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Abstract—Broadband beamforming has been an important issue
on antenna array processing due to many practical demands on
communication, radar, or sonar applications. Although several effects
deteriorating array performance have been addressed for narrowband
beamforming, few of them are considered for the broadband scenario.
Besides, the definition of output signal-to-interference plus noise
ratio (SINR) and the way to simulate broadband signal sources are
usually vague, which further obstructs the development of broadband
beamforming. In this paper, the performance of discrete Fourier
transform (DFT) beamformers operating in block processing and
sliding window modes are investigated when the correlation matrices
are known or estimated by finite data samples. The output SINR of
DFT beamformers is well-defined, and the generation of broadband
signals is clearly introduced. Simulation results with respect to the
signal bandwidth, the number of frequency bins, and the number of
data samples are presented for illustration and comparison.

1. INTRODUCTION

Adaptive beamforming has been developed in past decades due to
its significant anti-jamming ability. Ideally, an adaptive array can
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eliminate the interference and noise efficiently while protecting the
desired signal source arriving from a specific direction. However,
the performance of adaptive antenna arrays can be deteriorated by
several errors in practical situation such as steering vector errors [1],
finite sample effect [2], source coherence [3], mutual coupling [4], etc..
Many robust techniques were proposed to cope with these effects
on array performance. Notables among them are eigenspace-based
method [5], diagonal loading technique [6], signal blocking [7], and
spatial smoothing [8]. Although the unwanted effects are circumvented
by a variety of methods, most of the adaptive beamforming techniques
are limited to the scope of narrowband signal environment and
narrowband beamforming. In practice, many applications such as
sonar [9], radar [10], communication [11], and microphone array [12] are
not strictly narrowband. Since signal sources with nonzero bandwidth
degrade the performance of an adaptive array [13,14], a broadband
beamformer is necessary in broadband environments to alleviate the
effect of signal bandwidth.

Usually, adaptive beamformers for broadband signal reception are
classified to two structures: the tapped delay-line (TDL) beamformer
and the discrete Fourier transform (DFT) beamformer [15] (also note
the recently proposed structure called sensor delay-line in [16,17]). In
the TDL beamformer, the time-domain data vectors {x[n]}n=o~n—_1
are directly weighted by a set of coefficients satisfying certain
constraint and optimization problem [18]. Due to its effectiveness,
the TDL beamformer has been the most popular scheme and is
widely considered for broadband beamforming [13,19,20]. Several
publications discussing the TDL beamformer suffering from look
direction errors have been reported recently [21,22].  On the
other hand, the DFT beamformer transforms the time-domain data
vectors {x[n]}n—o~n—1 to frequency-domain via DFT, processes each
frequency bin by a narrowband beamformer, and then performs the
inverse DFT (IDFT) to obtain the time-domain outputs. The DFT
beamformer is computational efficient since the matrices to be inverted
in computing weights have lower dimension. This property has been
utilized to calculate the weight coefficients of the TDL beamformer
by the frequency-domain method [22-25]. Several applications of the
DFT beamformer in communication systems are available in [26-28].

The connection between the TDL and DFT beamformers has been
studied in [23,29]. The investigation in [29] reveals that the output
signal-to-interference-plus-noise ratio (SINR) of the DFT beamformer
is identical to that of the TDL beamformer. In other words, the
DFT operation cannot provide any improvement on array performance.
However, the analysis of [29] only considers the case where the entire
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weight vector is computed by the LMS or Applebaum algorithms.
Since the weight vector in each frequency bin of the DF'T beamformer
is usually produced individually, the conclusion of [29] may not be
appropriate for all kinds of DFT beamformers. In spite of the existing
work in [22-30], the output SINR of the DFT beamformer is never well-
defined and studied in detail. Moreover, the performance of the DFT
beamformer with correlation matrices estimated by finite data samples
are seldom evaluated or discussed in the literature. Therefore, we
investigate the performance and capabilities of the DFT beamformer
in broadband array processing in this paper. The main contributions
are listed as follows:

1. The definition of the output SINR for DFT beamformers in
terms of weight vectors is established explicitly and clearly. This
provides a fair comparison to different algorithms and prevents
the ambiguity for the broadband performance metric. The
narrowband beamforming and narrowband sources scenario are
the special cases of our results, which validates this work.

2. In addition to the perfect case that the correlation matrices of
the data vectors are known to the receiver, the finite sample
effect on DFT beamformers is also considered and observed by
simulation results. Different from most of the existing literature,
the method used to generate the sample points of broadband
white Gaussian sources for simulation is described in detail.
This facilitates the field of exploring the finite sample effect in
broadband beamforming.

3. The DFT beamformers operating in block processing mode and
sliding window mode are both included. The output SINRs
of them under the perfect (the correlation matrices are known)
and imperfect (the correlation matrices are estimated by finite
samples) situations are examined and compared with those of the
narrowband minimum variance distortionless response (MVDR)
and broadband TDL beamformers. This investigation confirms
the effectiveness of the DFT beamformers in alleviating the
sensitivity of an antenna array system to signal bandwidth.
Besides, the presented results indicate that the performance of
the TDL beamformer can be severely deteriorated by the finite
sample effect.

The paper is organized as follows. The expression of the
broadband received signal and the schemes of DFT beamformers
in block processing and sliding window modes are introduced in
Section 2. The definitions of the output SINR for DFT beamformers
with arbitrary signal bandwidth are derived in Section 3. The output
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SINRs of several classical narrowband and broadband beamformers are
compared by the simulation results in Section 4. Finally, we make a
conclusion in Section 5.

