1.20 | 0.0471 | 1.21 | 0.0482 | 1.19 | 0.0510 | 1.19 | 0.0572

0.005 | 1.21 | 0.0427 | 1.22 | 0.0408 | 1.21 | 0.0391 | 1.20 | 0.0435

Nov. | 0.006| 1.21 | 0.0405 | 1.22| 0.0402 | 1.21 | 0.0396 | 1.20 | 0.0385

0.02 | 1.19| 0.0581 | 1.19| 0.0590 | 1.19 | 0.0623 | 1.19 | 0.0683
0.006 | 1.24 | 0.0263 | 1.24 | 0.0253 | 1.25 | 0.0240 | 1.23 | 0.0220
Feb. | 0.007 | 1.24 | 0.0251 | 1.24 | 0.0249 | 1.25 | 0.0241 | 1.23 | 0.0250
0.008 | 1.24 | 0.0250 | 1.24 | 0.0255 | 1.25 | 0.0251 | 1.23 | 0.0277
0.006 | 1.30 | 0.0340 | 1.30 | 0.0326 | 1.29 | 0.0316 | 1.29 | 0.0304
May | 0.007 | 1.30 | 0.0326 | 1.30 | 0.0321 | 1.29 | 0.0311 | 1.29 | 0.0313
0.008 | 1.30 | 0.0323 | 1.30 | 0.0326 | 1.29 | 0.0320 | 1.29 | 0.0320
0.005 | 1.28 | 0.0267 | 1.28 | 0.0260 | 1.29 | 0.0247 | 1.28 | 0.0254

Cape Town

Aug. | 0.006| 1.28 | 0.0247 | 1.28 | 0.0243 | 1.29 | 0.0236 | 1.28 | 0.0255

0.007 | 1.28 [ 0.0244 | 1.28 | 0.0253 | 1.29 | 0.0248 | 1.28 | 0.0271

0.006 | 1.25| 0.0281 | 1.26 | 0.0280 | 1.26 | 0.0272 | 1.27 | 0.0277

Nov. | 0.007 | 1.25| 0.0277 | 1.26 | 0.0285 | 1.26 | 0.0285 | 1.27 | 0.0316

0.02 | 1.24 | 0.0353 | 1.24 | 0.0355 | 1.25 | 0.0370 | 1.26 | 0.0398
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(b)
Kernel

Location | Month h Gaussian Triangular | Epanechnikov | Rectangular

wel| sE | w [SE | om | sE | o | ISE
0.005 | 1.29 | 0.0300 | 1.28 | 0.0292 | 1.28 | 0.0284 | 1.29 | 0.0304
Feb. | 0.006 | 1.29 | 0.0290 | 1.28 | 0.0293 | 1.28 | 0.0287 | 1.29 | 0.0282
0.02 | 1.28 | 0.0361 | 1.26 | 0.0363 | 1.27 | 0.0374 | 1.26 | 0.0395

0.003 | 1.24 | 0.0514 | 1.24 | 0.0496 | 1.24 | 0.0486 | 1.25 | 0.0481
May | 0.006 | 1.25 | 0.0340 | 1.26 | 0.0337 | 1.27 | 0.0338 | 1.25 | 0.0353
Durban 0.04 | 1.23 { 0.0591 | 1.23 | 0.0582 | 1.23 | 0.0595 | 1.21 | 0.0602
0.006 | 1.25 | 0.0277 | 1.26 | 0.0273 | 1.25 | 0.0263 | 1.26 | 0.0233
Aug. | 0.007 | 1.25 | 0.0268 | 1.26 | 0.0268 | 1.25 | 0.0261 | 1.26 | 0.0283

0.02 | 1.23 | 0.0349 | 1.23 | 0.0353 | 1.23 | 0.0368 | 1.24 | 0.0401
0.006 | 1.24 | 0.0225 | 1.24 | 0.0222 | 1.24 | 0.0215 | 1.25 | 0.0219

