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Abstract—In this paper, a new numerical method of calculating
rectangular busbar impedance is proposed. This method is based
on integral equation method and partial inductance theory. In
particular, impedances of shielded and unshielded three-phase systems
with rectangular phase and neutral busbars, conductive enclosure,
and use of the method are described. Results for resistances and
reactances for these systems of multiple rectangular conductors have
been obtained, and skin and proximity effects have also been taken
into consideration. The impact of the enclosure on impedances is
also presented. Finally, two applications to three-phase shielded
and unshielded systems busbars are described. The validation of
the proposed method is carried out through FEM and laboratory
measurements, and a reasonable level of accuracy is demonstrated.

1. INTRODUCTION

The high-current air-insulated bus duct systems with rectangular
busbars are often used in power generation and substation, due to
their easy installation and utilization. The increasing power level of
these plants requires an increase in the current-carrying capacity of the
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distribution lines (usually 1–10 kA). The medium voltage level of the
generator terminals is 10–30 kV. The construction of busbar is usually
carried out by putting together several flat rectangular bars in parallel
for each phase in order to reduce thermal stresses. The spacing between
the bars is made equal to their thickness for practical reasons, and this
leads to skin and proximity effects. The bus ducts usually consist of
aluminum or copper busbars encapsulated in a rectangular aluminum
enclosure (shield), which serves for protection against mechanical stress
and fire, and reduces magnetic field outside the busbars, thereby
protecting electrical and electronic equipment and people’s health [1–
7]. A typical cross-section of the non-segregated three-phase high-
current air-insulated bus duct is depicted in Fig. 1.
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Figure 1. Shielded three-phase high-current bus duct of rectangular
cross-section with two horizontal busbars per phase and one neutral
busbar (PELPO-version II, manufactured by ELEKTROBUDOWA
S. A. Katowice, Poland)

The busbar’s resistance and reactance are not normally sufficiently
large to affect the total impedance of a power system, and hence are
not included in the calculations when establishing the short-circuit
currents and reactive volt drops within a power system. The exception
to this is when considering certain heavy current industrial applications
such as furnaces, welding sets, or roll heating equipment for steel
mills. In these cases the reactance may be required to be known for
control purposes or to obtain busbar arrangements to give minimal or
balanced reactances. This may be important because of its effect on
both volt drop and power factor, and hence, on the generating plant’s
kVA requirement per kW of load, or on the tariffs payable, where the
power is purchased from outside [5]. Also, in a high-current bus duct,
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where the phase busbars are connected in parallel, their impedances
can cause unbalances in the total current sharing. And according to the
unbalance level, over-loaded parts can lead to a heating of the structure
at some points, or can be damaged by electrodynamic efforts [8].

The inductances and the effective resistances, in other words the
impedances, of a shielded system of busbars at a certain frequency
are closely related to the current distribution over the cross-section of
each busbar generally known as “skin effect” and “proximity effect”
of the nearby busbars and conductive shield. Due to electromagnetic
coupling, currents in phase busbars induce eddy currents in the metal
conductive shield. Hence, there is a complex electromagnetic coupling
between phase busbars and the enclosure of the bus duct system. The
current distribution in the busbars and the enclosure is influenced by
skin and proximity effects, which need to be taken into account.

Both the skin effect and proximity effect will generally cause
the resistance of the busbars to increase and the inductance to
decrease. If the current distribution is not uniform over the
cross section of the busbar and enclosure, the computation of the
resistance and inductance of busbars becomes complex due to skin
and proximity effects [9, 10]. The analytical formulae are possible
for round wires and tubes [11–15], very long and thin (tapes or
strips) rectangular busbars [7, 16–23] or for DC cases (current densities
are assumed to be uniform) [16–18, 24–30]. In other types of
rectangular busbars, analytical-numerical and numerical methods must
be applied [1, 4, 6, 14, 17, 18, 31–40]. These impedances can also be
determined by experimental methods [41–44]. According to [9], the
capacitances in the three-phase high-current bus duct systems are
below 20 nF/m, and at the industrial frequency f = 50 Hz they are
usually neglected [1–4, 6–11]. We also neglect them, because for the
bus ducts considered in this paper we found the approximate values of
capacitances to be about 20 pF/m (using FEMM).

