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Abstract—Label-free optical biosensors are important tools to study
the kinetics, interaction and presence of (bio) chemical compounds
in various fields such as biotechnology, pharma, diagnostics as well
as environmental and food quality monitoring. Systems based on
planar optical waveguides with input/output grating couplers are of
interest as they offer multiple tuning parameters for the chip design
and their high sensitivity. In the present paper, an algorithm based on
the Finite-Elements Method (FEM) is proposed for finding the chip
response and optimizing the sensitivity of the sensor system. Total
field and scattered field coupled with the Transmission Line Transfer
Matrix Method (TLTMM) are compared for the FEM. Unlike some
widely used approximations, the impact of the grating depth, shape,
duty cycle as well as losses and surface roughness are taken into
account. Another advantage of the presented method is the possibility
to implement a large part of the algorithm with commercially available
FEM solver. Several practical situations are treated proving the
validity of the approach against the Local Interference Method (LIME).
The waveguide losses appear to be a decisive parameter for the chip
design.
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1. INTRODUCTION

In the last decade, the use of chemical and biological sensors, based on
electromagnetic waves at optical wavelengths has grown significantly.
A particularly interesting category of optical biosensor is based on
waveguides with a high refractive index film. The sensing action is
accomplished by the changes of the effective refractive index, sensed
by the evanescent field. This technique has found applications for
label-free as well as for fluorescent-label sensors.

Different configurations for label-free waveguide based sensor are
possible [1–3]. The dielectric waveguide with input/output grating
coupler is one of the simplest and cheaper solutions. Many tuning
parameters can be used for the design of the chip in order to reach a
high sensitivity and thus this configuration will be investigated further
in this paper. Only the electromagnetic modeling of the waveguide will
be considered, the biochemical modeling can be found in [3].

The chip is a simple multilayer planar dielectric waveguide. On
a substrate (mostly glass) a thin film with a high refractive index
is added (in general Tantalum Pentoxide Ta2O5). On the film, the
biological layer (sensing layer) and the cover (mostly aqueous solution)
are placed. The cover and the substrate form the cladding of the
waveguide. The resulting sensor chip is shown in Figure 1 with
the important geometry and material parameters. The waveguide
thickness is not the same for the input and output coupler for
preventing interference between the input and output beams which
occurs if the coupling angles are the same [3, 4]. The dimensions in
the x and z directions are much larger than the grating period. This
means that it is possible to consider the grating as a two-dimensional
periodic geometry.

The input pad is illuminated with a laser. There are two possible
operation modes with this kind of chip [2]. The first is the angular
tuning where the input angle θin is varied and the intensity (eventually
also the position) of the output beam is measured at a constant
wavelength. The coupling angle is where the intensity is maximal.
Then any changes of the refractive index or the thickness of the
sensing biolayer lead to a change of the coupling angle of the input
grating pad and can be detected. Alternatively it is also possible to
measure the transmitted light at the cover side. When the coupling
condition is fulfilled, the energy goes into the film and a minimum can
be observed at the cover. The second operation is the so called WIOS
principle (wavelength interrogated optical sensor) [3, 4]. The angle
of the incident beam is maintained constant while the wavelength is
changed (by some nanometers), while the intensity of the output beam



Progress In Electromagnetics Research, Vol. 137, 2013 567

is measured. Any change of the effective refractive index, e.g., due
to the adsorption of biomolecules to the sensor surface, the resulting
resonance curve shift will be monitored. In the following, only the
angular interrogation will be investigated, mainly due to practical
means like extended tuning range as well as stability and independence
of the wavelength of the laser source. Nonetheless, the following
calculations would also hold true for the wavelength interrogating
sensing scheme.

