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Abstract—This paper presents a novel compressed sensing based
track before detect (CS-TBD) algorithm. The proposed algorithm
reconstructs the whole radar scenario (direction of arrival (DOA)-
Doppler plane) for each range gate at consecutive scans using an
improved stagewise orthogonal matching pursuit (StOMP) algorithm,
resulting in a three-dimensional range-DOA-Doppler space. It then
performs temporal tracking in the newly built three-dimensional
range-DOA-Doppler space, based on the information from multiple
illuminations during each scan, as well as among consecutive scans.
In the proposed CS-TBD algorithm, the improved StOMP algorithm
together with the temporal tracking, can effectively distinguish true
targets from false targets and clutter based on information from
multiple illuminations.

1. INTRODUCTION

Track before detect (TBD) based approaches declare the presence
of targets and their corresponding tracks through jointly processing
several consecutive scans based on the targets’ kinematics. A TBD
algorithm can improve track accuracy and follow low signal-to-noise
ratio (SNR) targets at the price of an increase of the computational
complexity.
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In recent years, the TBD algorithm has been applied in radar
systems [1–3]. In [1], the continuous-time continuous-amplitude signal
is discretized to reflect the sectorization of the coverage area and the
range gating operation, and a generalized likelihood ratio test (GLRT)
is applied using a Viterbi-like tracking algorithm. In [2], the authors
propose a series of TBD strategies for space-time adaptive processing
(STAP) radars. Detectors for two different scenarios (equivalent
covariance matrices and inequivalent covariance matrices) are derived
based on a GLRT and ad hoc procedures. In [3], a number of new
algorithms are proposed for adaptive detection and tracking based on
spatial-time data. The possible spillover of target energy to adjacent
range cells is taken into account in the design stage. In summary, the
main problem with TBD techniques is that the measurements depend
on the target state in a highly nonlinear way. A possible means to
solve the nonlinear filtering problem is to use particle filtering [4]. An
alternative is to discretize the target state space [5, 6].

A novel CS-TBD algorithm is proposed in this work. The proposed
algorithm is different from existing TBD algorithms which adopt
hypothesis testing using the radar measurements. The proposed CS-
TBD algorithm reconstructs the whole radar scenario (DOA-Doppler
plane) for each range gate at consecutive scans using an improved
StOMP (Stagewise OMP [7]), resulting in a three-dimensional range-
DOA-Doppler space. It then performs temporal tracking in the
newly built three-dimensional range-DOA-Doppler space, based on
the information from multiple illuminations during each scan, as well
as among consecutive scans. The proposed algorithm avoids the
nonlinear problem since it tracks and detects multiple targets in the
reconstructed range-DOA-Doppler space. In the proposed CS-TBD
algorithm, the improved StOMP algorithm together with the temporal
tracking, can effectively distinguish true targets from false targets
and clutter based on information from multiple illuminations. Next,
we focus on the reconstruction of the sparse radar scene using the
improved StOMP algorithm.

A great deal of compressed sensing based methods have been
applied to radar systems [8–18], which recover the target scene
from fewer measurements than traditional methods. In [8], it is
demonstrated that the compressed sensing can eliminate the need for
matched filter at the receiver and has the potential to reduce the
required sampling rate. [9] presents an adaptive clutter suppression
method for airborne random pulse repetition interval radar by using
prior knowledge of clutter boundary in Doppler spectrum. [10] focuses
on monostatic chaotic multiple-input-multiple-output (MIMO) radar
systems and analyze theoretically and numerically the performance
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of sparsity-exploiting algorithms for the parameter estimation of
targets at Low-SNR. In the context of synthetic aperture radar
(SAR), [11–16] present compressed sensing based data acquisition and
imaging algorithms. An additional sensing matrix H is introduced
in [17, 18], which compress the received signal further by making
nonadaptive, linear projections of the direct data sampled at the
Nyquist frequency. In [17], the transmitted waveform is optimized
to reduce the mutual coherence between the sensing matrix and the
basis matrix, while in [18], the methods for optimizing the transmitted
waveform and sensing matrix separately and simultaneously are both
presented to decrease the cross correlations between different target
responses. However, neither of these methods mention the hardware
implementation of the additional sensing matrix, which is very complex
and expensive.