2. INTEGRAL EQUATION

The integral formulation is well known [11, 12, 24–28, 45–47] and is
derived by assuming sinusoidal steady-state, and then applying the
magnetoquasistatic assumption that the displacement current, jωεE,
is negligible. In the case of N straight parallel conductors with length
l, conductivity σi (i = 1, 2, . . . , N), cross section Si with sinusoidal
current input function with angular frequency ω and complex value
Ii flowing in the direction of Oz, the complex current density has
one component along the Oz axis, that is Ji(X) = azJ i(X). The
component Ji(X) is independent of variable z and, in a general case,
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depends on the self current and on the currents in the neighboring
conductors (the skin and proximity effects). Then also the vector
magnetic potential A(X) = azA(X), the electric field E(X) =
azE(X), and the ideal conductor constitutive relation is Ji(X) =
σiEi(X). Then, the integral equation for the ith conductor is given as
follows

J i(X)
σi

+
jωµ0

4π

N∑

j=1

∫

vj

J j(Y )
ρXY

dvj = ui (1)

or

J i(X)
σi

+
jωµ0

4π

∫

vi

J i(Y )
ρXY

dvi +
jωµ0

4π

N∑

j=1
j 6=i

∫

vj

J j(Y )
ρXY

dvj = ui (2)

where X = X(x1, y1, z1) is the observation point; Y = Y (x2, y2,
z2) is the source point; ρXY =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

is the distance between the observation point X and the source point
Y (Fig. 2); vi and vj are the volume of the ith and the jth conductor,
respectively; ui is the unit voltage drop (in V · m−1) across the ith
conductor, and i, j = 1, 2, . . . , N .

Then, by simultaneously solving (1) or (2) with the current
conservation law, ∇ · J(X) = 0, the conductor current densities and
the unit voltage drops can be computed.
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Figure 2. The ith and jth conductors of a system of N parallel
busbars of rectangular cross section.
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In the case shown in Fig. 1 for each busbar and the enclosure, the
integral equation can be written as

J i,k(X)
σi

+
jωµ0

4π

Nc∑

j=1

Nj∑

l=1

∫

vj,l

J j,l(Y )
ρXY

dvj,l = ui (3)

where:

- Nc is the number of phases plus the neutral plus the enclosure,
and i, j = 1, 2, . . . , Nc (Nc = 5),

- Nj is the number of busbars belonging to one phase or the neutral
or the number of rectangular plates of which the enclosure consists
(usually 4), and k, l = 1, 2, . . . , Nj .

3. MULTICONDUCTOR MODEL OF THE BUSBARS

In this model, each phase, neutral busbars and each plate of the
enclosure are divided into several thin subbars [6, 8, 17, 23, 35, 37], as
shown in Fig. 3.
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Figure 3. The kth bar of the ith phase divided into Ni,k = N
(i,k)
x N

(i,k)
y

subbars.

This division of the kth bar of the ith phase or the neutral
into subbars is carried out separately for the horizontal (Ox axis)
and vertical (Oy axis) direction of their cross-sectional area. Hence,
subbars are generally rectangular in the cross-section, with the width
and thickness, respectively, defined by the following relations:

∆a =
a

N
(i,k)
x

and ∆b =
b

N
(i,k)
y

(4)
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where a and b are the width and thickness of the busbar, respectively,
and N

(i,k)
x and N

(i,k)
y are the number of divisions along the busbar

width and thickness, respectively. Thus, the total number of subbars
of the kth bar of the ith phase is Ni,k = N

(i,k)
x N

(i,k)
y , and they are

numbered by m = 1, 2, . . ., Ni,k. For the lth bar of the jth phase
or the neutral we have the total number of subbars Nj,l = N

(j,l)
x N

(j,l)
y

numbered by n = 1, 2, . . . , Nj,l. All subbars have the same length l.
If the area S

(m)
i,k = ∆a ·∆b of the mth subbar is very small and the

diagonal
√

(∆a)2 + (∆b)2 of it is not greater than skin depth, we can
neglect the skin effect and assume that the complex current density
can be considered uniform, i.e.,

J
(m)
i,k =

I
(m)
i,k

S
(m)
i,k

(5)

where I
(m)
i,k is the complex current flowing through the mth subbar.

For the enclosure we have respectively:

∆A=
A

N
(5,k)
x

, ∆B=
B

N
(5,k)
y

, ∆ty =
t

N
(5,k)
ty

and ∆tx =
t

N
(5,k)
tx

(6)

where A and B are the widths of two horizontal and two vertical plates
of the enclosure respectively, t is their thickness and k = 1, 2. All plates
have the same length l.

