
Progress In Electromagnetics Research, Vol. 138, 453–466, 2013

INVESTIGATION OF QUASI-OPTICAL BESSEL-GAUSS
RESONATOR AT MM- AND SUBMM-WAVELENGTHS

Yanzhong Yu1, 2, * and Wenbin Dou2

1College of Physics & Information Engineering, Quanzhou Normal
University, Quanzhou 362000, China
2State Key Lab of Millimeter Waves, Southeast University, Nan-
jing 210096, China

Abstract—A research of a quasi-optical Bessel-Gauss resonator
(QOBGR) at millimeter (MM) and submillimeter (SubMM) wave-
bands is presented in this paper. The design is based on the quasi-
optical theory and technique. The iterative Stratton-Chu formula
(ISCF) algorithm is employed to analyze the output characteristics
of the cavity, including the resonant modes, phases, power losses and
phase shifts. Analysis of the results demonstrates that the present de-
sign of the QOBGR can support zero order or any high order mode
of the pseudo Bessel-Gauss beam. At the output plane the intensity
distributions of these modes are modulated by a Gauss-shaped enve-
lope, and their phase patterns have an approximate block-like profile.
Tolerance analysis for the designed QOBGR is also done. Lastly, a
comparison of resonating modes is made between QOBR (quasi-optical
Bessel resonator) and QOBGR when both are configured with the same
geometric parameters.

1. INTRODUCTION

Bessel beams are a family of ideal nondiffracting beams, which are
discovered and presented in the seminal work of Durnin and co-
workers in 1987 [1, 2]. It is known that an ideal Bessel beam would
have an infinite bound in the cross-section and possess an infinite
amount of energy. Consequently, a true Bessel beam cannot be
generated physically [3]. In order to overcome the difficulties in
practically producing Bessel beams, the transformative beams, i.e.,
Bessel-Gauss beams were thus brought forward [4, 5]. These types of
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beams are modulated by the Gaussian functions, and therefore they
extend finitely in the radial direction and carry a limited amount of
energy. It has been demonstrated that the Bessel-Gauss beams are
approximations to diffraction-free beams [6]. Bessel-Gauss beams have
many potentials applications and have attracted much attention [7–
11]. How to generate effectively Bessel-Gauss beams is an important
subject that is worth studying. Several different methods in optics have
been proposed to generate the Bessel-Gauss beams [6, 12–16]. To our
knowledge, no method has yet been proposed to generate these beams
at mm- and sub mm-wavelengths. Therefore, a QOBGR supporting
Bessel-Gauss modes at these wavebands is designed and analyzed for
the first time in the present paper. A design of QOBGR is based on
quasi-optical techniques, and an analysis of its output characteristics is
done by employing the ISCF method, which is developed and validated
in our previous paper [17]. We also carry out the research of tolerance
analysis for the designed QOBGR. Finally, the output properties of
QOBGR are compared with those of QOBR.

The rest of the present paper is organized as follows. An
introduction of Bessel-Gauss beams is described in Section 2. The
QOBGR is designed in Section 3. Section 4 presents the analysis results
of the designed QOBGR, covering resonating modes in Subsection 4.1,
tolerance analysis in Subsection 4.2, and a comparison between
QOBGR and QOBR in Subsection 4.3. We give a brief summary in
the last Section 5.

2. BESSEL-GAUSS BEAM

In the circular cylindrical coordinates system, the wavefield distribu-
tion of the ideal Bessel beam of order n is given by [1, 2]

EBB(ρ, ϕ, z) = E0Jn(k⊥ρ) exp(ikzz) exp(inϕ) (1)

where the subscript BB identifies the Bessel beam. E0 is an amplitude
constant, Jn the nth-order Bessel function of the first kind, λ a
wavelength in the free space, and ρ2 = x2 + y2, k⊥ and kz denote the
transverse and longitudinal wavevectors, with k =

√
k2
⊥ + k2

z = 2π/λ.
The intensity distribution for a true Bessel beam obeys

IBB(ρ, ϕ, z ≥ 0) = IBB(ρ, ϕ, z = 0) = |E0Jn(k⊥ρ)|2 (2)

This indicates that the intensity distribution does not alter in the
radial plane when this type of beam propagates along the z direction.
Such beam therefore may be viewed as a nondiffracting or diffraction-
free beam. Owing to the characteristic of infinite oscillation of Bessel
function, an ideal Bessel beam is boundless in the transverse plane. An
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infinite amount of energy should be required practically to generate
such beam.