In this paper, we are considering to reconstruct the sparse signal
representing the radar scene directly based on the basis dictionary
which is comprised of spatial-time steering vectors. This requires
neither optimizing the transmission waveform nor changing the existing
hardware system. However, the basis dictionary is with high coherence,
which can not guarantee a perfect reconstruction with large probability.
An improved StOMP algorithm is proposed to select multiple atoms
to encapsulate the highly coherent columns (atoms) with high residual
correlations at each iteration. This method can cope with the highly
coherent columns efficiently. The proposed method uses a set of
mixture Gaussian models to approximate the distribution of the
residual correlations, and selects the coordinates among the top t%
of each mixture Gaussian model.

The main contribution of the paper has three components: First,
we present a novel CS-TBD algorithm, which avoids the nonlinear
problem encountered in the traditional TBD algorithms. Secondly,
an improved StOMP algorithm is proposed to reconstruct the whole
radar scenario (DOA-Doppler plane) for each range gate at consecutive
scans using the spatial-time data. Thirdly, in the proposed CS-TBD
algorithm, the improved StOMP algorithm together with the temporal
tracking performed during each scan effectively distinguishes true
targets from false targets and clutters based on the information from
multiple illuminations.

The paper is organized as follows: Section 2 introduces a
discrete-time signal model for a typical space-time scenario in a TBD
framework. The improved StOMP algorithm is introduced in Section 3,
and the CS-TBD algorithm is introduced in Section 4. The simulation
results are listed in Section 5, and the paper is summarized in Section 6.
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2. A GENERAL SPACE TIME MODEL AND ITS
SPARSE REPRESENTATION

This section introduces a discrete-time signal model for a typical
spacial-time scenario in a TBD framework. Without loss of generality,
let us consider a radar system equipped with a uniform linear array
of N identical sensors with inter-element spacing d. The steered array
scans the surveillance area M times before deciding whether or not a
target is present. During the mth scan the following train of K pulses
is transmitted [3]

<e{Aejϕ
K∑

k=1

p(t− (k − 1)T − (m− 1)∆)ej2πfct},

t ∈ [(m− 1)∆, (m− 1)∆ + KT ], (1)

where <e{z} indicates the real part of the complex number z, and
A > 0 is an amplitude factor related to the transmitted power.
ϕ ∈ [0, 2π) is the initial phase of the carrier signal. p(t) is a unit-energy
rectangular pulse waveform of duration Tp and one-sided bandwidth
Wp ≈ 1/Tp. T is the pulse repetition time, and ∆ ≥ KT is the scan
repetition time. fc = c/λ is the carrier frequency, where c and λ denote
the velocity of propagation in the medium and the carrier wavelength
respectively.

We assume that Q point-like and slowly fluctuating targets are
moving within the surveillance area and in the array far field [19]. The
radial velocity of the qth target in the mth scan is vq

m. Neglecting
compression or stretching of the time scale, the complex envelope of
the received signal at the ith sensor and over the mth scan is given
by [3],

ri
m(t) =

Q∑

q=1

{αq
mej2π(i−1)νq

smej2πfq
m·t

·
K∑

k=1

p(t− (k − 1)T − (m− 1)∆− τ q
m)}+ wi

m(t),

i = 1, . . . , N, m = 1, . . . , M, (2)

where αq
m ∈ C is a factor which accounts for Aejϕ, the effects of the

transmitting antenna gain, radiation pattern of the array sensors, two-
way path loss, radar cross section of the qth target, etc. τ q

m is the
round-trip delay of the received signal for the qth target (with respect
to the origin of the reference system). f q

m is the Doppler frequency shift
of the signal backscattered by the qth target (i.e., f q

m = (2vq
m/c)fc).
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νq
sm is the qth target’s spatial frequency, i.e.,