The design of a biosensor obeys to some basic principles described
in [2]. The sensitivity should be maximal in order to have a small
detection limit. The signal to noise ratio is clearly another important
factor, strongly influenced by the so called SBSR (sensing layer to
bulk volume signal ratio) and defined as the sensitivity with respect
to the sensing layer over the sensitivity with respect to the cover [5].
In the following, the focus will be on the grating coupler and not on
a complete chip. There is a duality relation between an input and an
output coupler such that the results are valid for both cases. Because
for many waveguide grating configurations, including the one presented
in Figure 1, the TM0 mode leads to higher sensitivity [6] and a sharper
resonance curve, it will be investigated in this work. Even though the
waveguide’s first mode would be TE0, its sensitivity is inferior to the
TM0 mode, implying that the TE0 mode is only useful if this is the
unique existing mode due to the layer’s thickness or if two linearly
independent measurements are required [7]. The presented methods
work both for TE and TM polarization.

For the prediction of the sensor sensitivity, different methods are
known such as analytical approximation based on the mode equation [7]
or methods based on rigorous diffraction theory [6]. In [8], Cottier et
al. have introduced the Local Interference Method (LIME), which is a
simplified multiple scattering method [9]. This method has proven to
be very fast but the used implementation suffers of many limitations.
The computation relies on a thin grating approximation thus it is
not possible to take into account the exact grating shape, its duty-
cycle nor depth. The waveguide film losses are also neglected. These
simplifications do not allow to find the resonance curve of the sensor,
particularly the finite width half maximum.

The paper presents an algorithm based on Finite-Elements
Method (FEM) and Transmission Line Transfer Matrix Method
(TLTMM) for computing the field distribution and extracting the
sensitivity of the chip. This method allows the inclusion of the grating
depth, duty-cycle and shape, the film losses due to damping, the
surface roughness, etc.. The simulation of non-periodic, non-uniform
gratings has also been done but will not be presented here. The main
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advantage of FEM is the flexibility and the availability of powerful
commercial solvers. Consequently the implementation of the described
method is particularly fast and the simulation of other configurations
is possible with small adaptations. After the presentation of the
numerical methods and the validation against LIME, some results are
for illustrating the influence of the film thickness, the grating depth
and the film losses.

2. NUMERICAL METHODS

2.1. FEM Total Field

The input coupler as shown in Figure 1 can be simplified into a
periodic structure as presented in Figure 2(a). The goal is to find
the electromagnetic field distribution with a plane wave excitation.
Periodic boundary conditions are introduced with Floquet periodicity.
The x component of the wave vector kx is constant at the interface
between the materials and can be used without any problem for the
periodicity.

The main problem is to find boundary conditions that allow the
injection of the plane wave and the absorption of the reflected and
diffracted waves. Starting from the grating equations [10, 11]:

m · λ0 = Λl · (nc sin(αm)− ns sin(θ)) (1a)
m · λ0 = Λl · ns · (sin(θm)− sin(θ)) (1b)

with m representing the different grating diffraction orders. The
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Figure 1. Biosensor waveguide chip with an input and an output
grating coupler.
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existence of the diffraction is ruled by the following equation:

−(ns + nc) <
m · λ0

Λl
< (ns + nc) (2a)

−2 · ns <
m · λ0

Λl
< 2 · ns (2b)

Note that this condition is conservative since the incidence angle
is not taken into account. Then Equation (1) can be solved for the
angle θm and αm and thus the wave vectors for the different orders are
easily obtained at the substrate and at the cover with:

ks = k0 · ns (3a)

km,s,x = ks · sin(θm) (3b)

km,s,y = ks · cos(θm) (3c)

kc = k0 · nc (4a)

km,c,x = kc · sin(αm) (4b)

km,c,y = kc · cos(αm) (4c)

Finally these waves are represented in the FEM model with port
boundary conditions [12]. A port boundary condition can inject an
electromagnetic wave with a given field distribution and propagation
constant. Further, a port can also absorb the waves that have the same
propagation constant. Since the propagation constants are different for
each diffraction order, a port is needed at the cover and substrate
for each order m (and −m). The electric field at the port and
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Figure 2. Considered geometry for FEM with TM waves.
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the propagation constant are set with the following equation for a
transversal magnetic wave (see Figure 2(a)):