The concept of Bessel-Gauss beam was first proposed by Gori
and co-workers in 1987 [4]. It has been proved that Bessel-Gauss
beam is the solution to Helmholtz equation within the paraxial
approximation [4, 5]. A nth-order Bessel-Gauss beam can be described
in the form [6, 16, 18]

EBGB(ρ, ϕ, z) = E0
w0

w(z)
Jn

(
k⊥ρ

1 + iz/zR

)
exp

{
−

[
1

w2(z)
− ik

2Rg(z)

]

× (
ρ2 + z2k2

⊥/k2
) }

exp(iΦ(z)) exp(inϕ) (3)

where the subscript BGB identifies the Bessel-Gauss beam. w(z) =
w0[1 + (z/zR)2]1/2 describes the axial evolution of the 1/e2 half-width
of the Gaussian beam [19–21], and w0 denotes the Gaussian 1/e2 radius
at the waist (assuming the waist located at z = 0). Rg(z) = z + z2

R/z
represents the radius of curvature of Gaussian wave front, and zR =
kw2

0/2 is its Rayleigh range. Φ(z) = (k − k2
⊥/2k)z − arctan(z/zR)

denotes the axial phase of the Bessel-Gauss beam.
One can easily obtain the field distribution of the nth-order Bessel-

Gauss beam at the waist (i.e., z = 0) from Eq. (3)

EBGB(ρ, φ, z = 0) = E0Jn(k⊥ρ) exp
(
− ρ2

w2
0

)
exp(inφ) (4)

We can find from Eq. (4) that at the waist a Gaussian modulation
had been added on the Bessel beam of order n. Because of the fast

(a) zero order (b) third order

Figure 1. The normalized intensity distributions for Bessel-Gauss
beam (solid line —) at the waist and Bessel beam (dash line - - - -).
(a) zero order, and (b) high order. The relevant parameters are
λ = 3 mm, w0 = 40 mm, k⊥ = 0.319mm−1, and ρ = 100 mm.
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(a) zero order (b) third order

Figure 2. The phase patterns for Bessel-Gauss beam at the waist,
(a) zero order, and (b) high order. All parameters are the same as in
Fig. 1.

attenuation characteristic of Gaussian function, this field does not
extend infinitely in the lateral plane and thus can not carry an infinite
amount of energy. As illustrated in Fig. 1, not only the zero-order but
also high-order Bessel-Gauss beams (solid line) oscillate limitedly along
the radial direction, when compared with the ideal Bessel beams (dash
line). Therefore in practice, the Bessel-Gauss beam is much easier
to generate physically than Bessel beam. Fig. 2 depicts the phase
distributions of Bessel-Gauss beams. It can be observed from Fig. 2
that the phase distribution of zero order is even-symmetric but the
high order’s is odd-symmetric about the central axis, however, both
are block-shaped profiles.

3. DESIGN OF QOBGR

On the basis of quasi-optical theory and technique, a QOBGR is
designed. If we want to obtain some field that we need, we can
construct a cavity with end mirrors that conjugate the radial phase
of this field [18]. For example, a resonator made by spherical mirrors
supports a Gaussian beam, owing to its spherical wavefronts; and since
a Bessel beam has conical wavefronts, an axicon (conical mirror) can
be employed to form a cavity that sustains Bessel-type modes [13, 22].
By analogy, a resonator that is composed of an axicon and a spherical
mirror is expected to support Bessel-Gauss modes.