2. PRINCIPLES OF BROADBAND BEAMFORMERS

2.1. Received Signal Model

Consider D stationary, uncorrelated, zero-mean sources including one
desired signal and D-1 interferers are impinging on an M-element array
with arbitrary geometry. The diagram of an adaptive array system
is illustrated in Figure 1. First, the received signal of each sensor
passes through an ideal bandpass filter with center frequency f. and
bandwidth 2B. The band-limited received signal of the mth element
and its Hilbert transform are respectively given by

T, T (t)ZSL[ (t + Tl,m) +...+58p1 (t + prm) + W, 1 (t) (1)
and  zm,q (t)=s1,Q (t + Ti,m)+.. . +5D,Q (t + TDm) twme (1), (2)

where wy, 1(t) and w,, g(t) are the band-limited spatially white noise
with zero-mean and 74, is the propagation delay of the dth source and
mth element with respect to the reference point. The in-phase and
quadrature-phase of the dth band-limited signal carrying amplitude
aq(t) and phase ¢4(t) are expressed as

sa1 (t) = aq (t) cos (2m fet + Pg (t)) (3)
and  sq,q (1) = aq (¢) sin (27 fet + ¢a (1)) (4)
d=1,2,..., D, respectively. Without loss of generality, we assume

that the first signal source, i.e., d = 1, denotes the desired signal and

3 BPF Down ~
2B -convert Sampling
Ts=1/2B
; BPF Down ~
2B -convert Sampling -
Ts=1/2B L
beamformer
; BPF Down ~
2B -convert Sampling
Ts=1/2B

Figure 1. System diagram of an adaptive array.
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the others interference. Using (1)—(4), the analytical signal is given by

Lm,+ (t)= Tm,I (t) + JTm,Q (t)
=ay (t+ 7im) exp {J 27 fe (¢t + Tim) + 1 (8 + 71,m)]}
+...4+ap(t+71pm)exp{j2nfc(t+ 7D m)
+¢p (t+ D)} + W+ (t) (5)

with corresponding noise wy, 4+(t), m = 1,2, ..., M. After down-
converting the RF signal to the baseband, the received signal of the
mth element is given by

T (t) = 4 (t) exp (—j2m fet) = 51 (t + 71 m) exp {j27 feT1i,m }
+...+sp(t+ 7'D,m) €xp {jQchTD,m} +wpm (1), (6)

where s4(t) = ag(t) exp{joq(t)} is the complex envelope of the dth
signal source, and wy,(t) is the complex envelope of the noise in the
mth element. By sampling x,,(t) at Nyquist rate t = nTs = n/2B with
Ts denoting the sampling interval, the nth snapshot of the received
signal is written as

T (nTs) = s1 (nNTs + T1,m) exp {J27 feTi,m }
+...+sp (nTs+7p,m) exp {j27 feTp m } +wm (nTy) . (7)

Equation (6) is a general expression for the received signals with an
arbitrary bandwidth. We assume that the autocorrelation functions
of the random processes s4(t) and w,,(t) are respectively r4(£) and
rw(€) throughout this paper. Since wy,(t), m = 1,2,..., M, are
band-limited white noise, the samples wy,(nTs) with Ts = 1/2B are
uncorrelated with identical distribution. Note that s4(¢) are band-
limited but not necessarily white. If the bandwidth B is much less
than the carrier frequency f., the baseband signal sq4(t) are almost
invariant during the time difference 74,, for all m. Therefore, the
received narrowband signal can be approximately written as

T (t) = 51(t) exp{J27 feTim }+- . AsD () exp{j27 feTD m }+wm (t) , (8)

which is the signal model commonly used in narrowband beamforming.
We can see that the time differences in (1) and (2) for distinct elements
are simplified to phase differences in this case.

2.2. DFT Beamformers

There are two operation modes in DFT beamformers — block
processing and sliding window. The scheme of the DFT beamformer
with block processing is presented in Figure 2. Let x be the time-
domain data matrix composed of N snapshots of the received signal
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vector as follows:

x=[x[0] x[1] x[2] ... x[N—1]]
o
:m[g] x1[}] 901[%—}] i;T
S A 4
ey [0] zam (1] .. za [N —1] o
[ X0 |

where (-)7 denotes the matrix transpose, and [n] is used to replace
(nTy) for simplicity. Performing DFT to the N data of each element,

we have

X=[X[0] X[] X[2] ... X[N—1]
X0 Xi[] ... Xi[N-1]

_ Xz;[O] XZ:[l] Xz[]\:f—l] 7 (10)
Xy 0] Xu[] ... Xu[N—1]

where

N-1
X [K] =) [n] e PPN = effz,, k=0,1,...,N -1, (11)
n=0

er=[1 exp{j2rk/N} ... exp{j2n (N —-1)k/N}", (12)
E|ement1—>| Buffer (size = N) | _=
' I L | o
Lo |
| —
: w,

Element M —>| Buffer (size=N) |

R -
- P S
el P P

> N data

Figure 2. The scheme of the DFT beamformer in block processing
mode.
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and (-) represents the conjugate and transpose. In (10), X[k] = X(f)
denotes the (k + 1)th frequency component of the received signal and
£ = k-Af, k=0~ ceil(N/2) -1 (13)
FZ1(k—=N)-Af, k=ceil (N/2) ~ (N —1)

with frequency resolution Af = 1/NTs. The symbol ceil(-) denotes
rounding toward positive infinity. Once the frequency-domain data
matrix of (10) is obtained, each frequency component (i.e., each column
of X) is processed by a narrowband beamformer wy with output given

by

Y [k] = wi/ X [K]. (14)
Collecting the output of all narrowband beamformers, we have
Y=[Y[0] Y[1] Y[2] ... Y[N—-1]]. (15)