Em,s,0 =




cos(θm)
− sin(θm)

0


 e−i·km,s,x·x

βm,s = |< (km,s,y)|

(5)





Em,c,0 =



− cos(αm)
− sin(αm)

0


 e−i·km,c,x·x

βm,c = |< (km,c,y)|

(6)

Only the direction of the field is considered. The amplitude is
scaled such that a given amount of power is injected through the
boundary. Only the port with the diffraction order 0 at the substrate
side has a non-zero power. This corresponds to the plane wave that
models the laser that illuminates the grating.

The main advantage with the FEM is that a solution of the wave
equation is searched for the real chip geometry which is not the case for
the local interference approximation. This allows taking into account
more parameters such as the grating depth and duty cycle. The number
of layers in the stack has no influence on the method, and it is possible
to model an arbitrary grating shape. It is also possible to include
materials with losses or metallic gratings [13]. From the ports the
scattering matrix and thus the reflection and transmission coefficients
can be directly extracted. The limitations of the total field FEM
formulation comes mainly from the computational cost. Problems also
occur if a lot of diffraction orders are present in the simulated geometry.

2.2. FEM Scattered Field

For problems with plane wave excitation it is often easier to write a
scattered field formulation of the finite element method [14]. For
a dielectric stacked grating a plane wave cannot be used for the
background field. The background field should contain the solution
for the stack with planar interfaces between the materials (without
the grating). Then the grating rectangles are added and the scattered
field is solved again with Floquet periodicity but with PMLs at the
top of the cover and at the bottom of the substrate.
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A possibility for obtaining the background field is to use the FEM
as described in Section 2.1. Since the interface is plane, only the
diffraction order 0 is needed. A better and faster solution is to find an
analytical solution with the Transmission Line Transfer Matrix Method
(TLTMM). The implementation of TLTMM is based on [15, 16] which
allows losses.

With Snell’s law, the angle, the wave impedance and the
component of the wave vector can easily be computed in each layer.
The used notations are described in Figure 2(b). One can see that
there is a forward and a backward travelling wave in each layer. Now
the propagation of the wave inside a layer can be described with a
amplitude transfer matrix:

[
Hend,+

i

Hend,−
i

]
= Li ·

[
Hbegin,+

i

Hbegin,−
i

]
(7)

At the interface between two adjacent layers, the reflection
coefficient should be considered in both directions. The matrix Ii,i−1

contains the reflections and transmission coefficients:
[

Hbegin,+
i

Hbegin,−
i

]
= Ii,i−1 ·

[
Hend,+

i−1

Hend,−
i−1

]
(8)

Finally, it is possible to assemble all the propagation and
discontinuity transfer matrices in order to write an equation system
for a stack of N dielectrics:[

Hend,+
N
0

]
= T ·

[
Hbegin,+

1

Hbegin,−
1

]
(9)

T = LN · IN,N−1 · LN−1 · . . . · L2 · I2,1 · L1 (10)

where Hbegin,+
1 is the given plane wave excitation, and Hbegin,−

1 and
Hend,+

N are the unknown variables. Per definition there is no reflection
at the last layer which implies Hend,−

N = 0. With the help of the
matrix equation the field distribution in the complete structure can be
found recursively with the help of the Equations (7) and (8). With
Maxwell’s equations all the fields (B, E, etc.) can be also found. It
is also possible to extract the Poynting vector and the absorption.
The combined analytical (TLTMM) and numerical (FEM) is a very
flexible and powerful method for simulating diffraction gratings. It is
possible to take into account the material losses or to include metallic
shields (with a higher computation time). This inclusion of anisotropic
materials is conceivable. There is also no limitation for the grating
shape. It is also possible to extend the procedure for a non-periodical
grating or for a grating with an excitation that is not a plane wave.
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3. COMPARISON BETWEEN THE METHODS

3.1. Detection of the Coupling

The presented methods will be compared against LIME for a reference
grating (see input pad parameters in Figure 1). The FEM with total
field formulations can be either modeled with ports at the cover or
with a PML.

