
Progress In Electromagnetics Research, Vol. 140, 105–129, 2013

ARTIFICIAL MAGNETIC MATERIALS SYNTHESIS
WITH GENERIC METALLIC BROKEN LOOPS

Ali Kabiri1 and Omar M. Ramahi2, *

1School of Engineering and Applied Science, Harvard University,
Cambridge, MA, USA
2Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo, ON, Canada

Abstract—We propose a methodic approach to design Artificial
Magnetic Materials (AMM) with desired magnetic properties. The
design procedure is defined based on a novel formulation for
characterizing AMMs. The employed formulation expresses the
effective permeability and the magnetic loss tangent (MLT) in terms
of the geometrical and physical parameters of the inclusions. The
method comprised four steps. In the first step, the feasibility of
the design is checked through a set of constraints. The second and
third steps provide an iterative procedure to capture the desired
magnetic properties. Finally, the geometrical elements, i.e., the area
and perimeter of inclusions, are calculated. The technique is applied
to design of an AMM structure based on Rose curve resonators. The
design based on the proposed methodology is verified by the numerical
simulation of the AMM.

1. INTRODUCTION

In recent years, there has been an increasing interest in developing,
designing and fabricating artificial electromagnetic materials (or
metamaterials) with properties not found in nature. Among artificial
structures, those that disclose magnetic behaviors have been received
more attention due to not only providing positive or even negative
permeability at radio frequencies, but because of important potential
applications.

Pendry et al. [1] proposed artificial magnetic materials (AMM)
composed of electrically small metallic broken-looped resonators

Received 15 February 2013, Accepted 18 April 2013, Scheduled 27 May 2013
* Corresponding author: Omar M. Ramahi (oramahi@uwaterloo.ca).



106 Kabiri and Ramahi

referred to as split-ring resonators (SRR). Since then, numerous
inclusions having various geometrical configurations have been
proposed in the literature to achieve enhanced magnetic properties.
A modified SRR (m-SRR), or broadside coupled SRR (bc-SRR) was
introduced in [2]. In [3], a new configuration, the metasolenoid was
proposed with the potential to provide higher permeability compared
to SRR and m-SRR configurations. In [4], the n-turn Spiral Resonator
(n-SR) configuration was introduced. Figure 1 shows a sample set
of inclusions presented in the literature. These inclusions have been
employed as a building block of metamaterial slabs.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Different inclusions used to implement artificial magnetic
materials. (a) Double split-ring resonators (d-SRR). (b) Double
split square resonators (d-SSR). (c) Singly split-ring resonator (s-
SRR). (d) Two-turn (circular) spiral resonator (2c-SR), (e) Two-turn
(rectangular) spiral resonator (2r-SR). (f) Hilbert-fractal resonator.
(g) Modified ring resonator (m-SRR). (h) Metasolenoid. (i) Cross
section of a Swiss roll (SR).

The electromagnetic properties of metamaterials have generated
new applications. These growing applications are using metamaterial
slabs as a probe for the near-field sensing [5], as a substrate or
a superstrate for enhancing low-profile antenna performance [6], as
a perfect lens for microwave imaging [7], as microwave shields or
absorbers [8] and even as bio-sensors for medical applications [9].

A number of analytical models were developed to characterize the
behavior of an AMM with a specific inclusions’ configuration [1, 3, 4].
When AMMs are described by the continuum-medium approach, the
inclusion and unit cell size of the composite structure should be much
smaller than the wavelength in the free space. Thus, analytical models
employing localized field theories such as the effective medium theory
(EMT) and homogenization theories (HT) can be used to calculate the
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magnetic properties of composite media [10]. Due to the small feature
size of the inclusions in composite media and the small skin depth, the
magnetic response of such media can be interpreted in terms of the
geometric parameters of the inclusions rather than electromagnetic
properties of the metals [11]. From this point of view, circuit-based
model of the AMMs are justified to describe the behavior of the
structures in terms of electrical lumped elements (i.e., R, L and C).

In 2002, Marques et al. presented a quasi-static study of the
SRR by proposing a circuit model for the capacitive behavior of the
inclusions [2]. Two years later, Sauviac et al. and Shamonin et al.
proposed more accurate models for SRR inclusions [12, 13]. Ikonen et
al. offered a generalized equivalent-circuit model which mimics the
experimental permeability function [14]. In [15] a general circuit model
describing the effect of the spatial and temporal dispersion in AMMs
is presented. The spatial dispersion is effective in smaller wavelength
(higher frequency) limits. The work in [11] provided a simple but
general formulation for characterizing magnetic behavior of AMMs
based on two newly defined parameters–physical and geometrical
parameters. Geometrical factors are area, perimeter and curvature
function of an inclusion. Physical factors are structural, fabrication
and electrical parameters of the inclusions and the medium. The very
advantage of such a description is that it allows for the parametric
study of AMMs as well as design guidelines. The new formulations
reveal that the geometrical factor plays a key role in characterizing
the real part of the effective permeability and the physical factor
contributes to the magnetic loss tangent (MLT) of AMMs. In addition,
the work provided some fundamental limitations on the behavior of
AMMs.