Finally, performing IDFT of Y yields the output of the DFT
beamformer as follows:

y=[yl0] y[] y[2] ... y[N-1]], (16)
where IDFT is defined as

N-1
1 .
y[n]:NE Y [k] 2™ F/N  p=0,1,...,N —1. (17)
k=0

As we can see from the procedure described above, the block processing
mode collects a block of received data containing N snapshots
first.  After processing the block, it produces N-point outputs
simultaneously. In contrast, the sliding window mode processes the
data block once a new snapshot is received. The time-domain data
block in (9) is updated by pushing in the new snapshot and pulling
out the oldest snapshot, and then the procedure of (10)—(15) is carried
out. Since it processes the data for each sample time n, the sliding
window mode only produces one output at n = 0 in each processing
as follows [30]:

1 N—-1
yl0) = SV [H, (18)
k=0

An example of N = 3 for DFT beamformers is depicted in Figure 3.
The advantage of the sliding window mode is that the IDFT in Figure 2
can be replaced by a simple adder. However, it has to perform DFT
more frequently (specifically, about N times) as compared with block
processing.
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1st block 1st block
2nd block 2nd block
IDFT ﬁ ﬁ
1st freg. processing
2nd freg. processing
3rd freg. processing
@

1st freq. processing
2nd freg. processing
3rd freg. processing

(b)

Figure 3. (a) An example of N = 3 for the DFT beamformer in block
processing mode. (b) An example of N = 3 for the DFT beamformer
in sliding window mode.

2.3. Generation of Weight Vectors

The MVDR, criterion is a typical method to determine the weight
vector in narrowband beamforming. By minimizing the total output
power and constraining unit-gain in the look direction, the weight
vector of the MVDR beamformer in (14) is given by [30]

-1
Rk al k

Wi = (19)

a{{lezlaLk’
where (-)7! represents matrix inverse,
Ry, = E [X [k] X [K]] (20)
is the correlation matrix of the kth frequency bin, and
ap = [exp {27 (fe+ fr) ma} exp{y2m (fe + fr) T2}

exp {j2m (fo+ fi) riar}y |* (21)

is the corresponding steering vector. However, the true correlation
matrix Ry is usually unknown and has to be estimated by K snapshots
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as follows [23]:

K
- 1
Ri =+ > Xy KX (K], (22)
i=1
where the subscript (i), i =1, 2, ..., K, denotes the ith snapshot of a

particular frequency component. Accordingly, the weight vector of (19)

becomes .

- R, a1y

Wi = e (23)
al,kRk alk

under finite samples. When the sample size K is large enough, the Ry,
and W may provide good approximations to Ry and wj. However, a
small K could give a poor estimation and degrade the beamforming
performance, which is referred to as the finite sample effect on array
processing.

To estimate Ry using (22), the total data matrix in block
processing mode should include K blocks (the x in (9) denotes one
block) as follows:

xp=[X1) X@ - X
T [0] Tl [1] N T1 [N — 1] T [N]
_ xT9 [O] T2 [1] e T2 [N — 1] X9 [N]
e (0] zn [l ... em[N—1] za[N]
.1‘1[2N—1] $1[KN—1]
x9 [2N 1] ... x9 [KN —1] (24)
e 2N —1] ... am KN —1]

since each block contributes only one snapshot X;)[k] in (22). On the
other hand, the total data matrix producing K snapshots in sliding
window mode is given by

mz[O] .’[2[1] x’z[N—l] CCQ[N] LEQ[K+N_2]
Xs = . . . . .
e 0] @n[l] .o e N—1] 2 [N] ... ou[K+N—2]
---------------------- X(1)
—————————————————————— X(2) - (25)

It can be shown that the size of xg is smaller than xg when N > 1
and K > 1. However, each block in sliding window mode is highly
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correlated and may lead to a worse estimation of Ry. Different from the
narrowband case, the total number of snapshots for DFT beamformers
depends on the number of frequency bins and the number of snapshots
used to estimate Ry in each frequency bin. If both Nand K are large,
the required memory storage and computational complexity could be
amazing. To give a fair comparison to different techniques, the total
number of time-domain samples used to estimate Ry is fixed to J
with J being a multiple of N. Thus, xp and xg with J columns can
provide Kp = J/N and K¢ = J — N + 1 snapshots for each frequency,
respectively. Again, it can be shown that Kp < Kg if N > 1. As
compared with block processing, the sliding window mode gets more
frequency-domain snapshots, but at the price of higher correlation for
the adjacent snapshots. This difference will be further observed by
simulation results.

For the special case of N = 1, Equations (10), (20), (19), and (16)
are simplified to

X =x=x]|0], (26)
R=E [X[0]X"[0] = E [x[0]x" 0] , (27)
- RflaLo
W= afOR—laLo’ (28)
and y=y[0] = wix[0], (29)

respectively, when the true correlation matrix R is known. Note that
the results of (26)—(29) are the same for general n because the process
x(t) is stationary. Similarly, we have

X(z) = X(z) =X [Z — 1] y (30)
“ 1 . . H
R:K;X[z—l]x[z—l] : (31)
. R'a;

W= : (32)

afoﬁ_1a1’07
and y=y[0] = wx[0] (33)

under finite samples. Therefore, the DFT beamformer with N =
1 reduces to the narrowband MVDR beamformer processing the
frequency bin f. only. Moreover, the block processing and sliding
window modes are the same in this case whether finite sample effect
exists or not.
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3. THE OUTPUT SINR OF DFT BEAMFORMERS

It has been shown in Section 2 that the narrowband MVDR
beamformer is a special case of the DFT beamformer. Here, we derive
the output SINR of DFT beamformers in terms of weight vectors.
It is expected that the SINR definition used in narrowband scenario
becomes the special case of N =1 and B < f. in our definition.