4. BUSBAR IMPEDANCES

For the mth subbar or plate the integral Eq. (3) can be written as

J
(m)
i,k (X)

σi
+

jωµ0

4π

Nc∑

j=1

Nj∑

l=1

Nj,l∑

n=1

∫

vj,l

J
(n)
j,l (Y )

ρXY
dv

(n)
j,l = ui (7)

where v
(n)
j,l is the volume of the nth subbar or plate of the lth bar or

plate of the jth phase or the neutral or the enclosure.
Now, we can divide Eq. (7) by the area S

(m)
i,k and integrate over

the volume v
(m)
i,k of the mth subbar or plate, obtaining the following

equation:

R
(m)
i,k I

(m)
i,k + jω

Nc∑

j=1

Nj∑

l=1

Nj,l∑

n=1

M
(m,n)
(i,k)(j,l)I

(n)
j,l = U i (8)
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where Ui is the voltage drop across all subbars of the ith phase or the
neutral or the shield (they are connected in parallel), and the resistance
of the mth subbar is defined by

R
(m)
i,k =

l

σiS
(m)
i,k

(9)

and the self or the mutual inductance is expressed as

M
(m,n)
(i,k)(j,l) =

µ0

4πS
(m)
i,k S

(n)
j,l

∫

v
(m)
i,k

∫

v
(n)
j,l

dv
(m)
i,k dv

(n)
j,l

ρXY
(10)

The exact closed formulae for the self and the mutual inductance
of rectangular conductor of any dimensions, including any length, are
given in [24, 25] respectively. Not only do we not use the geometric
mean distance here, we do not use the formula for mutual inductance
between two filament wires either.

The set of equations, as with (8), written for all subbars, form the
following general system of complex linear algebraic equations

Û = Ẑ Î (11)

where Û and Î are column vectors of the voltages and currents of
all subbars, respectively, and Ẑ is the symmetric matrix of self and
mutual impedances (the impedance matrix) of all subbars. Assuming
that vectors Û and Î are arranged as follows

Û=





{U}1

{U}2
...

{U}Nc





, {U}i =





{U}i,1
...

{U}i,Ni





, {U}i,k ={U i} of length N (i,k)(12)

Î=





{I}1

{I}2
...

{I}Nc





, {I}i =





{I}i,1
...

{I}i,Ni





, {I}i,k =
{

I
(n)
i,k

}
of length N (i,k)(13)

matrix Ẑ can be expressed as block matrix

Ẑ=




[
Z

(m,n)
(1,k)(1,l)

] [
Z

(m,n)
(1,k)(2,l)

]
. . .

[
Z

(m,n)
(1,k)(Nc,l)

]
[
Z

(m,n)
(2,k)(1,l)

] [
Z

(m,n)
(2,k)(2,l)

]
. . .

[
Z

(m,n)
(2,k)(Nc,l)

]

...
...

. . .
...[

Z
(m,n)
(Nc,k)(1,l)

] [
Z

(m,n)
(Nc,k)(2,l)

]
. . .

[
Z

(m,n)
(Nc,k)(Nc,l)

]




(14)
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where each submatrix [Z(m,n)
(i,k)(j,l)] itself is a block matrix involving the

impedances between the busbars of ith and the busbars of and jth
phase:

[
Z

(m,n)
(i,k)(j,l)

]
=




[
Z

(m,n)
(j,1)(i,1)

]
. . .

[
Z

(m,n)
(j,1)(i,Ni)

]

...
. . .

...[
Z

(m,n)
(j,Nj)(i,1)

]
. . .

[
Z

(m,n)
(j,Nj)(i,Ni)

]


 (15)

The elements of matrix Ẑ are

Z
(m,n)
(i,k)(j,l) =





R
(m)
i,k + jωM

(m,n)
(i,k)(j,l) for m = n, i = j, k = l

jωM
(m,n)
(i,k)(j,l) otherwise.