νq
sm = (d/λ) sin (θq

m) , (3)
with θq

m the DOA angle of the qth target. wi
m(t) is the complex

envelope of the overall disturbance.
In order to generate the vector of the noisy returns corresponding

to the lth range gate, l = 1, . . . , L, the received signal ri
m(t) is sampled

at
tl,m,k = tmin + (l − 1)Tp + (k − 1)T + (m− 1)∆, k = 1, . . . , K, (4)

and the time samples are grouped to form an NK-dimensional vector
as follows,

zl,m = vec




r1
m(tl,m,1) r1

m(tl,m,2) . . . r1
m(tl,m,K)

r2
m(tl,m,1) r2

m(tl,m,2) . . . r2
m(tl,m,K)

. . . . . . . . .
rN
m(tl,m,1) rN

m(tl,m,2) . . . rN
m(tl,m,K)


 = sl,m + nl,m, (5)

where vec is the vec operator [3], and sl,m and nl,m denote the signal
component and the noise component respectively.

Let tmin denote the beginning of the sampling process. Then the
round-trip delay ς l

m of the received signal at the lth range gate of the
mth scan is given by

ς l
m = tmin + (l − 1)Tp, ς l

m ∈ [tmin, tmin + (L− 1)Tp]. (6)
Hence, zl,m can be written as,

zl,m =

{∑Bl
m

q=1 αq,l
m p(ς l

m)(Sq,l
T,m ⊗ Sq,l

S,m) + nl,m, Bl
m > 0,

nl,m, Bl
m = 0,

(7)

where Bl
m is the number of targets contained in the data from the lth

range gate of the mth scan, and Bl
m = 0 indicates that there are no

targets at the lth range gate. We have p(ς l
m) = 1 considering that p(t)

is a unit-energy rectangular pulse waveform, and (7) can be further
reduced to

zl,m =

{∑Bl
m

q=1 αq,l
m (Sq,l

T,m ⊗ Sq,l
S,m) + nl,m, Bl

m > 0,

nl,m, Bl
m = 0,

(8)

where Sq,l
S,m and Sq,l

T,m denote the spatial steering vector and the
Doppler filtering steering vector for the qth target at the lth range
gate respectively, and ‘⊗’ represents the Kronecker product of two
vectors. The spatial steering vector Sq,l

S,m and the Doppler filtering

steering vector Sq,l
T,m can be represented by

Sq,l
S,m =

[
1, ej 2πd

λ
sin θq,l

m , . . . , ej(N−1) 2πd
λ

sin θq,l
m

]T
(9)
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and,

Sq,l
T,m =

[
1, ej2πfq,l

m ·T , . . . , ej(K−1)2πfq,l
m ·T

]T
. (10)

In this paper, the compressed sensing is used to reconstruct a
DOA-Doppler plane based on zl,m, the data from the lth range gate at
the mth scan. In practice, the radar system has no knowledge of the
number and locations of the targets. To do so, the DOA-Doppler plane
is divided into V ×D grids, where V and D denote the number of rows
(for DOA angle) and columns (for Doppler frequency), respectively.
Each grid is with the same size ∆θ ×∆f . The intersection of the ith
DOA angle bin and the jth Doppler frequency bin represents a unique
point (θi, fj) with a corresponding reflection coefficient α(θi, fj). All
the intersection points in the DOA-Doppler plane are mapped into a
V D×1 vector x with the jth column placed at the end of the (j−1)th
column. As a result, the ((i − 1) ·D + j)th element of x corresponds
to point (θi, fj), which is defined as: x((i− 1) ·D + j) = α(θi, fj).