As illustrated in Fig. 3(a), the configuration of the QOBGR
consists of a refractive axicon, with apex angle β and refractive index
η, and a concave-spherical output mirror separated a distance L.
The high reflection of base plane of the refractive axicon is required,
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(a) refractive type (b) refractive type

Figure 3. Configuration of the QOBGR with (a) refractive and
(b) reflective axicon. The concave-spherical mirror M1 is placed at
a distance L from the axicon M2.

however, the concave-spherical output mirror is fabricated to be only
the partially reflective and therefore the resonating modes in the cavity
can be outputted from it. Actually, to satisfy the requirement that
the resonator may stand higher power, we can replace the refractive
axicon with a reflective one that has conical angle α, as shown in
Fig. 3(b). Under this equivalent case, the conical angel α is related to
the apex angle β and refractive index η by: α = arcsin(η sin(β)) − β.
For the foregoing reasons, the reflective type resonator shown in
Fig. 3(b) is selected to construct the Bessel-Gauss resonator in our
paper. The cavity length L between the axicon M2 and the mirror M1

is determined by [14, 22, 23]

L =
R2

2 tanα
(5)

where R2 is the aperture radius of the refractive or reflective axicon
and R2 = 2R1.

4. SIMULATION ANALYSES

4.1. Resonating Modes

It is well known that in optics the classical Fox-Li iterative
algorithm [24] is quite competent to calculate the field distributions in
optical cavity. It employs the scalar form of the Kirchhoff formula for
diffraction to analyze the resonating modes and therefore is appropriate
for the analysis of the cavity at light wavebands. Unfortunately, it is
not suitable for analyzing the resonator in MM- and SubMM-range,
because in optics the f-number of the cavity is always very large,
and therefore the feature sizes of the cavity are usually much larger
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than a light wavelength. This means the condition for using Fox-Li
iterative algorithm is satisfied, and it thus can be reliably employed
to analyze the resonator. However, at MM- and SubMM-range, it is
impossible to design a resonator with big f-number, or the volume and
weight of cavity will be unbearable. Generally, the feature sizes of
cavity are on the order of MM-wavelength, and the assumptions of
typical scalar-based iterative method are violated in this feature size
regime. In order to calculate precisely the field behavior in the designed
cavity at MM- and SubMM-wavebands, an iterative algorithm, i.e.,
iterative Stratton-Chu formula (ISCF) method has been developed and
its validity has been demonstrated in our previous work [17]. The ISCF
method is analogous to the famous Fox-Li algorithm, but it applies the
vector form of the Stratton-Chu formula for diffraction [25] to calculate
precisely the electromagnetic field distributions in the cavity. So, in
the present paper, we still employ the ISFC method to analyze the
designed QOBGR in our spectrum. Since the principle and practical
implementation of this algorithm are well described in literature [17],
they will not be depicted herein.

According to the configuration of cavity given in Section 3, we
can form a reflective-type QOBGR readily. The relevant parameters
of the designed resonator are as follows: R2 = 160 mm, α = 16◦, the
operating wavelength of the resonator is λ = 8 mm, the curvature
radius of the concave-spherical mirror is K = 4184.9mm. Then
the aperture radius of the concave-spherical mirror is obtained by
R1 = R2/2 = 80 mm and the value for the cavity length is calculated
by Eq. (5), yielding L = 279 mm.

Supposing that an initial excitation of a uniform plane wave exists
on the aperture of the concave-spherical mirror, then utilizing the ISCF
algorithm and after three hundred transits, the electromagnetic field
distributions in the cavity reach the steady stage. At this moment,
the output beam from the mirror surface can be obtained. Figs. 4(a)
and (b) illustrate the transverse intensity and phase distributions of
the dominant mode of the cavity, respectively. When compared with
Figs. 1(a) and 2(a), we find that the output beam is an approximation
to zero-order Bessel-Gauss beam, known as the pseudo Bessel-Gauss
beam. By observing Fig. 4(a), one can find readily that the maximum
normalized intensity of the fundamental mode is situated at the center
of the concave-spherical mirror; and its intensity distribution forms
an envelope with Gaussian shape (dash black line - -). Indeed, the
envelope curve is the intensity distribution of the lowest-order Gaussian
mode. It can be obtained from a Gaussian resonator made by the
concave-spherical mirror M1 with aperture radius R1 and a plane
mirror of R2 = 2R1 separated by length L. It can be seen obviously
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(b)(a)