For FEM, different angles are scanned in order to find the angle
with the best coupling. For a biosensor the goal is to bring the
maximum amount of energy in the sensing layer (where the biochemical
reaction takes places) [7]. Since the mode is guided in the film,
the energy in the film is another choice. Another possibility is to
minimize the transmission coefficient from the substrate to the cover
if illuminated from the former side. The energy is measured at the
cover side with a CMOS or CCD sensor. When the transmission is
minimal, this means that the energy is coupled into the waveguide.
With the total field formulation this can be obtained directly from the
scattering matrix between the ports. For a single mode waveguide the
S-parameters can be interpreted in the term of power flow [14]:

Edomain,abs =
∫∫

domain
Wavg dS (11a)

Edomain,rel =

∫∫
domain Wavg dS∫∫

all Wavg dS
(11b)

Ti =
∣∣S2

21

∣∣ (11c)

=
power transmitted at cover side (order i)

incident power at substrate side
(11d)

where Wavg is the averaged energy density over a time period. For
comparing the absolute energy density between total and scattered
field, the curves should be normalized.

The resulting resonance curve for total field FEM can be seen in
Figure 3 for the different expressions shown in Equation (11). One can
see that there is almost no difference between measuring the resonance
with transmission coefficient, relative or absolute energy (less than
0.002◦ error). The deviation between the maximum becomes smaller
with decreasing grating depth.

The main difference arises from the full width half maximum. The
peak width is only about 0.001◦ for the transmission coefficient and
for the absolute energy and about 0.08◦ for the relative energy. The
narrow peak is the measured peak (the transmitted/coupled energy is
measured). But the relative energy is also useful because the peak is
easier to detect with numerical maximization routines.
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Figure 3. Resonance curves with total field FEM formulation (small
scale).

A comparison between total field and scattered field formulations
has also been performed. Since the fields did not have the same
amplitude, it is better to make the comparison with the relative energy.
It can be concluded that in this case the deviation between the total
and scattered field FEM formulations is lower than 0.01% for Efilm,rel

and Esensing,rel over the whole angular range.

3.2. Comparison between FEM and LIME

Since the used implementation of LIME is only valid for thin gratings,
the comparison has been done from a grating depth of 25 nm to
0.25 nm. In the upper plot of Figure 4, the resonance curves are shown
for smaller grating depths (relative energy in sensing layer). The lower
plots show the error of the resonance angle between LIME and FEM
(scattered field and total field). The black line (in the lower plots)
represents the maximum resolution (distance between two computed
angles) which represents the minimum reachable error with the used
angular sweep.

With a grating depth of 0.25 nm the error is clearly smaller than
10−5◦ and seems to remain stable. Simulations with a smaller grating
depth are hard to perform because the mesh is becoming too large.
This precision is clearly sufficient for the design of a biosensor. The
conclusion is that the different finite element models are in good
agreements and that for a simple geometry with a thin grating the
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Figure 4. Influence of the grating depth on the error between FEM
and the local interference method.

LIME has proven to be sufficient regarding the coupling angle. In
particular the LIME should not be used if the grating depth is greater
than 15 nm.