Based on the above derivation, the measurement data zl,m can be
represented in a compressed sensing framework as in (11),

zl,m = Φxl,m + nl,m, (11)

where xl,m is defined above. Φ is an NK × V D basis dictionary as
Φ = [ϕ1 ϕ2 . . . ϕV D] in columns. The ((i− 1) ·D + j)th column of Φ,
which corresponds to the ((i− 1) ·D + j)th element of xl,m, is defined
as follows,

ϕ(i−1)·D+j = ST (fj)⊗ SS(θi). (12)

Equation (11) constitutes the foundation of our proposed method.
Without loss of generality, the radar scene is assumed to be sparse,
resulting in a sparse vector xl,m. Given zl,m and measurement noise
nl,m, the sparse vector xl,m can be reconstructed using a compressed
sensing based method. For simplicity, (11) is rewritten as a standard
model in compressed sensing,

y = Φx + e, (13)

where y, x and e denote the measurement vector, the original sparse
vector and the noise vector respectively.

3. IMPROVED STOMP ALGORITHM

In this paper, we are considering to reconstruct the sparse signal
representing the radar scene directly based on the basis dictionary
which is comprised of spatial-time steering vectors. However, the basis
dictionary built in TBD (12) is with high coherence, which can not
guarantee a perfect reconstruction with large probability. An improved
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StOMP algorithm is proposed to select multiple atoms to encapsulate
the highly coherent columns (atoms) with high residual correlations at
each iteration. This method can cope with the highly coherent columns
efficiently.

The steps of the proposed algorithm are same with those of
the StOMP algorithm except the thresholding step. In the StOMP
algorithm, the thresholds are specially chosen based on the assumption
of Gaussianity of the residual correlations. Thresholding yields a small
set of large coordinates which are beyond a formal noise level. However,
the basis dictionary built in TBD (12) is a highly coherent matrix and
the residual correlations do not satisfy the Gaussianity any more. In
the proposed method, a set of mixture Gaussian models are used to
approximate the distribution of the residual correlations. The proposed
algorithm selects the coordinates among the top t% of each mixture
Gaussian model. The detailed procedure of the proposed algorithm is
listed in the following.
Algorithm 1: Improved StOMP Algorithm:
INPUT: Measurement vector y
OUTPUT: Index set I, reconstructed vector v̂ = x
(1): Initialize: Let the index set I = ∅ and the residual r = y. Repeat
the following steps times or until r = 0:
(2): Threshold: Apply matched filtering to the current residual as

u = Φ∗r, (14)

where u is a vector of residual correlations. A set of mixture Gaussian
models is then used to approximate the distribution of the residual
correlations. For each mixture Gaussian model, choose the coordinates
among the top t% of it. All the obtained coordinates form a set J .
(3): Update: Add the set J to the index set: I ←− I ∪ J , and update
the residual

x = argmin
v̂∈<I

||z − Φv̂||2; r = z − Φx. (15)

However, with small probability, some additional entries (false
targets) occur in the reconstructed sparse vector due to the highly
coherent columns. Fortunately, the temporal tracking performed
during each scan can effectively identify the true targets from the false
targets based on the information from multiple illuminations.

4. THE PROPOSED CS-TBD ALGORITHM

This section introduces the CS-TBD algorithm, which is mainly
divided into two steps. First, the proposed algorithm reconstructs
the whole radar scenario (DOA-Doppler plane) using an improved
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StOMP algorithm, which has been introduced in Sections 2 and 3.
The proposed algorithm then performs temporal tracking in the newly
built three-dimensional range-DOA-Doppler space.

Since the width of the antenna beam is finite, a target is usually
hit by a set of successive illuminations during each scan [1]. Thus in
this paper, temporal tracking is performed inside each scan (in the
three dimensional space comprised of range, DOA and Doppler), as
well as among consecutive scans. As a result, the temporal tracking
(TBD) consists of two main procedures: the TBD performed inside
one scan, and the TBD performed among consecutive scans.