(16)

Then, we can find the admittance matrix Ŷ, which is the inverse
matrix of the impedance matrix Ẑ, and expressed as

Ŷ =
[
Y

(m,n)
(i,k)(j,l)

]
= Ẑ

−1
(17)

and has a similar structure to Ẑ. Then it is possible to determine the
current of the mth subbar of the kth bar of the ith phase or the neutral
as

I
(m)
i,k =

Nc∑

j=1

Nj∑

l=1

Nj,l∑

n=1

Y
(m,n)
(i,k)(j,l)U j (18)

The total current of the ith phase or the neutral is

Ii =
Ni∑

k=1

Ni,k∑

m=1

I
(m)
i,k (19)

By substituting Eq. (18) into Eq. (19), we obtain

Ii =
Nc∑

j=1

Y i,jU j (20)

where

Y i,j =
Ni∑

k=1

Ni,k∑

m=1

Nj∑

l=1

Nj,l∑

n=1

Y
(m,n)
(i,k)(j,l) (21)

From the admittance matrix with elements given by Eq. (21), we
can determine the impedance matrix of shielded three-phase system
busbars with the neutral busbar as follows

Z =
[
Zi,j

]
= Y−1 =

[
Y i,j

]−1 (22)
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Since each Zi,j is obtained from a matrix whose elements are comprised
of information related only to construction and material, their value
is not affected by the busbar current, in spite of the fact that the skin
and proximity effects are taken into consideration.

Impedances of busbar systems shown in Figs. 1 and 4 are
characterized by a 4-by-4 impedance matrix (22). In the general
case of n conductors, it is an n-by-n complex matrix. In the
circuit theory, impedances Zii and Zij are called the self and mutual
impedances, respectively. One should not associate them with the
closed outline of the electrical circuit (according to the classical way of
considering self and mutual impedances of closed circuits), but should
only treat them as auxiliary quantities in the calculations of self and
mutual impedances of real closed electrical circuits [11, 12]. In other
words, matrix (22) allows the prediction of the system’s behavior for
any connections between busbars without requiring additional field
solutions.

The computational model was implemented as author’s program,
which links the field and circuit theory computations. Apart from
determining the impedance matrix, it also allows us finding such
field quantities as current density and magnetic field intensity. In
addition, it takes into consideration additional impedances, e.g., the
impedances grounding the enclosure. As opposed to other similar
computational packages, our software uses formulae for finite-length
conductors, and is especially devoted to computations for bus duct
systems.

5. NUMERICAL EXAMPLES

The first numerical example selected for this paper features a three-
phase system of rectangular busbars with one neutral busbar, whose
cross-section is depicted in Fig. 1. According to the notations applied in
this figure, the following geometry of the busbars has been selected: the
dimensions of the phase rectangular busbars and the neutral busbars
are a = 60mm, b = b1 = 5 mm, d = d1 = 90 mm. The phase busbars
and the neutral are made of copper, which has an electric conductivity
of σ = 56MS·m−1. The frequency is 50Hz. All phases have two
busbars per phase −N1 = N2 = N3 = 2, and the neutral has one
busbar — N4 = 1. The length of the busbar system is assumed to be
l = 1m and l = 3.9m (this is the length of busbar systems investigated
later in Section 6). In the numerical procedure, each phase busbar is
divided into N

(i,k)
x = 30 and N

(i,k)
y = 5, which gives 150 subbars for

each busbar. Hence, all three phases and the neutral busbars have
1050 subbars in total, which is also the total number of subbars of
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the unshielded three-phase system. With the chosen division, each
rectangular subbar has dimensions of 2 × 1mm. This allows us to
consider that the current density is uniform on the cross-surface of the
subbars.

The enclosure is made of aluminum, which has an electric
conductivity of σ5 = 34MS·m−1. The dimensions of the plates of
the enclosure are: A = 400 mm and B = 126 mm, their thickness is
t = 3mm. They are placed in the three-phase system with a1 = 35 mm
and b2 = 45 mm. The horizontal plate is divided into N

(5,k)
x = 200 and

N
(5,k)
ty = 2, which gives 400 subbars of dimensions 2 × 1.5 mm. The

vertical plate is divided into N
(5,k)
y = 126 and N

(5,k)
tx = 2, which gives

252 subbars of dimensions 2 × 1.5 mm. Hence, all four plates of the
enclosure have 1304 subbars in total. The total number of all subbars
of the shielded three-phase system is 2354. The results of computations
are shown in Table 1.

The second configuration of a three-phase busbar system, the
impedances of which are investigated, is shown in Fig. 4.

It has only one busbar per phase and neutral — N1 = N2 = N3 =
1 and also N4 = 1. The length of the busbar system is assumed to be
l = 1m and l = 3.9m. In the numerical procedure, each phase busbar
is divided into N

(i,k)
x = 30 and N

(i,k)
y = 5, which gives 150 subbars for

each busbar. Hence, all three-phase and the neutral busbars have 600
subbars in total. With the chosen division, each rectangular subbar
still has dimensions of 2×1mm. The dimensions and subdivision of the
enclosure are the same as in previous case. The results of computations
are shown in Table 2.
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Figure 4. Shielded three-phase high-current bus duct of rectangular
cross-section with one horizontal busbar per phase and one neutral
busbar (PELPO-version I, manufactured by ELEKTROBUDOWA
S. A. Katowice, Poland).
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Table 1. Self and mutual impedances in mΩ of unshielded (*) and
shielded (**) three-phase high-current bus ducts of rectangular cross-
section with a neutral busbar depicted in Fig. 1.