The main challenge in developing a circuit model is to precisely
predict the behavior of the AMM at the vicinity of the resonance
frequency and beyond. Far enough from the resonance frequency, the
challenge is not severe as all circuit models give identical response and
converge to the same value.

The present work aims to establish a design methodology and
novel topologies for AMMs. To the best of our knowledge, there is no
recipe for synthesizing AMMs to meet specific applications. However,
simulating and modeling of AMM structures have been addressed
extensively in the literature. Many analyses used electromagnetic full-
wave simulations to study the magnetic behavior of AMMs [16] and
provide a desirable specification. Our analysis and strategy of design
is general and can be applied to any choice of circuit model. As long
as a circuit model is suitable for describing a composite medium it
can be adopted by the methodology presented here. Since we are
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interested to provide a solution for design of an AMM (enhanced
positive permeability) with low loss and less dispersion, we adopt a
circuit model which is based on a solenoidal approximation and on the
area and perimeter of the inclusions.

In this work, we propose an iterative approach to synthesize the
desired criteria by engineering the geometry of the inclusions. We
introduce a methodology to characterize the length and perimeter of
the inclusions of an AMM meeting desired criteria, and we examine
the proposed methodology in design of a specific design scenario using
Rose curve resonators. Full-wave numerical simulations are provided
for verification of effectiveness of the design.

2. BACKGROUND

In an artificial medium impinged with an external monochromatic
magnetic field Hext , the effective magnetic susceptibility represents
the degree of magnetization of the medium in response to an applied
magnetic field, defined as:

χm =
Mmed

Have
(1)

where Have , the magnitude of an averaged (macroscopic) magnetic
field Have inside the medium, is defined by averaging magnetic field
along the sides of the unit cell, and Mmed is the magnitude of the
magnetization vector of the medium. Magnetization is defined as the
magnetic moment per volume. When the magnetic dipole moments
are in phase with the averaged magnetic field, the effective magnetic
susceptibility become larger than zero (correspondingly, the effective
permeability become larger than unity) causing the medium to be
magnetized. Note that in some special cases such as placing an AMM
inside a long solenoid, Hext = Have .

An expression for the magnetic susceptibility is formulated by
considering an AMM with a general inclusion’s shape. Figure 2(a)
shows a two-turn split-ring resonator with an arbitrary trace geometry
denoted by Γ(s, l). Γ is characterized by s and l, the area
and the perimeter of the inclusion, respectively. Figure 2(b) and
Figure 2(c) show an edge-coupled and a broadside-coupled ring
resonator, respectively [17]. The unit sample in Figure 2(a) has a
height of δz width of δx and depth of δy. The area of the cell is
A = δxδz and its volume is V = Aδy = δxδyδz. Arrays can be
arranged in a periodic or aperiodic fashion, spread along the x, y and
z axes to produce the AMM. In this work, we consider a periodic
arrangement of the resonators.
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(a) (b) (c)

Figure 2. (a) A configuration of a unit cell of an AMM with an
arbitrary shape SRR. V and A represent the volume and surface area of
the unit cell. The inclusions’ contour, area and perimeter are denoted
by Γ, s, and l, respectively. (b) Edge-coupled inclusion. (c) Broadside-
coupled inclusion.

As the inclusions were arranged in parallel planes, the AMM is
essentially an anisotropic structure, and provides the susceptibility
and magnetic moment vectors only in the direction perpendicular to
the inclusion surface (here, in the y direction). Hence, the magnetic
susceptibility ¯̄χmeff describing the medium is a tensor. Also, the
susceptibility in the x and z directions is directions is equal to that of
the host media which is zero for nonmagnetic host medium. Therefore,
the artificial magnetic material will be anisotropic with susceptibility
tensor of

¯̄χmeff =

(
χmr 0 0
0 χmeff 0
0 0 χmr

)
(2)

where χr is the susceptibility of the host medium.
To achieve an isotropic AMM the same inclusions can be

rearranged in parallel planes intersecting the plane of inclusions (in
the x and z directions). Therefore, a unit cell is designed as a cubit
cell with inclusions attached on the three walls, i.e., in xy, xz and yz
planes [18]. In [19], it was shown that among various orientations of
the rings, for an isotropic response, the rings can only intersect along
symmetric points.

A precise consideration of the behavior of the inclusions shows
that the particle behaves like a magnetic dipole and an electric dipole
in response to an external magnetic. This behavior makes the structure
bi-anisotropic. The bianisotropy effect is reduced when the operation
frequency is not close to the resonance frequency, and goes to a
minimum for inclusions with broadside coupling. In this work, we
only address the magnetic behavior of the structures [2].