4. SENSOR SENSITIVITY

4.1. Procedure for Finding the Resonance

In Section 3, the resonance curves of the energy in the sensing
layer have been obtained with an angular sweep. But if only the
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angle of resonance is needed, it is clear that this solution is not
optimal. A standard minimization algorithm can be used (for example
Nelder-Mead simplex) to find the resonance, but here a model-based
optimization has been used. From the grating theory it is known
that for the given configuration, the resonance curve is a Lorentzian
function [6, 17]. From the symmetry of the geometry it is clear if
there is a resonance peak at θres, there is the same peak at −θres.
Consequently, the two peaks should be considered together. Another
effect comes from the fact that even at a point far away from the
resonance the energy in the sensing layer is not zero. Thus an offset
should also be included in the function. Including these two facts, a
fit function is constructed:

Efit(θ) =
fmax

(
fwhm

2

)2

(θ − θ0)
2 +

(
fwhm

2

)2 +
fmax

(
fwhm

2

)2

(θ + θ0)
2 +

(
fwhm

2

)2 + offset (12)

where fwhm is the full width half maximum. The function is fitted at
the least square sense with the computed points and the maximum
position, the peak value and the full width half maximum can be
extracted. Note that the maximum of the sum of the two peaks
(Equation (12)) is no more at θ0 (but at θres) and that the maximum
value is not fmax.

The validity of the chosen fit function is shown in Figure 5. The
geometry has been chosen (adaptation of the film thickness) such that
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Figure 5. Comparison of the resonance peak computed with FEM
and the fitted curve.
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the resonance angle is very small (about 0.2◦). The obtained curve
makes clear the choice of the sum of the two Lorentzian peaks with
maxima at ±θ0 done in Equation (12).

The dashed blue curve is computed with FEM at a lot of different
angles. The black points are the data used for the least square fit
and the fitted function is the red curve. The lower plot shows the
error between the fit and the reference curve obtained directly with
FEM. One can see that a very low number of points is sufficient for
reconstructing the shape of the resonance peak with a good accuracy.
An advantage of the model-based search is that not only the value
and position of the extremum is given but also an estimation of the
complete peak shape. For example the full width half maximum is an
important parameter for the sensor in order to find its Q-factor.

4.2. Computation of the Sensitivity

Finding the resonance angle or frequency is important but not sufficient
for designing a grating based biosensor. The sensitivity of the sensor
is defined as

Gsensitivity =
∆ measurement parameter

∆ sensing parameter
(13)

where the sensitivity parameter is the parameter that is wanted,
an example can be the bindings of the molecules. But here only
the parameters of the waveguide are considered. Consequently the
sensitivity parameter will be the thickness or the refractive index of
the sensing layer. The measurement parameter is the angle or the
frequency for respectively angular and wavelength scan. The goal is
to maximize the sensitivity G of the sensor in order to reach a low
detection limit. Other transfer functions can be considered such as the
signal-to-noise ratio or the disturbance rejection. An interesting case
is the signal to noise ratio, for example the SBSR (sensing layer to bulk
volume signal ratio) [5]:

GSBSR =
∂θ
∂nl

∂θ
∂nc

(14)

Any changes of the refractive index of the cover are considered as
noise. The goal is to have a large sensitivity for the sensing layer and
a small one for the cover. The SBSR can also be written for changes
of the sensing layer thickness. This means that a derivative should
be computed. This is done numerically with a first, second or fourth
order approximation. The Richardson’s formulas have been used to
estimate the required step size [18]. The second order approximation
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has proven to be sufficient. For finding the maximum, again the
procedure of Figure 5 is used for all the steps of the sensitivity
parameter needed for the numerical approximation of the derivative
(see Equation (13)). Often the sensitivity is expressed for the effective
refractive index [5, 7, 19] but here the sensitivity is directly expressed
with the measurement parameter. This gives a direct insight on the
practical signification of the results.

The method described above can be used to find the response of a
particular sensor. Since the goal is to optimize the design, a geometry
or a material parameter (here called optimization parameter) is varied
and the response is computed for each value. From the obtained results,
the sensor design can be improved. The optimization parameter can
be specified in a table and the sensitivity is computed for all the
given values. If the optimization should be done with more than
one parameter then the computation costs are too high with multi-
dimensional table and a genetic or direct search algorithm is used for
finding the optimal design. The direct search algorithm has proven to
be well suited for optimization with one to three variables. A strongly

Start point

Find a step size for the sensitivity parameter

Find the resonance for the different steps

Compute the derivative

Use an optimization algorithm ?