Length 

l in m 

Nj

Ni 

   
**
 

* 
1 (L1)  2 (L2) 3 (L3) 4 (N) 

1 

1 (L1)
* 0.038+j 0.233 0.002+j 0.126 -0.002+j 0.079 0.001+j 0.126

** 0.052+ j 0.197 0.009+j 0.108 -0.002+j 0.091 0.006+j 0.105

2 (L2)
* 0.002+j 0.126 0.038+j 0.232 0.001+j 0.127 -0.001+j 0.079

** 0.009+j 0.108 0.052+j 0.196 0.006+j 0.105 -0.002+j 0.091

3 (L3)
* -0.002+j 0.079 0.001+j 0.127 0.036+j 0.234 -0.003+j 0.048

** -0.002+j 0.091 0.006+j 0.105 0.046 +j 0.188 -0.008+ j0.089

4 (N)
* 0.001+j 0.126 -0.001+j 0.079 -0.003+j 0.048 0.065+j 0.240

** 0.006+j 0.105 -0.002+j 0.091 -0.008+ j0.089 0.075+j 0.194 

3.9 

1 (L1)
*   

**  

2 (L2)
*  

**  

3 (L3)
* 

** 

4 (N)
*  

**  

0.147+j 1.250 0.005+j 0.846 -0.007+j 0.678 0.004+j 0.846

0.193+j 1.129 0.032+j 0.785 -0.011+j 0.723 0.022+j 0.776

0.005+j 0.846 0.148+j 1.246 0.003+j 0.848 -0.006+j 0.676

0.032+j 0.785 0.195+j 1.126 0.021+j 0.777 -0.011+j 0.723

-0.007+j 0.67 0.003+j 0.848 0.141+j 1.255 -0.010+j 0.573

-0.011+j 0.72 0.021+j 0.777 0.178+j 1.098 -0.032+j 0.714

0.004+j 0.846 -0.006+j 0.676 -0.010+j 0.573 0.253+j 1.276

0.022+j 0.776 -0.011+j 0.723 -0.032+j 0.714 0.291+j 1.117

* — without enclosure ; ** — with enclosure

In order to investigate the influence of the proximity effect on
impedances of unshielded three-phase high-current bus ducts we also
calculated impedances in the case of one rectangular busbar per phase
and one neutral busbar with a vertical busbar arrangement (Fig. 5).
The busbars are the same as in the previous cases and with the
same distance between their axes d = d1 = 90 mm. The results of
computations are shown in Table 3.

We can find that for a vertical busbar arrangement the proximity
effect is smaller than for the horizontal one because for the first the
self resistance of the phase busbar is greater and reactance is smaller
than in horizontal busbar arrangement.
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Table 2. Self and mutual impedances in mΩ of unshielded (*) and
shielded (**) three-phase high-current bus ducts of rectangular cross-
section with a neutral busbar depicted in Fig. 4.

Length 

l in m 

Nj

Ni 

  ** 

* 
1 (L1) 2 (L2) 3 (L3) 4 (N) 