The magnetic dipole moment of inclusions can be stated as:

~mincl = nsIŷ (3)
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where I is the induced current, n is the number of wire turns that
carries the induced current [3]. The magnetic susceptibility can be
written as:

χm =
nsI

V Have
(4)

The effective magnetic susceptibility of the composite follows the
following functional form in the quasi-static regime, and is expressed
as [1, 16, 14]:

χm(ω) =
Kω2

ω2
0 − ω2 + jγω

(5)

where K, (0 < K < 1), is the amplitude factor, ω0 is the resonant
frequency of the inclusions, defined to be the frequency at which χm is
purely imaginary, and γ is the loss factor. Figure 3 shows the real and
imaginary part of the effective magnetic susceptibility function for a
typical AMM introduced by (5).

Figure 3. typical response of an artificial magnetic material. The
graph shows the magnetic susceptibility as a function of frequency.
Note no specific frequency scale depicted.

The model described in (5) provides valid responses at low
frequencies and in the vicinity of the resonance frequency. However,
in the limit as ω → ∞, χm → −K, which contradicts the expected
physical behavior of χm. At extremely high frequencies, because of
the electron’s inertia, the materials cannot be magnetized, implying
χm → 0, and hence, the model breaks down [20].

Note that the operational frequency falls in a range of frequency
where the resonance frequency is a fixed design property. Therefore,
the parameters which are dependent on the operational frequency
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cannot uniquely be designed for desired application. In other words,
the value of parameters such as γ will vary with operational frequency
leading to a complicated or unpredictable model behavior prior to
design. To simplify the model and to facilitate the design procedure,
the frequency needs to be extracted from the parameters and be
expressed explicitly in the model as will be shown below.

In [11], an alternative formula to (5) was introduced based on
defined geometrical and physical parameters. χm is expressed in terms
of the physical factor P and geometrical factor F as:

χm(Ω;F, P ) = χ0(Ω)(1 + j
√

ξ(Ω))−1 (6)

where Ω is the normalized frequency (Ω = ω
ω0

). χ0(Ω) is the magnetic
susceptibility of lossless medium, and ξ(Ω) is the loss factor:

χ0(Ω) = F · f1(Ω) (7)

ξ(Ω) =
P 2

F 4
· f2(Ω) (8)

where

f2(Ω) =
f2
1 (Ω)
Ω

=
Ω3

(1− Ω2)2
(9)

Following [11], the geometrical factor F and the physical factor P
are expressed as:

F =
s

A
(10)

P = Kω
− 5

2
0 (11)

ω0 =
Q√
sl

(12)

where K ≡ K(A, b, g, t, σ, εr, µr) is a function of the structural and
electrical properties of the inclusions and the unit cell (see Figure 2
for description of the parameters of K), and Q is a function of the
structural and electrical properties of the inclusions and host medium.
F can also be read as the fractional area of the cell occupied by the
interior of the inclusion, ranging from 0 to 1.

The advantage of the formula in (6) is that the topological
properties of the inclusion’s contour such as surface area and perimeter
of the inclusions and the physical properties of the design appear
explicitly in the formula as two factors. In fact, the strongest feature
of the model is that inclusions with different topologies but having
identical perimeter and area, result in the same values for the magnetic
susceptibility and permeability.
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From (5)–(8), the equivalence between (5) and (6) is established
through the following equalities

F = K (13)

P =
γK2

√
ωω0

(14)

Note that since γ has a linear dependence on
√

ω [14], surprisingly,
F and P are completely independent of the operational frequency.

Using (6), the permeability can be written as:

µ(Ω;F, P ) = 1 + χm = 1 + χ0(Ω)(1 + j
√

ξ(Ω))−1 (15)
In design of an AMM, the real effective permeability and

the magnetic loss tangent (MLT) of the composite medium are
basic objectives of the design. Throughout the design steps,
while synthesizing the inclusions’ geometry, ceteris paribus, the real
permeability and magnetic loss of the engineered medium are desirably
specified for a particular application. Hence, for design purposes,
these two significant properties of AMMs are formulated based on
geometrical and physical parameters of the medium. Using (6), the
real effective permeability and the MLT are expressed respectively as:

µRe(Ω) = 1 + χ0(1 + ξ)−1 (16)

tan δ(Ω) = −µIm(Ω)
µRe(Ω)

= χ0

√
ξ (1 + χ0 + ξ)−1 (17)

In subsequent sections, the aforementioned equations are exploited
in design of AMMs meeting specific operational requirements.

3. DESIGN METHODOLOGY

In this section we introduce a design recipe for AMMs. We propose to
design an AMM with specified unit cell size and effective magnetic
permeability larger than unity over a range of frequencies. The
resonant frequency of the inclusions can be set through the design
procedure, but the permeability is designed for minimum allowable
dispersion within the frequency band. Moreover, the design is desired
not to exceed a certain magnetic loss tangent over a specific frequency
range. The outcome of the design is the dimension of the inclusion
or the geometrical and physical parameters of the medium. However,
many fabrication and structural parameters cannot be varied due to
fabrication and design constrains, such as the thickness of the metal of
the board, the conductivity of the conductor, the permeability of the
host medium, or width of the conductor’s routes. Therefore, all these
values will be considered as design constraints.
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The procedure is summarized as follows: First step is testing the
feasibility of the design. In this step, the requested values will be tested
against the fundamental limitations of AMMs as discussed in [11, 21].