All configurations already computed ? Optimal configuration reached ?

Optimum foundFinished

Take the next configuration in the table Choose the next configuration

Compute the objective function

Find the resonance peak

YesNo NoYes

No

Yes No

Compute derivatives ?

Yes

Figure 6. Simplified flow chart for finding the optimal sensor
sensitivity.
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simplified flow chart of the algorithm used to find an optimal biosensor
is shown in Figure 6. The objective function can be a simple expression
as in Equation (13) or a more complex one as in (14).

5. RESULTS

5.1. Film Thickness

The study of the impact of the film thickness hf is probably one of the
most studied parameter for waveguide grating based biosensors [3, 5–8].
Thus this type of simulation can be used as validation for the proposed
method. The used parameters can be found in Figure 1. The film is
varied from 90 nm to 254 nm. For all the geometries, the resonance
angle (peak position), the peak value (amplitude of the peak), and
the derivative of the angle with respect to the refractive index of
the sensing layer are computed. The results for the position of the
resonance and for the derivative are then compared between FEM and
LIME in Figure 7. The relative energy is the sensing layer has been
maximized (Esensing,rel, see Equation (11)) for finding the resonance
condition (total field FEM). The small differences for the resonance
angle can be explained by the fact that the finite grating depth is
neglected for the local interference method. The error near the cutoff
thickness is becoming bigger. This comes from the fact that the LIME
uses a very basic cutoff model (the waveguide is taken without the
grating as a normal slab dielectric waveguide).

The lower plot is the sensitivity ∂θres
∂nl

which represents the
measured change of the coupling condition for a change in the biological
sensing layer. For the given parameters, the relative energy is maximal
for a film thickness of 121 nm and the sensitivity has a local maximum
at 140 nm, implying that the sensitivity is not maximal where the
energy is maximal. Again there are some differences near the cutoff due
to the lack of accuracy of the LIME in this region. In the other regions,
the difference between FEM and LIME is less than 1% which means
that LIME is sufficient if the angle is not near the normal incidence,
the film thickness is not near the cutoff and if the grating is thin.
Similar results can be found in [3, 5, 7] and thus this indicates that the
proposed method for computing the sensitivity with FEM is valid.

The peaks near 186 nm (in Figure 7) are placed where the
incidence angle is zero. Such sensitivity peaks cannot be observed
in the different publications and thus a further analysis is necessary.
First such results can be reproduced with the different FEM models
and method for finding the resonance condition. An interpretation
can be done from the peak shape. From Equation (12), it is clear
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Figure 7. Sensitivity for different film thicknesses obtained with FEM
and LIME.

that the resonance condition θres is not at θ0. The derivative ∂θres
∂θ0

is
very big near the normal incidence, then a very small change of θ0 can
produces a very large change of the coupling condition. Far away from
the origin the derivative is approximately equal to one because there
is no influence between the two peaks. Since the sensitivity is linear in
the region of the normal incidence, a reasonable hypothesis is that the
angle θ0 is locally linearly dependent with respect to the film thickness.
With the above mentioned findings, it can be stated that the change
of the coupling condition is no more linear but that a resonance peak
occurs as expected from the FEM results because:

∂θres

∂nf
∼

∂θres

∂θ0
where θ0 ∼ nf (15)

This means that a part of the incident wave is coupled by the
peak with the maximum at +θ0 and another part by the peak at −θ0.
Consequently, a wave is coupled in both directions into the waveguide
and therefore the energy in the waveguide is maximal at a point (or the
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Figure 8. Resonance peaks (Lorentzian fits) for different grating
depths.

transmission coefficient is minimal) where θres 6= θ0. This is obvious if
the resonance is θres = 0 that there are waves in both directions. With
a configuration with two pads (as shown in Figure 1), only one of the
two waves can be used and thus the peak of the sensitivity curve does
not appear (LIME simulation results).