1 

1 (L1)
* 0.066+j 0.241 0.002+j 0.127 -0.001+j 0.078 0.001+j 0.127

** 0.081+j 0.202 0.010+j 0.107 -0.002+j 0.090 0.007+j 0.105

2 (L2)
* 0.002+j 0.127 0.066+j 0.241 0.001+j 0.127 -0.001+j 0.078

** 0.010+j 0.107 0.081+j 0.202 0.007+j 0.105 -0.002+j 0.090

3 (L3)
* -0.001+j 0.078 0.001+j 0.127 0.064+j 0.242 -0.002+j 0.046

** -0.002+j 0.090 0.007+j 0.105 0.075+j 0.194 -0.008+j 0.088

4 (N)
* 0.001+j 0.127 -0.001+j 0.078 -0.002+j 0.046 0.064+j 0.242

** 0.007+j 0.105 -0.002+j 0.090 -0.008+j 0.088 0.075+j 0.194

3.9

1 (L1)
* 0.257+j 1.279 0.006+j 0.848 -0.005+j 0.673 0.003+j 0.849

** 0.311+j 1.149 0.035+j 0.783 -0.012+j 0.721 0.023+j 0.775

2 (L2)
* 0.006+j 0.848 0.257+j 1.279 0.003+j 0.849 -0.005+j 0.67

** 0.035+j 0.783 0.311+j 1.149 0.023+j 0.775 -0.012+j 0.72

3 (L3)
* -0.005+j 0.673 0.003+j 0.849 0.250+j 1.284 -0.008+j 0.56

** -0.012+j 0.721 0.023+j 0.775 0.292+j 1.119 -0.032+j 0.71

4 (N)
* 0.003+j 0.849 -0.005+j 0.673 -0.008+j 0.568 0.250+j 1.284

** 0.023+j 0.775 -0.012+j 0.721 -0.032+j 0.713 0.292+j 1.119

* — without enclosure; ** — with enclosure

 b

 1 2 3 

1 

N
L

d d

L

d

L

a

Figure 5. Unshielded three-phase high-current bus duct of
rectangular cross-section with one vertical busbar per phase and one
neutral busbar.
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Table 3. Self and mutual impedances in mΩ of unshielded three-
phase high-current bus ducts of rectangular cross-section with a neutral
busbar depicted in Fig. 5.

Length l in m
HHHHHNj

Ni 1 (L1) 2 (L2)

1

1 (L1) 0.06163 + j0.244 0.00037 + j0.123
2 (L2) 0.00037 + j0.123 0.06163 + j0.244
3 (L3) 0.00011 + j0.076 0.00036 + j0.123
4 (N) 0.00035 + j0.123 0.00011 + j0.076

Length l in m
HHHHHNj

Ni 3 (L3) 4 (N)

1

1 (L1) 0.00011 + j0.076 0.00035 + j0.123
2 (L2) 0.00036 + j0.123 0.00011 + j0.076
3 (L3) 0.06160 + j0.244 0.00004 + j0.044
4 (N) 0.00004 + j0.044 0.06160 + j0.244

6. COMPARISON OF RESULTS

To verify the computed impedances, we also performed computations
by means of the finite element method, and also carried out suitable
measurements. However, the comparison cannot be done directly,
because measurements can be done only in closed current path,
whereas impedances Zii and Zij are auxiliary quantities, connected
with parts of current paths rather than with closed current paths,
and therefore cannot be measured [44]. To avoid this handicap, one
of n conductors is assumed to be a reference conductor (usually the
neutral), and serves as the return path. In the case shown in Fig. 6(a),
a single phase current, Ii, is injected into the i-N loop. The complex
voltage along busbars i, j and N , respectively, are as follows:

U i = ZiiIi + ZiNIN = (Zii − ZiN )Ii (23a)
U j = ZjiIi + ZjNIN = (Zji − ZjN )Ii (23b)

UN = ZNiIi + ZNNIN = (ZNi − ZNN )Ii (23c)

The voltage between terminals i-N is:

U iN = U i − UN = (Zii − ZiN − ZNi + ZNN )Ii (24a)

and the voltage between terminals j-N is given by

U jN = U j − UN = (Zji − ZjN − ZNi + ZNN )Ii (24b)
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Figure 6. Circuit model with i-N current injection: (a) with the
self Z ii and mutual Z ij impedances, (b) with the reduced self z ii and
mutual z ij impedances.

Now we can assume the neutral busbar to be the reference
conductor and define the self impedance of loop i-N as

zii =
U iN

Ii

= Zii − ZiN − ZNi + ZNN (25a)

and the mutual inductance between loops i-N and j-N as

zji =
U jN

Ii

= Zji − ZjN − ZNi + ZNN (25b)

Consequently, we receive an (n−1)-by-(n−1) new complex matrix, the
elements of which are zii and zji. This can be called the reduced matrix
of self and mutual impedances. In our case we have a 3-by-3 reduced
impedance matrix

z =

[
z11 z12 z13
z21 z22 z23
z31 z32 z33

]
(26)

Such impedances can be measured via voltage and current measure-
ment, as shown in Fig. 6(b).