Next, by using the fixed and requested design parameters, and
employing relations (16) and (17), a valid interval for the resonance
frequency of the inclusions and subsequently for the geometrical
and physical factors will be calculated. The provided intervals of
parameters specify the magnetic properties of the structure within a
range in which the desired values are located. In the third step, the
frequency range of the resonance frequency and the geometrical and
physical factors are modified to achieve a suitable tolerance for the
magnetic properties of the structure. Although a very narrow range
of tolerance can be obtained, it is preferable to determine the design
ranges constrained by fabrication and application tolerances. Finally,
by using the two calculated geometrical and physical factors, the length
and area of inclusions will be derived. Figure 4 shows the main steps
of the design methodology.

Figure 4. The flowchart shows the main steps to derive the
geometrical and physical factors from which the area and perimeter
of inclusions will be determined.

Note that, even though (6)–(12) are general enough to model
AMMs composed of inclusion with edge and broadside coupling
scheme and various topologies such as multi-filar spirals and n-broken
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ring resonators, they do not model AMMs performing under non-
solenoidal mechanism (such as far apart constituent arrangements),
multi-resonators and other loss mechanism. Also, (6)–(12) do not
model AMMs composed of non-metallic inclusions. Therefore, the
design recipe is suitable for design of a specific class of AMMs.
However, applying the general guidelines in Figure 4, a designer can
generate a new design recipe based on another novel circuit model.

A design case study based on the adapted circuit model is
considered next.

4. DESIGN CASE STUDY

In this section, the design procedure for synthesizing the inclusions’
geometry of an AMM is described in details through a case study.
Firstly, by considering desired operational properties for an AMM, the
physical and geometrical parameters attributed to medium structure
are characterized. That secondly, by using structural equations (i.e.,
(10)–(12)), the perimeter and area of inclusions determined. The
synthesized geometrical parameters are used to propose a suitable
geometry for inclusions.

Table 1 shows an example of a design request sheet. The designed
structure can possibly be used as a substrate for miniaturizing a patch
antenna operating at 600MHz. Some variables such as conductivity
and host medium permittivity were set. The design needs to meet a
number of conditions such as µRe at a specific operational frequency
of fop = 6.00× 108 Hz is equal 9.00± 5.0% within the frequency range
of at least 2 MHz, and MLT of less than 5.00× 10−2.

4.1. Step I — The Feasibility Study

First we verify if the frequency bandwidth is achievable within the
specified tolerance for the permeability. From [11],

BW

ωop
≤ 1

2χop

(
δµ

µop

)
(18)

where ωop , µop and χop are the operational frequency, the effective
permeability and the magnetic susceptibility, respectively. BW
and δµ represent the frequency bandwidth and the permeability
deviation, respectively. (Note that the operational frequency should
not be confused with the resonance frequency of the inclusion. The
operational frequency basically represents a specific frequency at which
certain application, say an antenna, is operating). Inequality (18)
stated that the flatness of the permeability function is limited by the
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Table 1. Design data sheet.

Material Specifications
Host medium: Duroid 5880 (εr = 2.2)

Traces: Copper (σ = 59.6 S
µm)

Fabrication Technique Parameters and Design Dimensions
Trace width: b = 200 µm
Trace gap: g = 800µm

Metal thickness: t = 35µm
Fabrication tolerance: 0.25%

Unit cell size: (δx, δy, δz) = (20.0mm, 800µm, 20.0mm)

Design Request
Inclusion type: Metasolenoid

Operational frequency: fop = 600 MHz
Real effective permeability: µop ± δµ = 9.00± 5.0%

Bandwidth: BW ≈ 2MHz
Magnetic Loss Tangent (MLT): tan δ < 0.050

desired operational bandwidth. Although this relation is derived for
the lossless and time-dispersive medium, it has been shown that for
the lossy medium the restriction is an upper bound.

The second constraint is to find a boundary for the physical
and geometrical factors by setting the maximum of the permeability
function over all frequencies (see Figure 3) high enough to cover the
effective permeability requirement declared in Table 1. From Table 1,
the real effective permeability is 8.55 < µRe < 9.45, as such, the
maximum of the real effective permeability function should be larger
than 9.45 (µmax > 9.45). From (16) it can be shown that (see
Appendix A)

µmax ' 1− F

8
+

F 3

2P
(19)

Substituting the upper value of the permeability from Table 1,
(19) can be rearranged as

P <
4F 3

67.6 + F

which for F = 1 (F upper bound), we get P < 0.0583, an upper limit
for P .
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4.2. Step II — Calculation of the Geometrical and Physical
Factors

In this step, first valid ranges for the normalized operational
frequency, geometrical factor and physical factor are being calculated
consecutively. Then, by considering the constraint on the maximum
value of the permeability introduced in Step I, ranges are being
modified for each parameter.