5.2. Grating Depth

The grating depth has only a small influence over the resonance angle.
The sensitivity variation is less than 1% for grating depth from 1 nm
to 20 nm. The most important impact of the grating depth is on the
full width half maximum of the resonance peak. This can be seen in
Figure 8 where the complete peaks can be seen for several different
grating depths.

A peak with a small full width half maximum is preferable because
it allows an accurate detection of the resonance during the experiments.
But since there are some tolerances due to the fabrication of the chip,
the grating depth cannot be too small. The coupling efficiency is also
smaller for a thin grating. Therefore the grating depth and duty cycle
can be used as tuning parameters for the resonance peak shape. These
parameters are decoupled since there is no influence on the resonance
position or on the sensitivity. Even if the grating is geometrically
shallow, the grating depth should be considered for finding the sensor
response. The grating depth is not the only parameter which has an
influence on the peak width, the number of periods [6, 17] and the
losses have also a significant impact.
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5.3. Film Losses

The losses in the cover and the substrate have less influence on the
sensor response than the film losses. A complex refractive index is used
where the imaginary part is the extinction coefficient k. The problem is
to find an adequate value for the extinction coefficient. Measurements
are possible (for example with prism couplers or ellipsometry) but were
not available for the used chip. It is very hard to find a value in
the different publications because the extinction coefficient is strongly
dependent on the production process used for the chip (temperature,
pressure and film thickness) and on the frequency.

For a Ta2O5 chip, the described k-values are varying between
< 10−4 [20] and 0.02 [1]. As explained in [20], there are also losses
at the substrate-film and the film-cover interface. A resulting value of
k = 0.001 has been chosen for the simulation and the resulting peak
for the transmission coefficient and total field are computed. With the
losses the full width half maximum is no more 0.001◦ but about 0.045◦.
The results are exactly the same with the scattered field formulation.
Consequently an accurate measurement of the losses would be required
to faithfully simulate the resonance peak. The resonance position is
not strongly dependent of the losses (less than 0.001◦). This implies
that the sensitivity can be computed with the model without losses as
done above.

6. CONCLUSIONS

A new algorithm, based on FEM, TLTMM (Transmission Line Transfer
Matrix Method) and model-based search, has been presented for
finding the sensitivity of a grating based dielectric biosensor. The
proposed FEM-based solution scheme has proven his validity against
the Local Interference Method (LIME). Particularly the limits of
the LIME method for large grating depths have been shown. For
thin gratings, the two methods are in very good agreement. The
error between the different numerical methods for the position of the
resonance angle is smaller than 10−5◦.

The presented application examples show that the influence off the
grating depth and the film losses can be neglected for the computation
of the resonance position or the sensitivity. In the other hand, the
impact of these factors on the resonance peak shape (full width half
maximum).

A more complex method also exists for the simulation of band gap
dielectric frequency-selective surfaces [21]. A similar method combined
with the proposed procedure for obtaining the sensitivity could lead
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to a faster algorithm. Another solution would be to use the multiple
scattering approach [9].

Extension of the method for aperiodic grating or for including
surface roughness has been done with success (total field or scattered
field combined with TLTMM). The only difference for aperiodic
gratings is that PMLs are added instead of Floquet periodicity. For
the total field formulation, the mode equation is solved (without the
grating) and the results are set as the injection boundary condition
(simulation of an output coupler). The total field model could probably
be adapted to compute more complex excitations than a plane wave.

Thus most of the sensor parameters can be taken into account
and a global optimization of the chip is possible with a procedure
that is rather easy to implement with the help of standard simulation
software. Since one the key advantage of grating based biosensors is
the important number of tuning parameter, it is crucial to be able to
simulate the impact of each variable for the design.
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