Impedances zij of the busbar systems shown in Figs. 1 and 4 were
measured in the laboratory on an experimental setup (Fig. 7). The
busbar systems under test were 4.6 m long, and terminated at one end
by a short connector. The length of the enclosure was 4 m. The other
dimensions of the investigated busbar system were the same as those
given in Section 5. In the measurements, a single-phase current of 1 kA
was injected into a test system by a special AC current source. The



Progress In Electromagnetics Research B, Vol. 51, 2013 149

Figure 7. Laboratory stand for impedance measurements in three-
phase busbar system: 1 — busbars, 2 — enclosure (open top cover), 3
— supply, 4 — Rogowski coil, 5 — digital voltmeter, 6 — digital phase
meter, 7 — digital scope.

current was measured via a flexible Rogowski coil with an accuracy
of ±1%. The voltages were measured via a digital voltmeter with
an accuracy of ±0.1%. The phase shift between the voltage and the
current was measured via a digital phase meter with an accuracy
of ±1%. The experiments were performed under a 50 Hz sinusoidal
supply.

In order to avoid the influence of end connections, the voltage
drops were measured considering only the central portion of the system,
i.e., the voltage drops were obtained from the difference between the
voltages measured at two difference positions along the busbars at a
distance of 3.9 m between them inside the enclosure, and at a distance
of 0.35 m from the end of the busbar. To calculate the reduced
impedance matrix (26) the voltage RMS, current RMS and phase shift
between their instantaneous values were measured. The measurements
were performed for four arrangements of the busbar system: shielded
and unshielded three-phase high-current bus duct with two and one
busbars per phase, and one neutral busbar. The measurements were
repeated several times, and the average value of the impedance matrix
is presented in Tables 4 and 5 in the third subrows. The elements
of matrix (26) computed from our integral equation method (IEM),
determined from (22) via Eqs. (25a) and (25b), are written down in
the first subrows.

We found that the measured values of resistances and reactances
are very close to the computed ones. In general, the relative error does
not exceed 5% for unshielded bus ducts and 10% for shielded ones.
It is noticeable that the measured values are slightly greater than the
computed ones, especially for the shielded bus ducts. The increased
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Table 4. Reduced self and mutual impedances in mΩ of unshielded
(*) and shielded (**) three-phase high-current bus ducts of rectangular
cross-section with a neutral busbar depicted in Fig. 1.

Length 

l in m 

j 

 i

**

* 

Method 1 (L1) 2 (L2) 3 (L3)

3.9

1 (L1)

* 

IEM computations 0.391+j 0.834 0.261+j 0.600 0.251+j 0.535

FEM computations 0.391+j 0.801 0.262+j 0.589 0.252+j 0.524

Measurements 0.410+j 0.837 0.271+j 0.626 0.260+j 0.557

**

IEM computations 0.443+j 0.693 0.313+j 0.403 0.289+j 0.349

FEM computations 0.438+j 0.671 0.312+j 0.406 0.288+j 0.350

Measurements 0.459+j 0.717 0.346+j 0.447 0.320+j 0.375

2 (L2)

* 

IEM computations 0.261+j 0.600 0.414+j 1.170 0.273+j 0.875

FEM computations 0.262+j 0.589 0.417+j 1.125 0.275+j 0.852

Measurement 0.267+j 0.629 0.430+j 1.172 0.275+j 0.904

** 

IEM computations 0.313+j 0.403 0.511+j 0.798 0.357+j 0.458

FEM computations 0.313+j 0.406 0.505+j 0.782 0.354+j 0.464

Measurements 0.346+j 0.441 0.557+j 0.866 0.392+j 0.505

3 (L3)

* 

IEM computations 0.251+j 0.535 0.273+j 0.875 0.414+j 1.385

FEM computations 0.252+j 0.524 0.275+j 0.852 0.417+j 1.329

Measurements 0.253+j 0.561 0.280+j 0.880 0.415+j 1.394

**

IEM computations 0.289+j 0.349 0.357+j 0.458 0.534+j 0.788

FEM computations 0.288+j 0.350 0.354+j 0.464 0.527+j 0.772

Measurements 0.317+j 0.365 0.393+j 0.507 0.587+j 0.797

* — without enclosure; ** — with enclosure

Figure 8. The finite element mesh used in FEMM computations.
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Table 5. Reduced self and mutual impedances in mΩ of unshielded (*)
and shielded (**) three- phase high-current bus ducts of rectangular
cross-section with a neutral busbar depicted in Fig. 4.