Solving the relation (16) and (17) simultaneously for a given value
of the real effective permeability and the magnetic tangent loss, we
obtain

ξ(Ωop) =
[
µReop

χmop

tan δop

]2

(20)

χ0(Ωop) = χmop

(
1 +

[
µReop

χmop

tan δop

]2
)

(21)

Substituting from Table 1 in (20) and (21), we obtain ξ(Ωop) =
3.164×10−3 and χ0(Ωop) = 8.025. Afterwards, ξ and χ are considered
fixed parameters for the design, and Ω and P are calculated based on
a valid range of F , accordingly.

By considering the definition (7) and sweeping F over the possible
range of [0, 1], the normalized operational frequency falls within

Figure 5. Any point on the
curve represents a pair of (F, P )
for which the design meet desired
properties introduced in Table 1.

Figure 6. The graph shows the
relation between the normalized
frequency Ω and the geometrical
factor F . The hashed area is an
area which the peak of real ef-
fective permeability function goes
under the requested permeability.
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[0.9430, 1]. Then, by using data set of (F, Ωop) obtained from (7),
the physical factor P is calculated from (8), and the graph of P is
plotted versus the geometrical factor F in Figure 5. The graph shows
a valid range of [0, 0.0068] for P . In fact, any point on the graph in
Figure 5 corresponds to a possible pair of (F, P ) meeting the properties
promised in Table 1 except the fact that we need to choose a suitable
pair for which the design works at a specific operational frequency
(here; 600 MHz).

Next, the calculated ranges are modified to a smaller range by
applying the inequality in (19). From Figure 5, the upper bound of P
can be read as 6.806 × 10−3 which is clearly less than 0.0583 (see the
example illustrated for inequality (19)). Based on the relation (19),
P = 6.806× 10−3 limits F from the below to 0.4875 leading to a new
valid range of [0.4875, 1] for F .

Figure 6 shows the normalized operational frequency plotted
versus F with the banned values of F cross-hashed in the figure. The
graph shows a valid range of [0.9430, 0.9710] for Ωop . The banned
range of F has also been cross-hashed in the graph of P versus F (see
Figure 7). In fact, in Figure 6 and Figure 7, the white region represent
the criteria in which the maximum of the real effective permeability
function goes above the requested permeability (here; 9.45).

4.3. Step III — The Resonance Frequency Calculation

In this step, the resonance frequency for the design is determined
iteratively. Each iteration involves two parts; first, calculating a
range for the resonance frequency and then modifying the calculated
range for the geometrical and physical factors. If the iterations is
successful, smaller ranges for the resonance frequency, the geometrical
and physical factors are achieved. The iterations is continued so
that the variations of the physical and geometrical factors over their
calculated ranges are less than the fabrication tolerance indicated in
the Table 1. This is due to the fact that the variation of dimensions
linearly affects the geometrical and physical factors [11].

In the first part, by using the data obtained in the Step II
for the physical factor P , the material specifications and fabrication
characteristics provided in Table 1 and (14), an interval for the feasible
resonance frequency of the realizable inclusions is calculated. Figure 8
shows the calculated resonance frequency as a function of P and F .
Also, the improper values of F has been cross-hashed in Figure 8.
(Note that due to the fact that F and P are not linearly dependant, the
scale for the F axes remained linear, however, the P axes is not linear.
Therefore, each value on the P axes pertains to its F correspondent
pair).
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From Figure 6, It can be seen that 0.9430 < Ωop < 0.9710 which
corresponds to 617.9MHz < fres < 636.3MHz (617.9 MHz = fop

0.9710).
The calculated range for the resonance frequency has been marked in
Figure 8 with two horizontal dashed-lines.

In the second part, by using (11) and the calculated range of
the resonance frequency, the range for the physical factor is modified.
Also, as the physical and geometrical factors are coupled through
relation (8) (also, see Figure 7), a range for the geometrical factor
is modified. The vertical dashed-lines in Figure 8 shows the newly
modified ranges of the physical and geometrical factors. From Figure 8,
the ranges of F and P can be read as 0.4916 < F < 0.5038 and
8.209× 10−4 < P < 8.833× 10−4, respectively.

At this stage, the first iteration is over. The modified ranges of
F and P are used for calculating the resonance frequency in the next
iteration. With the new range of F and P , by referring to Figure 6, the
normalized operational frequency and consequently the possible range
of the resonance frequency are modified to 0.9700 < Ωop < 0.9707 and
619.1 MHz < fres < 619.6 MHz.