First, the TBD performed inside one scan is considered. For the
lth range gate at the mth scan, we can reconstruct the sparse signal
xl,m using the improved StOMP algorithm, based on which a radar
scenario (DOA-Doppler plane) is built. The ((i− 1) ·D + j)th element
of xl,m corresponds to the point (θi, fj) in the reconstructed DOA-
Doppler plane. As a result, L DOA-Doppler planes are built in the mth
scan, resulting in a three-dimensional DOA-Doppler-range space. The
intersection of the ith DOA angle bin and the jth Doppler frequency
bin in the lth range gate plane represents a unique point (θi, fj , l). A
simple procedure is then used to distinguish the points occupied by the
potential targets from the points corresponding to noise (Algorithm 2).
The potential targets are with large reflection coefficients.
Algorithm 2: Let PTl,m(c) denote the cth potential target at the lth
range gate at the mth scan and set c = 0. For l = 1, . . . , L,
(1): xl,m = Reconstruct(Φ, zl,m);
(2): For i = 1, . . . , V D,
if |xl,m(i)| > Ttarget

xl,m(i) corresponds to a potential target,
c = c + 1,
PTl,m(c) = xl,m(i),

else
xl,m(i) corresponds to noise and is set as zero.

end
Here ‘Reconstruct ’ refers to the improved StOMP algorithm. Ttarget

is a threshold set to distinguish the potential targets from noise. It
should be noted that the potential targets consist of the true targets,
false targets and clutter. The false targets are wrongly generated by
the improved StOMP algorithm due to the highly coherent columns.

A K-means method is then utilized to cluster the points (potential
targets) obtained from Algorithm 2 in the three-dimensional DOA-
Doppler-range space at the mth scan, resulting in a number of clusters.
Each cluster corresponds to either a true track of a true target or
a false track of a false target/clutter. Since the true target moves
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continuously in the three-dimensional space according to a general
dynamic model, it is hit by a set of consecutive illuminations inside
one scan. The true track will consist of a number of points under a
moderate detection probability. On the contrary, the clutter or false
target appears randomly in the three-dimensional space and it is hit by
inconsecutive illuminations, resulting in a false track consisting of much
less points compared with the true track. The following procedure
(Algorithm 3) is then used to distinguish the true tracks from the false
tracks based on the number of points contained in each track.
Algorithm 3: Let {TCm(i), i = 1, . . . , NTC} denote the ith track at
the mth scan, where NTC denotes the number of tracks. Accordingly,
the number of points contained in each track is counted and denoted
by {NPm(i), i = 1, . . . , NTC}. For the ith track, i = 1, . . . , NTC ,
if NPm(i) > Ttrue

The ith track corresponds to a true target.
else if NPm(i) > 0

The ith track corresponds to clutter or a false target.
end
In the above algorithm Ttrue is a threshold set to distinguish the true
tracks from the false tracks. In order to set a proper value for Ttrue ,
the number of points in tracks, {NPm(i), i = 1, . . . , NTC}, is arranged
in descend order as,

NPm[1]>NPm[2]>. . .>NPm[k]ÀNPm[k+1]>. . .>NPm[NTC ], (16)

where NPm[1] denotes the largest entry. The sudden change between
NPm[k] and NPm[k + 1] is caused by the large difference between
the number of points in the true track and the false track. We set
Ttrue = κ · NPm[k], where the constant κ is drawn from the range of
[0.1, 0.5] to ensure that the true tracks can be distinguished from the
false tracks accurately. Finally, the TBD procedures performed inside
one scan are summarized in Fig. 1.

The proposed method does not rely much on the dynamic model
of the target. Actually the temporal tracking is carried out in the
measurement space (three-dimensional range-DOA-Doppler space).
Considering that the DOA angle, Doppler frequency and range do
not change much during consecutive illuminations (very short time
interval), the points at different illuminations corresponding to the
same target will distribute close to each other and hence can be easily
identified as a cluster. The cluster consisting of more than Ttrue points
will be confirmed to be a true track, while the cluster consisting of
no more than Ttrue points will be confirmed to be a false track and
removed.