Length 

l in m 

j

  i

**
 

* 
Method 1 (L1) 2 (L2) 3 (L3)

3.9 

1 (L1)

* 

IEM computations 0.501+j 0.864 0.258+j 0.609 0.249+j 0.539

FEM computations 0.500+j 0.852 0.258+j 0.598 0.249+j 0.527

Measurements 0.504+j 0.865 0.263+j 0.637 0.252+j 0.560

**

IEM computations 0.556+j 0.718 0.315+j 0.406 0.289+j 0.351

FEM computations 0.552+j 0.717 0.313+j 0.409 0.288+j 0.351

Measurements 0.599+j 0.773 0.342+j 0.444 0.320+j 0.368

2 (L2)

* 

IEM computations 0.258+j 0.609 0.519+j 1.218 0.267+j 0.893

FEM computations 0.258+j 0.598 0.518+j 1.195 0.266+j 0.871

Measurements 0.261+j 0.640 0.544+j 1.231 0.279+j 0.928

**

IEM computations 0.315+j 0.406 0.628+j 0.827 0.360+j 0.460

FEM computations 0.313+j 0.409 0.621+j 0.834 0.356+j 0.467
Measurements 0.347+j 0.444 0.680+j 0.894 0.387+j 0.503

3 (L3)

* 

IEM computations 0.249+j 0.539 0.267+j 0.893 0.517+j 1.433
FEM computations 0.249+j 0.527 0.266+j 0.871 0.516+j 1.399

Measurements 0.261+ j 0.551 0.275+j 0.927 0.518+j 1.144

** 

IEM computations 0.289+j 0.351 0.360+j 0.460 0.649+j 0.811
FEM computations 0.288+j 0.351 0.356+j 0.467 0.644+j 0.818

Measurements 0.317+j 0.379 0.398+j 0.510 0.718+j 0.846

* — without enclosure; ** — with enclosure

values probably come from some extra parts that are not included
in the computational model, such as aluminum supports. Also, the
shield is made of profiled sheet metal, which does not correspond the
computational cross-section exactly.

Apart from experimental verification, computer simulations for
bus bar system impedances were also performed with the aid of
the commercial FEMM software [48], using two-dimensional finite
elements. Fig. 8 shows the computational finite element mesh with
about 15000 nodes.

For the purposes of comparison, first the impedances Zij of four
bus bar systems, described in Section 5, were calculated, and then
the reduced impedances zij were found via Eqs. (25a) and (25b). The
results are presented in Tables 4 and 5 in the second subrows. They
are very similar to those obtained by means of IEM. The values of
resistance differ up to 1%, but the discrepancy is often much smaller.
As for reactances, the difference is up to 4%, but usually it is below
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2%. The most probable reason is that FEMM performs 2D field
computations whereas our method uses the formulae for finite-length
conductors.

7. CONCLUSIONS

A novel approach to the solution of impedances of high-current
bus ducts of rectangular cross-section is presented in this paper.
The proposed approach combines Partial Element Equivalent Circuit
(PEEC) method with the exact closed formulae for AC self and
mutual inductances of rectangular conductors of any dimensions,
which allows the precise accounting of skin and proximity effects.
Complete electromagnetic coupling between phase busbars and the
neutral busbar is also taken into account.

As Tables 1 and 2 show, self and mutual impedances of the
investigated bus ducts depend strongly on the presence of the
enclosure. In general, the induced eddy currents in the enclosure cause
the self resistance of the busbars to increase and the self inductance to
decrease when compared to the case without enclosure. In addition,
impedances of a three-phase busbar system are not purely proportional
to its length. The resistances and reactances for l = 3.9 m are expected
to be about 3.9 times greater than the corresponding ones for l = 1 m.
This is true for resistances, but the reactances for l = 3.9m are about
5–10 times greater than for l = 1m.

Our numerical method is validated by the commercial FEM
software and laboratory measurements. The skin, proximity and eddy
currents effects are taken into consideration. The results from the
measurements indicate that the our numerical method can be used to
predict the impedance of any such rectangular busbar system with
good accuracy. Both busbar separation and enclosure have great
influence on its impedance. The model predictions are found to be
in very good agreement with measurements.

The proposed method allows us to calculate the phase impedances
of a set of parallel rectangular busbars of any dimensions including any
length. For the industrial frequency, a 100% increase in the number
of total subbars changes the impedances less than 0.02%. The model
is strikingly simple, and from a logical stand-point can be applied in
general to conductors of any cross-section, whereas many conventional
methods, being much more complicated, require a greater or lesser
degree of symmetry. From the practical stand-point of the calculations
involved, the model requires the solution of a rather large set of linear
simultaneous equations. However, this solution is well within the
ability range of existing computers.
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