Note that the updated range of the resonance frequency is within
the previously calculated range of the resonance frequency. In general,

Figure 7. The banned area in
Figure 5 introduced by inequal-
ity (19) has been cross-hashed.
The white area is the permitted
range for pairs of (F, P ).

Figure 8. The graph shows the
relation between the resonance
frequency fres (on vertical axes)
and the geometrical factor, F (up-
per horizontal axes) and the phys-
ical factor, P (lower horizontal
axes). The scale on F axes is lin-
ear, however, the scale on P axes
is not linear.
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it is not obvious that these two intervals overlap. There are three
possible cases. Let Ii be the range of the resonance frequency
calculated in the i -th iteration:

• Case 1: If Ii ⊂ Ii−1, then the new range of the resonance frequency
is considered as Ii.

• Case 2: If Ii 6⊂ Ii−1 and Ii−1 ∩ Ii 6= ∅, the intersecting range
would be considered as the valid range and it is renamed to Ii.

• Case 3: If Ii−1 ∩ Ii = ∅, then no design will be obtained with
the defined set of parameters. An option to provide a solution
is to change the structural or fabrication parameters such as
permeability of the host medium, the thickness of the conductor
traces and the gap between traces.

In summary, after performing the second iteration, the values for
the set {Ωop , F, P} can be chosen from the following intervals:





Ωop ∈ [0.9700, 0.9707]
F ∈ [0.4916, 0.5038]
P ∈ [8.209, 8.833]× 10−4

(22)

Note that any valid set of {Ωop , F, P} from (22) specifies inclusions
producing an AMM with µRe = 9 and tan δ < 0.05 at the operational
frequency of fop = 600MHz.

Next, we check the tolerance of F and P to determine whether to
terminate the iterations and go to the next step or to proceed to the
third iteration and obtain narrower ranges. From (22), δF/F = 2.45%
and δP/P = 7.32%, both are larger than the fabrication tolerance
declared in Table 1, thus requiring further iteration. Applying the
third iteration, the lower and upper bound of the ranges of F and
P become identical up to three significant digits. Therefore, F and P
tolerances are smaller than the fabrication tolerance, and the iterations
are terminated resulting in the following values (calculated up to three
significant digits): 




Ωop
∼= 0.970

F ∼= 0.503
P ∼= 8.88× 10−4

fres
∼= 619.5× 108

(23)

Figure 9 shows the result of the second and the third iterations.
Note that although the number of iterations depends on the desired
accuracy of the design, inaccuracy in the circuit-based model and
fabrication tolerances alter the characteristics of the fabricated AMM
from the designed properties. Thus, it is sometimes preferable to run



120 Kabiri and Ramahi

Figure 9. The graph shows the relation between the resonance
frequency fres (on vertical axes) and the geometrical factor, F , (upper
horizontal axes) and the physical factor, P , (lower horizontal axes).
Also, the calculated parameters in the third iteration marked in the
graph.

Table 2. The output summary of the design.

freq (MHz) µRe tan δ

599 8.58 0.047
600 9.00 0.050
601 9.48 0.054

Step II one iteration less than the final iteration to have wider ranges
for the design parameters (i.e., F , P and fres).

Before continuing to the next step, we check if the calculated
parameters are substituted in the model (Eq. (15)), the structure
meets the design specifications. Based on the parameters calculated
in (23), the permeability and MLT have been calculated over the
requested bandwidth, and the results were summarized in Table 2.
From Table 2, it can be seen that the requested frequency bandwidth
of 2 MHz associated with a permeability deviation of about 10% is
satisfied.

According to Table 2, the MLT at the upper frequency is about
9% above the requested threshold. This is due to the fact that in the
design procedure (specifically when using (21) and (20)) the value of
MLT is kept 0.050 at the operational frequency fop = 600 MHz. As
the MLT is a monotonically increasing function (in absolute value)
before the resonance frequency, the MLT becomes less than 0.050 at
the lower side of the frequency band, and becomes higher than 0.050
at the upper side of the frequency band. Because the slope of the MLT
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function is not clear a priori, there are two possible ways to address
this issue. First, the designer can perform the design procedure by
choosing a random number smaller than the value declared for MLT in
the Table 1. This method has the risk of choosing a number too small
which might fail the design procedure or choosing a number not small
enough resulting in MLT violating the desired criteria. The second
option is to repeat the design procedure by subtracting the MLT at
the operational frequency from the difference of the MLT at the upper
side of the frequency band and the desired value of MLT. For instance,
in the case study considered here, the adjusted value of MLT is 0.46.
This option incurs the cost of repeating the procedure one more time
but it confidently gives the proper result as the MLT function curves
upward for frequencies closer to the resonance frequency, and it gives
a safe side for the new design so that the new MLT at the upper side
of the frequency band does not exceed the desired criteria.