Next, we consider the TBD process performed among consecutive
scans. From the above derivation, we can obtain a three-dimensional
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Figure 1. Flowchart of the TBD procedures performed inside one
scan.

space for each scan. A series of three-dimensional spaces corresponding
to M consecutive scans are combined to one final three-dimensional
space, and the tracks corresponding to one specific target in different
scans will be connected to each other in the final three-dimensional
space. This results in a number of final tracks consisting of multiple
scan information, each for a true target.

Complexity Analysis Here we will analyze the computational
complexity of the proposed CS-TBD algorithm, and further make a
comparison to the traditional TBD algorithm [3] on computational
complexity.

The CS-TBD algorithm consists of two steps. First, the proposed
algorithm reconstructs the DOA-Doppler plane for each range gate
at consecutive scans using an improved StOMP algorithm. The
proposed algorithm then performs temporal tracking in the newly
built three-dimensional range-DOA-Doppler space. The computational
complexity mainly focuses on the reconstruction of the radar scenario
for each range gate at consecutive scans using an improved StOMP
algorithm. The cost of reconstruction work is of the order of O(ML ·
O(StOMP)), where O denotes order. M is the total number of scans
that are jointly processed in the TBD framework, and L is the number
of illuminations in each scan. O(StOMP) = η(µ + 2)N1N2 + O(N2)
indicates the complexity of the StOMP algorithm according to [7].
N1 and N2 denote the number of rows and columns of the sensing
matrix respectively. µ and η denote the total number of conjugate
gradient iterations and StOMP stages respectively, and both are small
constants.

The process of complexity analysis of the traditional TBD is
similar to that of [1]. The total cost of the traditional TBD is of the
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order of O(MLN cNφ), where Nφ and Nc are respectively the number
of azimuthal radar sectors and the number of non-ambiguous range
gates in a scan.

From the above deviations, we have that the computational
complexity of the proposed CS-TBD algorithm is of the order of
O(ML · O(StOMP)) ≈ O(MLN 1N2) considering that µ and η are
small constants, which is comparable to that of the traditional TBD
algorithm if N1N2 and NcNφ are with the same orders.

5. SIMULATION RESULTS AND ANALYSIS

We consider a radar system positioned at the origin of a Cartesian
coordinate frame. The area under surveillance is 1000 m long and
1000m wide. The clutter is assumed uniformly distributed with density
1× 10−5/m2, resulting in 10 clutter points per scan. The scan interval
is 1 s with ten illuminations. Additional simulation parameters are
listed in Table 1.
Table 1. Simulation parameters.

Simulation Parameter Value
Pulse shape Rectangular

Carrier frequency 10 GHz
Tp 0.5µs

PRF 820 Hz
TR 2.09 s

Number of sensors (N) 5
Number of pulses (K) 5

Number of rows of DOA-Doppler plane (V ) 20
Number of columns of DOA-Doppler plane (D) 30

Threshold Ttarget 0.5

Two different scenarios are presented to demonstrate the
performance of the proposed CS-TBD method. In the first scenario,
two targets approach the radar according to a nearly constant velocity
(NCV) dynamic model [21]. In the second scenario, the simulation
is carried out for tracking two slow-maneuvering targets in clutter.
In both two scenarios, the performance of the proposed CS-TBD
algorithm is compared to the traditional TBD algorithm [3] and the
ML-PDA algorithm [22] on the probability of track detection PD,track ,
the root mean square error (RMSE), and the executing time (ET).
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5.1. Scenario 1

In the first scenario, two targets approach the radar according to the
NCV dynamic model [21]. The first target starts from a position of
[15757m, 2778.4m] with a velocity of [−98.4808m/s, −17.3648m/s],
and the second one starts from a position of [15035 m, 5472.3m] with a
velocity of [−93.9693 m/s, −34.202 m/s]. Equivalently, the first target
approaches the radar with a radial velocity of −100m/s (the radial
velocity is negative if the target is approaching the radar) and a DOA
angle of 10 degrees, beginning at the range gate of 16000m from the
radar. The second target has a radial velocity of −150 m/s and a DOA
angle of 20 degrees, beginning at the same range gate as the first one.
The range of the DOA angle and Doppler frequency are [0◦, 30◦], and
[0Hz, 4000 Hz] respectively.