3.1. The DFT Beamformer with Block Processing

Given a set of weight vectors wi, k = 1, 2, ..., N, the array output
at the time instant n can be obtained by substituting (14) into (17) as
follows:

N-1
1 . 1

y[n]:Ng wa[k]eﬂ”"k/N:NwHFnX‘, n=0,1,...,N—1, (34)
k=0

where w and X are column vectors defined by
T
w=[wl wi ... wh_ ], (35)

X = [XT[0] XT[1] ... XT[N-1]]". (36)

The MN x MN matrix F,, represents the IDFT operation and is
related to (12) by

I 0 0
j2mn/N .
F,= | © I ‘ = diag (e,) ® I,  (37)
: 0
0 . 0 ei2m(N-1)/NY

where diag(e,) denotes the diagonal square matrix with diagonal
entries e,, ® denotes the Kronecker product, and I is the identity
matrix with size M x M. Using (34), the output power of the array is
given by

1
E {|y [n]\Q} = W FRF] W (38)
with
Ri=E [XX/['|
E |X[0]X" 0] E|X [0 X" [1] E|X[0) X" [N —1]
E|X[1]1X" 0] E|X[1]X7[1] E|X[1]X" [N -1]

= . . . (39)

E[X[N—i]xH[o]} E[X[N—i]me] E[X[N—HXH[N—u]
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denoting the correlation matrix of X|. The correlation matrix R,

is composed of N? sub-matrices. Each of the M x M sub-matrix
characterizes the correlation of two frequencies and has the following
expression:

E [X [k1] X [ko]]

BX1 k] X7 [Rol]  E[X0 o) X5 [Rel] ... E[X1 [ka) X [kl
E[Xz k1] X7 [k2]] B [Xz[k1] X3 [k2]] ... E[Xa[ki] X [k2]]

- . . : ’ (40)
B[Xar o] X; [ko]] B [Xor [ka] X5 (o] - B[ Xt k] X3 [ka]]

where (-)* denotes the complex conjugate. Using (11), the (mq, mg)th
entry of E[X[k;]X[ks]] can be further written as

E [Xu, (k1] X5, [ko]] = efl B [Zn, X0L,] €, = €fl Rinymoery,  (41)
where R, m, represents the correlation matrix of the time-
domain signals received by the mith and moth array elements.

Substituting (41) into (40), we have the explicit expression for the
(K1, k2)th sub-matrix of R given by

eg Rllek2 ekH R126k2 . ekH RlMek2
e Rglek e Rggek e e RQMek
E |:X [kl] XH [kQH _ k1 . 2 k1 . 2 k1 ) 2
ekHl ].:{]\/Hek2 eﬁ RMgek2 . ekH1 ].:{]\/1]\4(3]€2
=E/'REy,, (42)
where Ej, and R are defined as
fe. O ... O
0 er ... 0
E.=| . .. . (43)
L0 0 €kl MNxM
Ri1 R ... Riyg
_ Roi1 Ros ... Roy
and R= . . . (44)
[Ryvi Ry o0 Ruw

Moreover, using the expression of (42), the Ry in (39) can be rewritten
as
EfRE, E{RE, ... E{REy_,
EfRE, EfRE; ... EfREy, e
R = _ , , —ERE (45)

Ef RE, EY RE;, ... Ef REy_,
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with

E=E, E; ... Ey_{] (46)
denoting the DFT operation. Thus, the array output power at the
time instant n in (38) becomes

1 _
E {|y [n]|2} ~ W/ F,E'REF, w. (47)

Since the D signal sources and noise are mutually uncorrelated, the
(my, mgo)th sub-matrix of R can be decomposed by using (7) and (9)
as follows:

Riyym, = E {imlng}
= exp {j27 fe (Tl,ml - Tl,mz)}

1 (T1,m1 — T1,ma) r1 (=Ts + Tt,m1 — T1,ms)
T1 (T.s + Ti,m, — Tl,mz) T1 (leml - TLWZ)

1 ((Nfl) Ts +7—1,m1 77—1,m2) T1 ((N72) Ts+7—1,m1 77_1,7712)

T1 (_ (N - 1) Ts + Ti,my — Tl,mg)
r1 (7 (N - 2) Ts + Ti,my; — Tl,mQ)

71 (TL,m1 — T1,ma)

+...+exp {jzﬂ'fc (TD7m1 - TD,mz)}

D (TD,m1 — TD,ms) rp (=Ts + TD,my — TD,ms)
D (Ts + TD;m1 — TD,mo) D (TD,m1 — TD,ms)

7"D((]\/v_ 1) Te +7—D,m1 _TD,mQ) TD((N_Z) Ts “FTD,ml_TD,mz)

D (_ (N - 1) Ts + TD,m1 — TD,'mg)
D (7 (N - 2) Ts + TD,my — TD,'mg)

D (TD,m1 — TD,ms)

.};(0) 0 ... 0

0 ry(0) ... 0
+ : : : Oy ms
0 0 oo Ty (0)
= Rimymas -+ Rimymasp + Rimgma ;s (48)

where d,,,m, denotes the Kronecker delta. Accordingly, the correlation
matrix R in (44) and the output power in (47) can be written as follows:

R =R, + R, +... + Ry, + Ry, (49)
E{ly[n)l*} = Poy [n] + Py [n] + ...+ Py, [n] + P, (50)
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where