Nov. | 0.007 | 1.24 | 0.0223 | 1.24 | 0.0224 | 1.24 | 0.0218 | 1.25 | 0.0241
0.02 | 1.25|0.0333 | 1.25 | 0.0337 | 1.26 | 0.0357 | 1.26 | 0.0392
0.006 | 1.26 | 0.0470 | 1.26 | 0.0451 | 1.25 | 0.0444 | 1.27 | 0.0468
Feb. | 0.007 | 1.26 | 0.0462 | 1.26 | 0.0460 | 1.25 | 0.0452 | 1.27 | 0.0460
0.02 | 1.25 | 0.0655 | 1.25 | 0.0670 | 1.25 | 0.0707 | 1.25 | 0.0780
0.006 | 1.27 | 0.0635 | 1.26 | 0.0601 | 1.26 | 0.0565 | 1.25 | 0.0487
May | 0.007 | 1.27 | 0.0595 | 1.26 | 0.0576 | 1.26 | 0.0548 | 1.25 | 0.0552
Polokwane 0.008 | 1.27 | 0.0584 | 1.26 | 0.0584 | 1.26 | 0.0555 | 1.25 | 0.0566
0.006 | 1.22 | 0.0552 | 1.21 | 0.0548 | 1.23 | 0.0538 | 1.22 | 0.0532
Aug. | 0.007 | 1.22 | 0.0553 | 1.21 | 0.0566 | 1.23 | 0.0564 | 1.22 | 0.0548
0.008 | 1.22 | 0.0565 | 1.21 | 0.0587 | 1.23 | 0.0599 | 1.22 | 0.0634
0.005 | 1.23 | 0.0531 | 1.22 | 0.0521 | 1.22 | 0.0517 | 1.22 | 0.0552
Nov. 10,006 | 1.23 | 0.0533 | 1.22 | 0.0541 | 1.22 | 0.0548 | 1.22 | 0.0547
0.007 | 1.23 | 0.0548 | 1.22 | 0.0567 | 1.22 | 0.0591 | 1.22 | 0.0662
0.006 | 1.21 | 0.0265 | 1.22 | 0.0256 | 1.23 | 0.0245 21 ] 0.0228
Feb. | 0.007 | 1.21 | 0.0253 | 1.22 | 0.0252 | 1.23 | 0.0244 | 1.21 | 0.0268
0.008 | 1.21 | 0.0252 | 1.22 | 0.0256 | 1.23 | 0.0251 | 1.21 | 0.0264
0.006 | 1.18 | 0.0275 | 1.19 | 0.0266 | 1.20 | 0.0255 | 1.19 | 0.0235
May | 0.007 | 1.18 | 0.0265 | 1.19 | 0.0265 | 1.20 | 0.0260 | 1.19 | 0.0289
Pretoria 0.008 | 1.18 | 0.0264 | 1.19 | 0.0271 | 1.20 | 0.0273 | 1.19 | 0.0298
0.006 | 1.20 | 0.0300 | 1.20 | 0.0291 | 1.21 | 0.0279 | 1.20 | 0.0261
Aug. | 0.007 | 1.20 | 0.0291 | 1.20 | 0.0290 | 1.21 | 0.0281 | 1.20 | 0.0294
0.008 | 1.20 | 0.0290 | 1.20 | 0.0295 | 1.21 | 0.0289 | 1.20 | 0.0293
0.006 | 1.21 | 0.0220 | 1.22 | 0.0215 | 1.22 | 0.0207 | 1.21 | 0.0190
Nov. | 0.007 | 1.21 | 0.0210 | 1.22 | 0.0211 | 1.22 | 0.0210 | 1.21 | 0.0222

0.008 | 1.21 | 0.0209 | 1.22 | 0.0213 | 1.22 | 0.0215 | L.21 | 0.0251

15
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0.005 | 1.14 | 0.0476 | 1.14 | 0.0458 | 1.15 | 0.0447 | 1.15 | 0.0467
Feb. 1 0.006 | 1.14 | 0.0458 | 1.14 | 0.0456 | 1.15| 0.0448 | 1.15 | 0.0433
0.01 | 1.13 | 0.0510 | 1.14 | 0.0522 | 1.15 | 0.0543 | 1.15 | 0.0592
0.006 | 1.20 | 0.0454 | 1.21 | 0.0445 | 1.20 | 0.0418 | 1.21 | 0.0382
May 0.007 | 1.20 | 0.0433 | 1.21 | 0.0435 | 1.20 | 0.0422 | 1.21 | 0.0452