5.2. Scenario 2

In the second scenario, the simulation is carried out for tracking two
slow-maneuvering targets in clutter. The Wiener process acceleration
model [23] is chosen as the motion model for the two targets. We
define Xk = [px, γx, ax, py, γy, ay]Tk as the state vector at the kth
scan; px, γx and ax denote respectively the position, velocity and
acceleration of the moving object along the x axis of Cartesian
frame; and, py, γy and ay along the y axis. The process noise
vk−1 = [vpx , vγx , vax , vpy , vγy , vay ]Tk−1, is a zero mean Gaussian white
noise process with standard deviations of 1m (σvpx

), 1 m/s (σvγx
),

20m/s2 (σvax
), 1 m (σvpy

), 1 m/s (σvγy
) and 20 m/s2 (σvay

). The initial
positions and velocities of the two targets are same with those of the
two targets in the first scenario.

5.3. Numerical Simulation, Results and Analysis

In the first scenario, two targets approach the radar according to the
NCV dynamic model. The results of the simulation performed inside
one scan are shown in Figs. 2∼4. Fig. 2 shows the three-dimensional
range-DOA-Doppler space comprised of reconstructed radar scenes.
The reconstructed potential targets are comprised of estimates of true
targets (the stars inside the red circles) and estimates of clutter (the
stars inside the triangles). Next, we distinguish the estimates of true
targets from the estimates of clutter. It is reasonable to assume that
the DOA angle and velocity of a target do not change much during one
scan when adopting a NCV model. All the points are then projected
to the DOA-Doppler plane and clustered (Fig. 3). The resulting
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Figure 2. Three-dimensional
range-DOA-Doppler space com-
prised of reconstructed radar
scenes inside one scan for the first
scenario.
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scenario.
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Figure 4. Two detected tracks
in the three-dimensional range-
DOA-Doppler space inside one
scan for the first scenario.
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Figure 5. TBD among consecu-
tive scans for the first scenario.

two clusters are located around (10◦, 2000 Hz) and (20◦, 3000 Hz)
respectively. Each cluster consists of more than Ttrue points and is
treated as a true track. Finally, we can obtain two true tracks through
removing the points corresponding to clutter in the three-dimensional
range-DOA-Doppler space (Fig. 4).

We then consider the tracking performed among five consecutive
scans, and the simulation results are shown in Fig. 5. A series
of three-dimensional spaces corresponding to five consecutive scans
are combined to one final three-dimensional space, and the tracks
corresponding to one specific target in different scans are associated
in the final three-dimensional space (Fig. 5). This results in two final
tracks consisting of multiple scan information, each corresponding to
a true target.

In the second scenario, the simulation is carried out for tracking
two slow-maneuvering targets in clutter. The results of the simulation
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Figure 6. Three-dimensional
range-DOA-Doppler space com-
prised of reconstructed radar
scenes inside one scan for the
second scenario.
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Figure 7. Projected recon-
structed radar scene for the sec-
ond scenario.

performed inside one scan are shown in Figs. 6∼8. In Fig. 6, we can see
that the estimate of false target (the independent star) occurs besides
the estimates of true targets and clutter. The occurrence of false target
is due to the highly coherent columns of the sensing matrix. Moreover,
two blind spots are located at the range gate 16000, which indicate the
two targets lost in tracking due to the maneuvering movements.

Next, we distinguish the estimates of true targets from the
estimates of false target and clutter. Considering that the DOA angle,
Doppler frequency and range do not change much during consecutive
illuminations, the points at different illuminations corresponding to
the same target will distribute close to each other. All the points are
then projected to the DOA-Doppler plane and clustered (Fig. 7). It
can be seen from Fig. 7 that two sets of points (stars in red circles) are
located at the positions (10◦, 2000Hz) and (11◦, 2000 Hz) respectively
in the DOA-Doppler plane. Some points have to be transferred to
these two positions due to the resolution limit of the DOA-Doppler
plane (1 degree in DOA angle) though they may distribute around
these two positions. As a result, the two set of points are combined
to one cluster. And the same clustering process is performed for other
two sets of points located at the positions (20◦, 3000 Hz) and (21◦,
3000Hz) respectively. The resulted clusters consist of more than Ttrue

points and are treated as true tracks. Finally, the two detected true
tracks in the three-dimensional range-DOA-Doppler space are shown
in Fig. 8.