1 _
Py, [n] = meFnEHdeEFﬁw, d=1,2,...,D, (51)

are the output powers of the signal sources and

1 _ Tw (0) 2
Py, [n] = ﬁwH F,E'R,EFlw = “])VZ |EFY w|| (52)
is the output power of noise. The || -|| in (52) denotes Euclidean norm

of a vector. Finally, the output SINR of the DFT beamformer with
block processing at the time instant n can be defined as

P, [n]
Py, [n]+...+Ps, [n]+ Pyn]

As we will see from the simulation results in Section 5, the output
SINRs of the block processing mode at distinct n’s could be very
different. Because the random processes sq4(t), d = 1, 2, ..., D, and
wm(t), m = 1,2, ..., M, are assumed stationary, the second order
statistical properties of y[n] and y[n + kN] are the same for a given
weight vector w. Therefore, the output SINR of the DFT beamformer
with block processing is periodic with period N.

In summary, the procedure to compute the output SINR of the
DFT beamformer with block processing given a set of weight vectors
is described as follows:

Step 1: Construct E using (46), (43), and the definition of ey
in (12).

Step 2: Construct F,, from (37) for the time instant n.

SINR [n] = (53)

Step 3: Compute the output powers of signals and noise from (51)
and (52).

Step 4: Compute the array output SINR at the time instant n
according to (53).

Step 5: Set n = n+ 1 and go to step 2. If n > N, SINR[n| =
SINR[n — NJ.

3.2. The DFT Beamformer with Sliding Window

In the sliding window mode, there is only one output y[0] given by (18)
for each cycle. Since F,, reduces to an identity matrix for n = 0, the
output power of the sliding window mode becomes

B{yoP} = %WHEHREW. (54)
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Following the similar derivation in Section 3.1, we get

Py, [0]
SINR[0] = L 55
0] P, [0] 4 ...+ Ps,, [0] + P, [0] (5)
with

1 _
ng:jﬁwﬂﬂﬁgﬁw,d:LGwD (56)

7 (0) 2
and P, [0] = e |Ew|”. (57)

Again, for a given weight vector w, the statistical properties of y[n| are
the same for all n’s since the signal sources and noise are stationary.
Therefore, the results of (54)—(57) are suitable for general n, and the
time index [0] can be neglected. The steps for computing the output
SINR of the DFT beamformer with sliding window are presented as
follows:

Step 1: Construct E by using (46), (43), and the definition of e
in (12).

Step 2: Compute the output powers of signals and noise from (56)
and (57).

Step 3: Compute the output SINR according to (55).

Step 4: For n # 0, SINR[n] = SINR]0].

3.3. The Special Case of N =1 and Narrowband Signal
Sources

For the special case of N = 1 (narrowband beamformer), both the
DFT and IDFT reduce to identity operation, and it is easy to show
that
E=Ey=Fy=1 (58)

In this case, the correlation matrix R can be simplified to
R = E [x[0]x" [0]]

rq (0) rq (Td,l _ Td,2) ej277fc(7d,177'd‘2)
B ZD: ra (Td,g o Td,l) ejzﬂ'fc("'d,Z_Td,l) ra (0)
d=1 :

j27ffc(7'd,M*Td,2)

g2 fe(Ta,v—7a,1) ra (Ta,M — Ta,2) €

ra (Ta,pm — Tda)e

74 (Td,1—Td, M) 2 fe(ran—ma.n) rw (0) 0 .. 0
ra (Ta.o—Ta.n) ei2rfe (ra,2—7a,n1) 0 rw (0) ... 0
, , n .
74 (0) 0 0 ... v (0)

=R;, +... +Rs, + Ry, (59)
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and the SINR expression in (53) or (55) becomes
wiR, w
wiR,,w+...+ wHR, w+ wHR,w’
Equation (60) is the output SINR of a narrowband beamformer with
an arbitrary source bandwidth B. The time index [n] is neglected due
to the assumption of stationary sources. Furthermore, if the signals

and noise are also narrowband, i.e., B < f., the correlation matrix
of (59) can be approximated by

R=F [x[0]x" [0]

SINR =

(60)

1 e]'Qﬂ'fc(Td,l*Td,Z) ejQﬂ'fc(Td,l*Td,JW)
D ejQWfC(Td’Qdeyl) 1 . ejQch(TdJ*Td,M)
~ > r4(0)
d:1 . .
eJQch(Td,M—Td,l) €j27ch(Td,M—Td,2) o 1
1 0 ... 0O
01 ...0 D i
+ro (0) | .. L =) ra(0)agealy +rw (0 (61)
Do .o 1
L0 0 ... 1

It is recognized that the combination of (60) and (61) is exactly
the definition of the output SINR commonly used in narrowband
beamforming [2, 7], which confirms the validity of the derivation.

3.4. The Special Case of Band-limited White Processes

In broadband research, it is common to assume the signal sources
are also band-limited white processes with power levels different from
noise. Consider a baseband signal source z(t) with power spectral
density (PSD) given by

sAﬁz{%’d£<f<B, (62)

where P, is a parameter controlling the power level of the source. The
corresponding autocorrelation function of z(t) is given by [31]

r,(§) =E[2(t) 2" (t — §)] = 2BP,sinc (2B¢) . (63)
Under the assumption of white sources, the R, in (51) and (56) can be
constructed by (63) with z(¢) replaced by s4(t). Because the random
processes are sampled at Nyquist rate, i.e., Ty = 1/2B, the samples of
each element are uncorrelated due to