0.008 | 1.20 | 0.0428 | 1.21 | 0.0437 | 1.20 | 0.0432 | 1.21 | 0.0460

Upington
0.006 | 1.20 | 0.0398 | 1.19 | 0.0399 | 1.18 | 0.0393 | 1.18 | 0.0406

Aug. | 0.007 | 1.20 | 0.0393 | 1.19 | 0.0400 | 1.18 | 0.0406 | 1.18 | 0.0449
0.008 | 1.20 | 0.0398 | 1.19 | 0.0408 | 1.18 | 0.0419 | 1.18 0.0481‘

0.005 | 1.18 | 0.0380 | 1.17 | 0.0372 | 1.17 | 0.0357 | 1.16 | 0.0393
Nov. | 0.006 | 1.18 | 0.0363 | 1.17 | 0.0367 | 1.17 | 0.0359 | 1.16 | 0.0371
0.007 | 1.18 | 0.0361 | 1.17 | 0.0368 | 1.17 | 0.0370 | 1.16 | 0.0405

(©

Kernel

Location Month h Gaussian Triangluar | Epanechnikov| Rectangular
My ISE Ky ISE My ISE e | ISE
0.006| 1.16| 0.0454 | 1.17 | 0.0442 | 1.18 | 0.0428 | 1.17 | 0.0404

Feb. | 0.007| 1.16| 0.0450 | 1.17 | 0.0451 | 1.18 | 0.0438 | 1.17 | 0.0459
0.04 | 1.19] 0.1341 | 1.18 | 0.1413 | 1.17 | 0.1514 | 1.18 | 0.1675
0.002| 1.19] 0.2313 | 1.1910.2220 | 1.19| 0.2296 | 1.18 | 0.2318

Bethlehem May | 0.006| 1.20| 0.1382 | 1.21 | 0.1356 | 1.20| 0.1345| 1.21 | 0.1332
0.05 | 1.22]0.9576 | 1.23]0.012 | 1.23| 1.120 | 1.22{0.2658
0.003| 1.16 | 0.1193 | 1.16 | 0.1156 | 1.16 | 0.1176 | 1.15 | 0.1308
Aug. | 0.006| 1.17 | 0.0968 | 1.18 | 0.0960 | 1.18 | 0.0950 | 1.16 | 0.0944

0.05 | 1.18| 04128 | 1.19[0.4303 | 1.19 | 0.4682 | 1.20 | 0.5204
0.005 | 1.15| 0.0648 | 1.14 | 0.0608 | 1.14 | 0.0599 | 1.15 | 0.0638

Nov. | 0.006 | 1.15| 0.0618 | 1.14 | 0.0614 | 1.14 | 0.0601 | 1.15 | 0.0582

0.007 | 1.15] 0.0613 | 1.14{0.0622 | 1.14 | 0.0633 | 1.15 | 0.0670

and 1.20 form Gaussian model for August and 1.17 for November.For
Bethlehem, it is 1.17 for February, 1.21 for May, 1.16 for August and
1.15 for November.

3. INTERPOLATION AND MAPPING

Interpolation refers to the process of predicting data values at locations
where samples are not available using data from surrounding locations
within a particular geographical range (area) [31,32]. There are two
broad categories of interpolation techniques namely; global and local
methods. Global methods consider all known samples to estimate the
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Figure 29. Rectangular kernel
density estimate, Bloemfontein,
February, 200m a.g.l.
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Figure 31. Rectangular kernel
density estimate, Bloemfontein,
August, 200m a.g.l.
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Figure 33. Rectangular kernel
density estimate, Cape Town,
February, 200m a.g.l.
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Figure 30. Rectangular kernel
density estimate, Bloemfontein,
May, 200m a.g.l.
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Figure 32. Rectangular kernel
density estimate, Bloemfontein,
November, 200 m a.g.l.
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Figure 34. Rectangular kernel
density estimate, Cape Town,
May, 200m a.g.l.