4.4. Step IV — Perimeter and Area of the Inclusion

In this step, the area and the perimeter of inclusions are determined
by using the geometrical factor and the resonance frequency calculated
in Step III. From (10), the area of an inclusion is s = FA. Also, the
perimeter and area of an inclusion are connected through the resonance
frequency of the inclusion, i.e., l = [Q/2πfref ]2s−1 (see (12)). Using
these relations, the perimeter of the inclusion is plotted in Figure 10
versus its area over the calculated range of the resonance frequency
given by (22).

Each point (area, perimeter) = (s, l) of the curve in Figure 10
introduces a contour Γ(s, l) with the perimeter of l and the area of s.
The contour can accept any topology as long as it fits the pair (s, l).

Let G introduce the set (s, l) which is the outcome of the design
procedure. From Figure 10, the end points of the sl-curve are:

(196.6mm2, 64.56mm), (201.5mm2, 66.79mm) ∈ G (24)

The point P (201.2mm2, 66.66mm) corresponds to the selection
in (23). In fact, an AMM composed of inclusion’s topologies with the
area and perimeter equal to 201.2 mm2 and 66.66mm, respectively,
create an analytical magnetic response similar to what summarized in
Table 2.

Despite the fact that the set G has been obtained from the physics
of the problem, the pair (s, l) may or may not be fit in an actual
geometrical shape. Based on Dido’s isoperimetric problem [22], among
all possible contours with the same surface area, the circle provides the
minimum circumference. Hence, for a certain area s and perimeter l,
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Figure 10. The graph shows the relation between s and l. The hashed
region describes pairs of (s, l) which do not fit in any physically realized
geometry.

an actual geometry satisfies Dido’s inequality formulated as:

l ≥ 2
√

πs (25)

In Figure 10, the region corresponding to non-realizable
geometries is cross-hashed. It can be seen from the figure that all
inclusions introduced by the curve are realizable. In other words, no
pair (s, l) of inclusions introduced in G will be eliminated by Dido’s
geometrical constraint. If the set of pairs (s, l) which satisfies Dido’s
inequality is denoted by D, the outcome of the design procedure is
G ∩ D.

In General, there are three possibilities for a curve characterized
by s and l according to Dido’s inequality. These possibilities are:

• Case 1: If G ⊂ D, then G is the outcome of the design procedure.
• Case2: If G is not completely located in D, then G ∩ D is the

outcome of the design procedure.
• Case3: If G ∩ D = ∅, the design procedure does not provide any

inclusions geometry to meet the design objectives. An option
to provide a solution is to change the structural or fabrication
parameters such as permeability of the host medium, the thickness
of the conductor traces and the gap between traces.

Note that, as 0 < F < 1, from (10), we have 0 < s < A. In other
words, the maximum inclusion’s area which can be determined through
the design methodology is less than the unit cell area A. The inclusion’s
perimeter is only limited from below to 2

√
πs due to Dido’s inequality,

and it doesn’t have an upper limit. Therefore, the inclusion’s perimeter
can be determined to any value through the design methodology.
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Figure 11. A flowchart as the design methodology.
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Figure 11 summarizes the design steps in a flowchart. It can also
be proved that the proposed routine converges. The details of this
proof is out of the scope of this paper, and it is the subject of future
publications.

5. APPLICATION

In this section, the proposed technique is applied to design a
metamaterial structure with specific properties listed in Table 1 and
the results are compared with three dimensional full wave simulations.
According to the Design Data Sheet in Table 1, the area and
perimeter of the corresponding AMM inclusions are equal (s, l) =
(201.2 mm2, 66.66mm).

Split circular or square ring resonators are among the most
common inclusions for constructing metamaterial media. The area
and perimeter of a circle and a square are dependent. Thus, knowing
the value of the area, the perimeter of the geometry is calculated and
vice versa. Since the proposed technique has generated independent
values for the perimeter and area of an inclusion of an AMM, common
metamaterial inclusions proposed in the literature are not applicable.
In [23], a Rose curve resonator was introduced with the following
geometric parametrization:

Rn(r0, a) : r(θ) = r0 + a cos(nθ) (26)
where r(θ) represents the position of the contour in the xz-plane,
and the angle θ sweeps the curve (aside from a small slit on the
contour) and is measured from the x-axis. a is the amplitude of the
sinusoidal function added to a circle with the radius r0. The order
of the Rose curve, n is a positive integer number which be chosen
freely and which determines the number of crests and troughs along
the circle’s circumference. Therefore, the parameters r(θ) and a are
strictly calculated such that the final curve has a certain area and
perimeter. An example of a 5th order Rose curve is shown in Figure 12.

For this application, (s, l) = (201.2mm2, 66.66 mm). Therefore,
r0 and a are calculated for Rose curves of orders n = 7, 8, 9, (see
Table 3).

The values in Tables 1 and 3 were used to set up an AMM based
on Rose curve resonators in the commercial 3D full wave simulator
HFSS. In the simulation setup, a periodic boundary condition is used to
mimic an infinite three dimensional AMM structure. The permeability
function was extracted from the S-parameters calculated using the full-
wave simulation.