2BP,, k=0
r, (kTs) = {0’ k£0 (64)
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This property is helpful for simulating narrowband signal sources
because, as we mentioned in the context of (8), only s4(0), sa(7%),
.+, 8q4(JTs) are required. Hence, the sequences can be obtained by
generating a series of uncorrelated random variables. However, it
becomes more complicated for the broadband sources since sq(nTs +

Tdm), m = 1,2, ..., M, cannot be approximated by sq(nT,). In
contrast to the narrowband case, the total points to be produced
are $q(7a1), $a(7a2)s - -+ Sa(Tan), sa(Ts + 7a1), sa(Ts + Ta2)s -

sq(Ts+T1anm)s - - Sa(JTs+74.m) (Note that the time is not necessarily
in order). The time intervals between these samples are non-
uniform. Besides, each pair of them has particular correlation. These
problems could make difficulties for simulating broadband signals.
On the other hand, no such concern is required to simulate noise in
broadband scenario because the noise of each sensor and each sample
is uncorrelated (independent, if they are Gaussian).

4. NUMERICAL RESULTS

To evaluate the performance of DFT beamformers, simulations are
performed based on the specifications described in the following. An
8-element uniform linear array (ULA) with inter-element spacing equal
to half-wavelength at the center frequency is considered. For a ULA
with reference point at the first element, the time delay 74, is equal
to (m—1)Lsin6;/C with L, 64, C' denoting the inter-element spacing,
direction of arrival off broadside, and propagation velocity, respectively.
The baseband signal sources s4(t) and noise wy,(t) are assumed to
be stationary band-limited white circular Gaussian processes with
autocorrelation function and PSD shown in Figure 4 (the amplitude
depends on the strength of the source). The powers and the directions
of the signal sources are set to P, = 5, 10, 10 (dB/MHz) above the noise
level and 05 = 20°, —20°, 40° off array broadside, respectively, where
the first one denotes the desired signal and the others interference. The
default settings for the center frequency f., the signal bandwidth B,
the sampling frequency 1/75, the number N of frequency bins, and the
total number J of data samples are 150 MHz, 50 MHz, 100 MHz, 10,
and 1000, respectively. Moreover, the number of Monte Carlo runs is
10 for showing the output SINRs with finite sample effect.

4.1. Simulation Methodology

The output SINRs are computed by first generating weight vectors
with or without finite sample effect and then following the procedures
described in Sections 3.1 and 3.2. For the perfect scenario without
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Figure 4. (a) The autocorrelation function of a band-limited white
process. (b) The PSD of a band-limited white process.

finite sample effect, the required correlation matrices to produce weight
vectors are assumed known and substituted by the explicit expressions
derived in (42), (44), and (48). For the case with finite sample effect,
a large amount of samples for each band-limited Gaussian source is
required to construct the received data matrix xg or xg and estimate
the correlation matrices Rg. In our example, the total number of
samples for each random process is M x J = 8000. The samples of each
random process are correlated, and the sampling interval is usually
non-uniform as discussed in Section 3.4. Traditionally, the realizations
of a multivariate Gaussian vector with presumed correlations can be
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obtained by transforming the standard normal random variables [32].
However, the vectors and transformation matrix in our case are too
huge to be allocated or manipulated for computer simulations. Instead,
we adopt the approximation method proposed in [33] to reconstruct
the waveform of the random processes and then sample them at
adequate time instants. A realization using the mwvnrnd function of
MATLAB and the approximated waveform using the technique in [33]
with window size = 10 are compared in Figure 5. The periodograms
of the two waveforms are presented in Figure 4(b) as well. The two
waveforms and their spectra are very close, which shows the accuracy
and validity for the technique in [33]. Another approximation method
to generate realizations of a band-limited Gaussian process is reported
in [34].

P =5(dBW/hHz),B=50{MHz)
50 T T T T T T T T

—&— MATLAB munrand( ) : :
A0+ X Algorithm of [33]window size=10 : ; : ; i

B e [RTTURSRTORUUTIRRVOR: . TR

ool : i §t3 %, % %9 k _

‘ :
0.05 0.1 0.15 0.2 025 0.3 035 0.4 0.45 05
tusec)

Figure 5. A realization of band-limited white Gaussian process and
the approximated waveform using the algorithm of [33].

In addition to the narrowband MVDR and DFT beamformers,
we present the results of the popular TDL beamformer [18,19] for
comparison. Since the TDL beamformer assumes the desired signal is
incident from array broadside, the presteering time and phase delays
are required such that the baseband received signal of (6) becomes

D
Tm(t) | 7pL =51 (£)+ D Sa (t+Tam—T1m) exp {527 fo (Tam—T1.m)}
d=2
+wp, (t — T1,m) exp{ =427 feTim} (65)

Similar to the DFT beamformers, the TDL beamformer first storages
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a series of received vectors from time instant n = 0 ton = N — 1
like the way in (9). However, the TDL beamformer weights the time-
domain data directly and needs no DFT or IDFT operation. Following
the concept of [18], for a particular time instant, the gathered N data

vectors are stacked as follows:
T

XTDL:[XT[N—I] XT[N—2] XT[O]] s (66)
where x[n], n =0, 1, ..., N — 1, are the same as (9) except that the
time and phase are presteered in (65). The correlation matrix Rppy, =
E[x7prx,;] can be obtained as the similar way in deriving (48), and
the well-known linearly constraint minimum variance (LCMV) solution
is utilized to obtain the weight coefficients in the TDL beamformer as
follows [18, 19]:

_ _ -1
wrpL=Rzp,C (C"Ryp,C)

1 0 ... 0 0
o1 ... 0 .
C=|. . . , =1/, (67)
Do R 0
o0 ... 1 1

where 1 denotes the M-dimensional column vector with all entries
equal to 1. The constraint matrix C and the response vector f in (67)
are assigned to produce unit gain in the look direction. For the
situation with finite sample effect, the correlation matrix Rppy is
estimated by averaging XTDLX¥ pr, obtained from each sampling time
instant nT,. The output SINR of the TDL beamformer is computed
by (55)-(57) with w, Ry, and E replaced by the corresponding TDL
weight vector, the TDL correlation matrices, and the identity matrix,
respectively. Likewise, the output SINR of the TDL beamformer is
time-invariant due to the stationary assumption.