value at a given location. Local methods consider only a fixed number
of samples within a certain search radius to the point being estimated.
Global methods are known to produce smooth estimates but are very
sensitive to outliers. On the other hand, local methods produce less
smooth surfaces but are less sensitive to outliers. Global methods
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Figure 35. Epanechnikov kernel
density estimate, Cape Town,
August, 200m a.g.l.
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Figure 37. Rectangular kernel
density estimate, Durban, Febru-
ary, 200m a.g.l.
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Figure 39. Rectangular ker-
nel density estimate, Durban, Au-
gust, 200m a.g.l.
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Figure 36. Epanechnikov kernel
density estimate, Cape Town,
November, 200m a.g.l.
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Figure 38. Triangular kernel
density estimate, Durban, May,
200m a.g.l.
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Figure 40.
nel density estimate,
November, 200m a.g.l.

Epanechnikov ker-
Durban,

include trend surfaces, Fourier series and many others while local
methods include Radial Basis Functions, Kriging and Inverse Distance
Weighting (IDW) [33] among others.
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Figure 41. Epanechnikov ker-
nel density estimate, Polokwane,
February, 200m a.g.l.
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Figure 43. Rectangular kernel
density estimate, Polokwane, Au-
gust, 200m a.g.l.
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Figure 42. Epanechnikov ker-
nel density estimate, Polokwane,
May, 200m a.g.l.
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Figure 44. Epanechnikov ker-
nel density estimate, Polokwane,
November, 200m a.g.l.
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Figure 45. Rectangular kernel
density estimate, Pretoria, Febru-
ary, 200m a.g.l.
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Figure 46. Rectangular kernel
density estimate, Pretoria, May,
200m a.g.l.

3.1. Inverse Distance Weighting (IDW)

IDW is a deterministic interpolation technique. This technique is
based on the proposition that things that are closer are more alike
than those farther apart. As such, IDW uses a weighting policy to
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Figure 47. Rectangular kernel
density estimate, Pretoria, Au-
gust, 200m a.g.l.
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Figure 49. Rectangular ker-
nel density estimate, Upington,
February, 200m a.g.l.
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Figure 48.
nel density estimate,
November, 200m a.g.l.
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Figure 50. Rectangular kernel
density estimate, Upington, May,
200m a.g.l.
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Figure 51. Gaussian kernel den-
sity estimate, Upington, August,
200m a.g.l.
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Figure 52. Epanechnikov ker-
nel density estimate, Upington,
November, 200m a.g.l.

estimate values where data is not available with points that are closer
to the prediction point assigned more weight than those farther from

it [34].

The predicted estimate is then linear combination of the

weighted measured values. The weight assignment in IDW is based
on a power parameter, p that controls how much influence points have
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nel density estimate, Bethlehem, nel density estimate, Bethlehem,
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Figure 55. Rectangular kernel Figure 56. Rectangular ker-
density estimate, Bethlehem, Au-  nel density estimate, Bethlehem,
gust, 200m a.g.l. November, 200m a.g.l.

on the predicted value. The higher the power parameter, the more
the influence closer points have on the predicted value and vice versa.
Typically, the power parameter is assigned value of 2 or 3 but the choice
can also be made based on error measurement resulting in optimal
IDW [35]. Mathematically, the IDW predictor is given by [35, 36]:

N
i=1

where k(z, y) is the value to be predicted, N is the number of sample
points, k(z;, y;) is the known value at sample point (x;, y;) and w; is
the weight associated with it. The weight is given by [37]:

_ 4t
N —
St d;?
where p is the power parameter, d is the Euclidian distance between

the prediction point and the sample point and is given by [36] :

d=/(e— 2+ (v - ) (16)

(15)

w; =
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where all parameters are as described in (14) and (15). The weighting
in IDW is such that the sum of all the weights sum to unity [35]:

N
S w1 a17)

Since IDW uses a simple weighting scheme, that is, it is based on
the Euclidian distance between the interpolating point and the data
points alone, the level of subjectivity is low hence computation speeds
are faster compared to other sophisticated methods like kriging.