We then consider the tracking performed among five consecutive
scans, and the simulation results are shown in Fig. 9. The tracks
corresponding to one specific target in different scans are associated
in the final three-dimensional space (Fig. 9, resulting in two final true
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Figure 8. Two detected tracks
in the three-dimensional range-
DOA-Doppler space inside one
scan for the second scenario.
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Figure 9. TBD among consecu-
tive scans for the second scenario.

6 8 10 12 14 16 18 20
SNR (dB)

 

 

CS TBD
TBD
ML PDA

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

,T
ra

ck

Figure 10. PD,Track versus SNR
for the first scenario.
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Figure 11. RMSE in DOA
versus SNR for the first scenario.

tracks.
Moreover, the performance of the proposed CS-TBD algorithm

has been compared to the traditional TBD algorithm [3], and the
ML-PDA algorithm [22] based on the probability of track detection
PD,track , the root mean square error (RMSE) and executing time, for
both two scenarios. The PD,track and RMSE are calculated using 500
independent Monte Carlo trials for each algorithm according to [3].
The parameter setting for the traditional TBD algorithm and the ML-
PDA algorithm is same with that in [3].

Simulation results for the first scenario are shown in Figs. 10
and 11. More precisely, in Fig. 10 we plot PD,track versus SNR, while in
Fig. 11 we plot the RMSE in DOA versus SNR, for the three algorithms
respectively. In Fig. 10, it can be seen that the proposed CS-TBD
algorithm obtains unity probability of track detection at the lowest
SNR (12 dB) compared with the traditional TBD algorithm (16 dB)
and the ML-PDA algorithm (19 dB), which shows that the proposed
CS-TBD algorithm is resilient to the measurement noise. The proposed
algorithm can do perfect detection of targets with measurement noise
when the SNR is above 12 dB. It can be seen from Fig. 11 that
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the proposed algorithm obtains the lowest RMSE compared with the
other two algorithms. The similar simulation results are obtained in
Figs. 12 and 13 for the second scenario, which show that the proposed
CS-TBD algorithm outperforms the traditional TBD algorithm and
the ML-PDA algorithm both in terms of PD,track and RMSE in the
maneuvering case.
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Figure 12. PD,Track versus SNR
for the second scenario.
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Figure 13. RMSE in DOA ver-
sus SNR for the second scenario.

Finally, the executing time is used to compare the computing
performance of the three algorithms (Table 2). The executing time
is defined as the CPU time needed to execute one scan tracking
in MATLAB 7.1 on a 3 GHz (Mobile) Pentium IV operating under
Windows 2000. The executing time is determined by the number
of grids in the DOA-Doppler plane and the number of illuminations
in one scan, and it is not influenced by the dynamic model of the
target. Table 2 shows that the proposed CS-TBD algorithm obtains
the comparable executing time compared with those of the traditional
TBD and ML-PDA algorithms.

Table 2. Performance comparison on executing time.

CS-TBD TBD ML-PDA
Executing time (s) 0.34 0.37 0.29

6. CONCLUSION

A novel CS-TBD algorithm is proposed in this work. Different from
the existing TBD algorithms that adopt hypothesis test using the
radar measurement, the proposed algorithm reconstructs the whole
radar scenario (DOA-Doppler plane) for each range gate at consecutive
scans using an improved StOMP algorithm. Temporal tracking is
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performed inside each scan (in the three dimensional space comprised
of range, DOA and Doppler), as well as among consecutive scans. The
simulation results show that the proposed algorithm can track and
detect multiple targets successfully.
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