4.2. Demonstration of the Output SINRs

The influences of the number of frequency bins IV, the signal bandwidth
B, and the number of data samples J on the performance of the
DFT beamformers are examined. For notation convenience, the DFT
beamformers in block processing and sliding window modes are termed
as DFT-BP and DFT-SW, respectively. Besides, we use “known R”
and “estimated R” to distinguish the cases without and with finite
sample effect. First, we observe the effect of N in Figure 6. Since the
performance of DFT-BP is time-variant, we depict its output SINR for
n=0,1,...,39 without and with finite sample effect in Figures 6(a)
and 6(b), respectively. In both figures, the output SINR curves are
periodic with period N since the received signal is assumed stationary.
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The shape of the curves within 0 < n < N is similar to a hill. It is
our experience that the output SINR of DFT-BP usually gets a worse
performance at n = 0 or N — 1 and performs well in the neighborhood
of n = floor(N/2), where floor(-) represents rounding toward negative
infinity. The SINR difference of n = 0 and n = floor(N/2) could be
up to several dBs for a particular N > 1. This observation implies the
weakness of DFT-SW since it always selects the output of DF'T-BP at
n = 0 as its output. For the case without finite sample effect, it is seen

ULAM=8,R is known,P =[5 10 10](dB/MHz),8=[20-20 40]
£ =150(MHz)£=1{m) B=50(MHz) 1/ 7 =100(MHz)

—e— p=40

a S 10 15 20 25 30 35 40
Tirme index »
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ULA, M=5,4=1000 2 =[5 10 10)(dB/MMHzZ),8=[20 20 40]
£, =150{MHz) L=1(m), B=50(MHz), 1/T =100{MHz) Mante Carlo runs=10

Output SINR (48)

—e— N=1(K~1000)
e NS =200)
N=10( =100)
—8— N=20( =50)
s N0 =28)

“o 5 10 15 20 25 30 35 40
Time index n

(b)
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Figure 6. (a) The output SINRs of DFT-BP with different N. The
correlation matrices are assumed known. (b) The output SINRs of
DFT-BP with different N. The correlation matrices are estimated by
J = 1000 samples. (c) The output SINRs of DFT-BP, DFT-SW, and
TDL versus V.

from Figure 6(a) that increasing N allows the beamformer processing
more frequency bins and improves the output SINR. However, when
the total number J of data samples is fixed to 1000, a trade-off between
N and Kp can be observed from Figure 6(b). Although the increase
of N is conducive to preserve more frequency bins, the performance
for each of them is degraded due to the loss of Kp and the poorer
estimation of Ry. Selecting N = 5, Kp = 200 can achieve a higher
peak in SINR than the other settings, but its SINR could be lower
than narrowband MVDR (N = 1, Kp = 1000) at n = 0. The overall
output SINR is degraded when N is increased from 5 to 40. For
N =40, Kp = 25, the performance of DFT-BP is totally deteriorated
by the finite sample effect and is worse than the narrowband MVDR
beamformer. The performances of DFT-BP, DFT-SW, and TDL are
compared in Figure 6(c). Because the performance difference for DFT-
BP at distinct output time could be significant, the SINRs of DFT-BP
with n = 0 and n = floor(/N/2) are both presented for reference. For
the case without finite sample effect, both the output SINRs of TDL
and DFT-BP with n = floor(N/2) are increased with the growth of
N. Only 4 or 5 taps are sufficient for TDL to achieve a satisfactory
performance, but DFT-BP with n = floor(N/2) slightly outperforms
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TDL for N > 40. The curves of DFT-BP with n = 0 and DFT-SW
coincide because their weight vectors with known R are essentially the
same. Their SINRs reach a maximum for N = 2 and then degrade
gradually for larger N’s. For the case with finite sample effect, we
can see that the performance of TDL is deteriorated significantly and
depressed with the growth of N. This phenomenon can be attributed
to the more demand of data samples for TDL because the size of the
estimated correlation matrix (M N x MN) is inflated rapidly. The
DFT-BP with n = floor(/N/2) outperforms the other methods for most
of N’s under finite samples. However, its performance is degraded for
N > 10 due to the worse estimation of correlation matrices. Here, it is
noted that the results of DF'T-BP with n = 0 and DFT-SW are not the
same because their correlation matrices are estimated in different ways.
The two curves have similar trends, but DFT-SW slightly outperforms
DFT-BP with n = 0. Based on the observation above, we may
conclude that a higher number of frequency bins does not necessarily
guarantee a better performance for DFT beamformers. Especially,
when the correlation matrices are estimated by finite samples, there
exists certain compromise between the number of frequency bins and
the number of snapshots for estimating correlation matrices.