Figure 4. Transverse profiles of the intensity and phase of the
fundamental Bessel-Gauss mode at the concave-spherical mirror for
the designed QOBGR. (a) The intensity distribution, and (b) the
phase distribution. The parameters used in Fig. 4 are: R1 = 80 mm,
R2 = 160 mm, L = 279 mm, α = 16◦, K = 4184.9 mm, λ = 8 mm.

from Fig. 4(b) that the phase pattern exhibits not a pure block-shaped
profile but a little aberration, due to diffraction on the brink of the
aperture of the concave-spherical mirror. Additionally, according to
Eqs. (10) and (11) presented in article [17], the values of the power loss
and phase shift per round-trip can be obtained, yielding δ = 0.1324%
and Φ = 1.624◦, respectively.

To achieve the high-order Bessel-Gauss mode, an excitation source
of a uniform plane wave, which is not even symmetry but odd
symmetry about the central axis z, is required on the concave-spherical
mirror. Similarly, after three hundred transits one can get the steady
state resonating modes, as shown in Fig. 5. It is easy to discover
from Fig. 5(a) that the intensity profile is also a Gaussian envelope
(dash black line - -). However, unlike the zero-order Bessel-Gauss
beam, the intensity value of high-order one is not the maximum but
zero in the middle of the output mirror, owing to the existence of a
phase singularity therein. Likewise, we can see from Fig. 5(b) that
the phase pattern of the high-order mode still displays a block-like
outline. However, the symmetry of phase pattern of high-order mode
is different from that of zero-order one. The former is odd-symmetric
about the central axis z but the latter is even-symmetric. The value of
the power loss and phase shift per round-trip for high-order mode can
be similarly obtained, i.e., δ = 0.9074% and Φ = 3.5907◦, respectively.
As expected, these values are larger than those of the zero-order mode,
correspondingly. By observing carefully, we find that the loss in the
higher order mode is almost 7 times higher and phase shift is almost
twice as compared to the fundamental mode. We consider the main
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(b)(a)

Figure 5. The transverse intensity and phase distributions of the
high-order Bessel-Gauss mode at the concave-spherical mirror for the
designed cavity. (a) The intensity distribution, and (b) the phase
pattern. The relevant parameters are the same as in Fig. 4.

reason is that the intensity distribution of higher order Bessel-Gauss
beam is null at the center of the output element, thus more power loss
occur here.

4.2. Tolerance Analysis

Since the machining errors of the designed QOBGR will be hard to
avoid, the tolerance analysis is very necessary. We investigate the
effects of manufacture errors upon the output beams, covering their
intensity and phase patterns, power loss and phase shift per round-
trip. Let us assume that there are only errors in the aperture radii
of reflective axicon and concave mirror, that is, R1 = 80 ± 1mm

Table 1. The power losses and phase shifts in the aberrated cavities.

Aperture
radius

R1 (mm)

Conical
angle
α (◦)

Cavity
length
L (mm)

power
loss

δ (%)

phase
shift
Φ (◦)