3.2. Kriging

Krigingis a stochastic interpolator but similar to IDW in that it
also employs weighting to predict unknown values. Just as in IDW,
the predicted value is a linear combination of the known weighted
samples [32]. Points closer to the prediction point are also assigned
more weight compared to those farther apart. However, the weighting
used in kriging is more complex and involves spatial autocorrelation
between the predicted point and known data points [37]. These spatial
autocorrelation is modeled using the empirical semivariogram. The
semivariogram is a plot of the semivariances against the separation
distances (lag distances) of the known data points. The relationship
that best describes the semivariogram is then used to build covariance
matrices necessary for the determination of the weights. However,
there are several known semivariogram models that can be fitted for
the empirical semivariogram. They include the spherical, exponential,
cubic, bessel, j-bessel and Gaussian and many others [33]. There are
different kriging techniques; ordinary kriging, simple kriging, cokriging,
kriging with trend and universal kriging [32]. The semivariance is a
measure of the dissimilarity of a measured variable and is given by
the average squared difference between the data values and is given
by [37-40]:

2(h) = QNl(m > oy Ui = 1) (18)

where N (h) is the number of data values separated by a distance h.
Of these, ordinary kriging is the most commonly used and is the
only one discussed further.

3.2.1. Ordinary Kriging

In ordinary kriging, the mean is assumed constant and unknown in the
local neighbourhood of the prediction point. The kriging weights sum
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to unity and are computed from [33, 40]:
Aok = ZoiklMok (19)

where A\, is the weights vector matrix, Zo_k1 is the covariance matrix
for the known data points and M, is the covariance vector matrix
between the prediction data point and known data points. The kriging
predictor is then given by [37,40]:

N
kow(z,y) = Z Nokikoki (i, Yi) (20)
i=1

where kori(x;, y;) is the data value at point (x;, y;) and and Ay; is the
weight associated with it and N is as defined in (14). The seasonal
measured values of the k-factor are gridded using PAST open source
software [41] to create a smooth continuous surface (matrix). These
matrices are then exported to MATLAB where contours are plotted.
This procedure is repeated for four different kriging semivariogram
models shown in Table 5 [40,41] and then IDW interpolation is
performed last. The Root Mean Square Error (RMSE) associated with
each interpolation is computed and tabulated in Table 7. The Root
Mean Square Error is given by [37]:

N
1 2
MSE = — k* —k 21
RMS ( I ;( ) ) (21)
Table 5. Semivariogram models.
Model Model equation
: _ fe+S-(Th?—8.75h3+3.75h° —0.75h7) h<1
Cubic ~v(h) = {C—i—S h>1
Gaussian y(h) =c+S- (1 —exp (h?))
Exponential v(h)=c+S-(1—exp(—3h))
: _ fe+ S (3h—3h%) <1
Spherical ~v(h) = {c 4 W1

3.3. Interpolation Results and Discussion

The measured seasonal k-factor statistics are shown in Table 6.
The interpolation RMSE errors are shown in Table 7. The kriging
method that produces the best error performance and inverse distance
weighting contour maps are the only ones presented due to space
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Table 6. Measured median k-factor values.

Location Latitude | Longitude Month (Season)
February | May | August| November

Bloemfontein | 29°06’S 26°18'E 1.24 1.21 1.21 1.22
Cape Town | 33°59’S 18°36'E 1.26 1.29 1.30 1.27
Durban 29°58'S 30°57'E 1.28 1.26 1.26 1.26
Polokwane 23°54'S 29°28'E 1.27 1.27 1.23 1.23
Pretoria 25°55'S 28°13'E 1.22 1.19 1.19 1.20
Upington 28°24'S 21°16'E 1.14 1.20 1.19 1.16
Bethlehem | 28°15'S 28°20'E 1.16 1.21 1.17 1.14

Table 7. Interpolation RMSE errors.