Next, we examine the influence of the signal bandwidth B in
Figure 7. Figures 7(a) and 7(b) demonstrate the output SINRs of DET-
BP and narrowband MVDR forn =0, 1, ..., 9 without and with finite
sample effect, respectively. In Figure 7(a), the narrowband MVDR
beamformer slightly outperforms DFT-BP for B = 1 MHz. However,
as the signal bandwidth increases, the performance of narrowband
MVDR degrades more seriously than DFT-BP. When the signal
bandwidth is increased to 100 MHz, the output SINR of narrowband
MVDR is below 0dB, which means the desired signal is corrupted by
the interference and noise in array output. In contrast, the performance
of DFT-BP is more insensitive to the variation of the signal bandwidth
B. Similar phenomenon can be seen from Figure 7(b). Comparing
Figures 7(a) and 7(b), we see that the curves of narrowband MVDR
are almost unchanged because the number of data samples is large
(J =1000) for N = 1. Although DFT-BP has more decay in overall
performance due to finite samples, its steady state of the output SINRs
(i.e., n = 3 ~ 9) concentrates in 7-10dB despite of the great variation
of B. This exhibits the better capability of DFT-BP in addressing
the broadband signals and noise. The output SINRs of narrowband
MVDR, DFT-BP with n = 0, DFT-BP with n = 5, DFT-SW, and
TDL versus B are compared in Figure 7(c). When the true correlation
matrix R is used, the performances of TDL and DFT-BP with n =5
are almost invariant to signal bandwidth, whereas those of DFT-BP
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with n = 0, DFT-SW, and narrowband MVDR are degraded with the
growth of B. TDL has the highest output SINR until B > 90 MHz.
DFT-BP with n = 0 or DF'T-SW outperforms the narrowband MVDR
beamformer for B > 70 MHz. However, choosing n = 5 for DFT-BP
improves the performance greatly and reduces this bandwidth margin
from 70 MHz to 20 MHz. When these beamformers suffer finite sample
effect, it is noted that TDL has significant degeneration and poorest
performance as compared with the other broadband beamformers. In
contrast, although DFT-BP with n = 5 is degraded about 4dB in
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Figure 7. (a) The output SINRs of DFT-BP with different B. The
correlation matrices are assumed known. (b) The output SINRs of
DFT-BP with different B. The correlation matrices are estimated by
J = 1000 samples. (c) The output SINRs of narrowband MVDR,
DFT-BP, DFT-SW, and TDL versus B.

output SINR due to finite samples, its performance is superior to the
other methods for B > 40 MHz. The curves of DFT-BP with n = 0
and DFT-SW have similar trends, but the output SINR of DFT-SW is
a little higher. Again, since the number of data samples is sufficient for
N =1 in this case, the curves of narrowband MVDR, with and without
finite sample effect are close. In summary, although TDL performs
well in the broadband environment when the correlation matrix is
known, its performance can be encumbered by the finite sample effect
and poorer than the narrowband MVDR beamformer. The simulation
results indicate DFT-BP with n = 5 is a better choice for broadband
beamforming when the finite sample effect is present.

The influence of J on the beamformers is presented in Figure 8.
Figure 8(a) shows the output SINRs of DFT-BP forn = 0,1, ...,9
with and without finite sample effect. We can see that the output
SINR lies between —2 and 2dB when the number of data samples
for estimating Ry (i.e., Kp) is equal to twice of the number of
array elements. The performance of DFT-BP can be enhanced by
increasing the sample size Kp. When Kp is increased to 200, the
difference between the output SINRs with and without finite sample
effect is within 3dB. As the former investigation [5] for narrowband
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beamforming, the required number of data samples to attain 3dB
difference from the optimal SINR is usually larger than twice of the
number of elements when the received data vector contains the desired
signal. The convergence behavior of the beamformers is compared
in Figure 8(b). As we observed before, the narrowband MVDR
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Figure 8. (a) The output SINRs of DFT-BP with different J. (b) The
output SINRs of narrowband MVDR, DFT-BP, DFT-SW, and TDL
versus J.
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beamformer is less sensitive to the data sample size and converges faster
than the other methods. The output SINRs of DFT-BP with n = 0
and DFT-SW also reach their steady states quickly but are bounded by
the poor optimal performance. Again, DFT-SW slightly outperforms
DFT-BP with n = 0 under finite samples, which implies the sliding
window mode could estimate the correlation matrices more precisely
than block processing. Although TDL and DFT-BP with n = 5 have
satisfactory performance when the true correlation matrices are used,
both of them suffer from slow convergence rate under finite samples.
The output SINR of DFT-BP with n = 5 still transcends those of the
other methods for J > 400, but TDL is greatly affected by the finite
sample effect and has the worst performance. This observation reveals
the necessity to develop robust methods for alleviating the finite sample
effect in broadband beamforming.

5. CONCLUSION

The output SINRs of DFT beamformers using true correlation matrices
and finite sample estimations are investigated in this paper. Based
on this work, it is shown that the DFT beamformers have better
capability to deal with broadband sources than the narrowband MVDR
beamformer. As compared with the broadband TDL beamformer,
the DFT beamformers are less sensitive to the finite sample effect in
broadband environments. However, the number N of frequency bins
in DFT beamformers should be carefully assigned especially when the
total sample size for estimation is limited. Dividing the frequency band
to more bins does not necessarily yield a better performance because
of the worse estimation of the correlation matrices. Moreover, the
output SINR of the DFT beamformer in block processing mode at
distinct time instant n’s can be very different. In our experience, it
usually performs well in the middle (n = floor(/N/2)) and bad in the
beginning (n = 0) or the end (n = N — 1) of the output block. Since
the DFT beamformer in sliding window mode always takes the output
at n = 0, this discovery encourages us to develop a new structure with
a better performance than the existing sliding window mode. Besides,
the influence of the finite sample effect on broadband beamformers can
be significant according to our investigation. Therefore, it is worth
developing robust methods for alleviating the finite sample effect in
broadband scenario and exploring the application of the current results
on periodical unit cells based metamaterial structures for the future
research.
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