80 16 279 0.1324 1.6240
80− 1 16 279 0.0489 1.5474
80 + 1 16 279 0.1612 1.6666

80 16− 0.5 279 1.4870 60.8318
80 16 + 0.5 279 1.5118 59.9321
80 16 279− 2 0.1076 1.3629
80 16 279 + 2 0.1465 1.6032
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and R2 = 160 ± 2mm. Under these cases the dominant modes in
the distorted cavities are calculated, respectively. Fig. 6 shows their
intensity and phase profiles at the concave mirror plane. Next, the
influences of the conical angle errors of α = 16 ± 0.5◦ on the output
properties are evaluated, as depicted in Fig. 7. In the same way, Fig. 8
illustrates the effects of the cavity length errors of L = 279± 2 mm on
the output beams. It can be observed distinctly from Figs. 6, 7 and 8
that the aberrated cavities may still well support the Bessel-Gauss
modes, although there exist different machining errors. Other output
characteristics, such as power losses and phase shifts, are summarized
in Table 1. By observing Table 1 carefully, one may find that the
power losses are close to the value of 0.1324%; however, the output
characteristics are more sensitive to conical angle errors than other
errors. From the Eq. (4) and Fig. 4(b), we can obtain the relation of

(b)(a)

(d)(c)

Figure 6. The effects of aperture errors on the output distributions.
The intensity and phase distributions of the fundamental mode for (a),
(b) R1 = 79mm and (c), (d) R1 = 81 mm.
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(b)(a)

(d)(c)

Figure 7. The influences of conical angle errors on the output beams.
The intensity and phase distributions for (a), (b) α = 15.5◦ and (c),
(d) α = 16.5◦.

Jn(k⊥ρ) = Jn(k sinαρ). It can be seen that the Bessel-Gauss beam is
determined directly by the conical angle α. As a results, a small error
in the conical angle α can cause a strong effect on the loss and phase
shift.

4.3. Comparison between QOBR and QOBGR

At last, a comparison of resonating modes is made between QOBR
and QOBGR when both cavities have the same geometric parameters,
i.e., R2 = 6 mm, R1 = 3 mm, α = 20◦, L = 8.2mm, and λ = 0.6mm.
However, it is worth mentioning that the mirror M1 for the QOBGR is
a concave mirror with a curvature radius of K = 74.2 mm, but for the
QOBGR it becomes a plane. The radial intensity distributions of the
fundamental and high-order modes for two resonators are displayed in
Figs. 9(a) and (b), respectively. It can be found from Fig. 9 that near
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(b)(a)

(d)(c)

Figure 8. The effects of cavity length errors on the output modes.
The intensity and phase distributions of the fundamental mode for (a),
(b) L = 277mm and (c), (d) L = 281mm.

(b)(a)

Figure 9. The transverse intensities of the fundamental and high-
order modes for QOBGR and QOBR. (a) Fundamental modes, and
(b) high-order modes, solid line (—) denotes Bessel-Gauss beam and
dash line (- - - -) represents Bessel beam.
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the central axis z of the cavity, Bessel and Bessel-Gauss beams, whether
dominate mode or high-order mode, have the same zero position and
ring width. However, the extreme values of Bessel-Gauss beams are
smaller than those of Bessel beams at the corresponding positions.
The power losses of fundamental and high-order Bessel-Gauss modes
are δ0 = 1.38% and δ1 = 3.04%, respectively. But for the Bessel beam,
δ0 = 5.48% and δ1 = 9.31%. Thus a conclusion can be drawn that the
power loss of QOBGR is much lower than that of QOBR, due to the
convergence property of concave mirror in the cavity of QOBGR.

5. SUMMARY

A detailed analysis of the resonating modes in the QOBGR,
constructed by the reflective axicon and the concave-spherical mirror,
has been presented. Numerical simulations demonstrate that the
designed QOBGR can sustain well, not only zero-order but also high-
order, Bessel-Gauss like modes. Tolerance analysis is carried out
provided that there exist the aperture errors, conical angle errors or
cavity length errors, respectively. And analysis of the results confirm
that in the distorted resonator the Bessel-Gauss mode is still supported
approvingly. Finally, we compare the resonating modes between
QOBR and QOBGR at SubMM-wavelengths. The Bessel-Gauss
beam generated from the designed QOBGR have many promising
applications in the MM- and SubMM-wavelength range, such as power
transfer [26], millimeter wave imaging [27–29] and medium parameter
measurement [30]. These applications are being studied at present.
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