Figure 13 shows the analytically and numerically calculated
permeability functions of media constructed using Rose curve
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(a) (b)

Figure 12. (a) A 5th order Rose curve with r0 = 1, a = 0.2, (b) An
edge-coupled inclusion designed using a 7th order Rose curve.

Figure 13. The dashed lines shows the simulated permeability
function of the medium for n =7, 8 and 9. The solid line shows the
analytically calculated permeability function of the medium for n =
7, 8 and 9. The plots of analytical solutions cannot be distinguished
because they are identical.

Table 3. A set of candidates for Rose-curved inclusions.

n r0 (mm) a (mm) D (mm)
7 8.00 1.56 19.12
8 8.02 1.36 18.72
9 8.03 1.21 18.46

inclusions of orders n = 7, 8 and 9. The analytical response was
generated using the proposed methodology and thus all the curves (for
all the orders considered here) are expected to be identical because the
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area and perimeter of inclusions with different orders were identical.
Note that the AMM is designed to work at the frequency of

600MHz with 2MHz bandwidth. Despite the fact that there is a
slight shift in the resonance frequency or in the maximum magnitude
of the permeability function, the graphs show a highly robust design
satisfying the design criteria. For instance, for the case of n = 7,
the numerical simulation yielded µRe = 9 ± 5.6% at the frequency of
599.5 MHz with 2MHz bandwidth. The shift in frequency from the
desired magnetic property specified in Table 1 was about 0.08%. The
achieved MLT is 0.048 which was also within the desired range.

6. CONCLUSION

A novel design methodology for artificial magnetic material with
desired properties has been proposed based on analytical models
introduced in earlier work. Analytical models show that the magnetic
properties such as the real effective permeability, the magnetic tangent
loss, and the flatness of the permeability function of the medium,
all depend on the geometrical properties such as surface area and
perimeter of the inclusion. We proposed a four-step iterative design
methodology for design of AMMs. In the first step, the feasibility
of the design is tested to meet the fundamental constraints. In
consecutive steps, the geometrical and physical factors of the inclusion
is synthesized, and finally the area and perimeter of the inclusion is
calculated. An updated range of the inclusion’s area and perimeter
is obtained through consecutive iterations. Finally, if the outcome of
the iterative procedure results in geometrical parameters that satisfy
Dido’s criterion, then a physical geometry exists meeting the design
specifications. The methodology was applied to design of an AMM
based on Rose curve resonators. The design technique was verified
using numerical calculation based on a commercial simulator. The
requested permeability function and corresponding designed structure
are compared in a very good agreement.

APPENDIX A. THE PERMEABILITY MAXIMUM
VALUE

The normalized frequency which maximizes the permeability function
is calculated in terms of the geometrical and physical parameters.
Correspondingly, a relationship for the maximum of the permeability
function is derived.

From (6), the real part of the magnetic susceptibility can be
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written as
χmRe(Ω) = χ0(Ω)(1 + ξ(Ω))−1 (A1)

By limiting Ω to 0 and 1, we have

lim
Ω→0

χmRe(Ω) = 0 (A2)

lim
Ω→∞

χmRe(Ω) = 0 (A3)

Therefore, because χmRe(Ω) is a positive function over the range
of Ω ∈ [0, 1], it is maximized at Ωmax ∈ (0, 1) which is the root of the
first derivative of χmRe(Ω) over an interval (0, 1). Taking the derivative
of χmRe(Ω) with respect to Ω,

1
χ0

dχ0

dΩ
=

1
(1 + ξ)

dξ

dΩ
(A4)

By substituting from (7), (8) and (9) in (A4), we have

B2 · Ω3(1 + Ω2)− (1− Ω2)2 = 0 (A5)

where B = P
F 2 . It is clear that the root of (A5) and equivalently the

maximum of χmRe approaches one if and only if p2

F 4 → 0. In [11], it
has been shown that for practical applications, P 2

F 4 ¿ 1. Hence, we can
assume Ωmax = 1 − α where α ¿ 1. Substituting Ω = 1 − α in (A5)
and considering up to the second order of expansion, we obtain

(8− 13B2)α2 + 8B2α− 2B2 = 0 (A6)

By solving (A6) for α, Ωmax is obtained as

Ωmax = 1− 1
2
B +

1
2
B2 +O(B3) (A7)

and accordingly

Max (χmRe) ' F

2B −
F

8
+

3F

64
B − 43F

256
B2 +O(B3) (A8)

For the maximum value of F = 1 and B = 0.1 the error in
the calculation of the maximum value of the magnetic susceptibility
is less than 0.1%. In fact, even by taking only the first two terms
in (A7) and (A8), the error remains less than 0.1%. After substituting
B = P

F 2 , and considering the first two term in (A7) and (A8), the proof
is completed.

Equivalently, for the permeability, we have

Max (µmRe) ' 1− F

8
+

F 3

2P
(A9)
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