Ordinary kriging semivariogram models Inverse Distance
Spherical | Exponential | Gaussian | Cubic weighting
Feb. 0.0643 0.0645 0.205 0.0956 0.0456
May 0.0377 0.0416 0.080 0.0379 0.0335
Aug. 0.0374 0.0396 0.0908 0.0494 0.0329
Nov. 0.0560 0.0557 0.204 0.088 0.0399
|5°E 20°E 25°E 30°E 35°F

25°S

30°S

35°S

Figure 57. February kriging spherical semivariogram model median
k-factor contours for South Africa.
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considerations. These maps are shown in Figures 57-64. It is
seen, from Table 7, that the spherical semivariogram model produces
the best error performance in February, May and August while the
exponential model is the best for November. The error performance
for the IDW methodis very close to the best performing semivariogram

Figure 58. February IDW median k-factor contours for South Africa.
20°E 25°E 30°E

I
\ AER

PN

15°E 35°E

35°8

Figure 59. May kriging spherical semivariogram model median k-
factor contours for South Africa.
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Figure 61. August kriging spherical semivariogram model median

k-factor contours for South Africa.

model for each season. The largest difference in error performance
is observed for February (0.0187) while the smallest is for May

(0.0042). The Gaussian semivariogram model produces the worst error
performance in all the four seasons. Overall, the IDW method produces
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the least error in all the seasons and is most recommended for the
seasonal interpolation of the k-factor in South Africa.
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Figure 63.
median k-factor contours for South Africa.
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Figure 64. November IDW median k-factor contour plot.

4. CONCLUSION

The seasonal distribution and variation of the median k-factor for
South Africa has been studied in this paper. Both parametric (curve
fitting) and non-parametric (kernel density estimation) methods of
density modeling have been used to formulate solutions of the k-factor
distribution. Parametric methods impose restrictive assumptions
about the data distribution and therefore may miss out on fine
structures of the data distribution. By using certain parameters to
define the data distribution, they may actually not follow the measured
probability density function so much and thereby resulting in larger
errors as can be seen with the curve fitting results in Table 1. The
month of August produces the largest curve fitting errors for six of
the seven locations, except in Polokwane where the worst performing
month is November, while February produces the least error in all
the seven locations. They are however easier to interpret since
you can easily use parameters to summarize the data structure, for
example, using the mean, median, standard deviation and variance,
among others. The non-parametric technique used here is a better
replacement for the traditional histograms used to represent data.
Kernel methods have the advantage that they follow the measured
pdf as much as possible and produce much smaller errors compared
to parametric methods as can be seen from Table 4. The optimal
choice of the smoothing parameter, h is key to achieving the best
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kernel results. Overall, the rectangular kernel produces the best error
performance for most of the seasons as can be seen in Table 4 and
Figures 29-56 and is therefore the most recommended method for non-
parametric modeling of the k-factor for South Africa. Also, all the four
kernels used have a much superior error performance than the curve
fitting method. From the distribution modeling results, we conclude
that just as in [19, 21, 22], the distribution of the effective earth radius
factor for South Africa is bell-shaped, centered almost symmetrically
around a median value, ug. The interpolation of the seasonal k-factor
measurements has been accomplished using four kriging semivariogram
models and inverse distance weighting. The seasonal contour maps of
the k-factor in South Africa have been produced for the four seasons
of the year as spelt out under ITU-R recommendation P.453-12. The
RMSE error performance in Table 7 shows that the IDW technique
produces the least errors thus making it the most favorable. The
spherical semivariogram model performs best in February, May and
August and is therefore the recommended kriging method for the
seasonal interpolation and mapping of the median k-factor statistics for
South Africa. Results obtained in this paper will be critical for better
and improved microwave and UHF link planning in South Africa as per
the procedures outlined in ITU-R recommendation P.530-14 thereby
addressing diffraction fading adequately.
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