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Abstract—We consider MUltiple SIgnal Classification (MUSIC)-type
imaging of perfectly conducting cracks arising in inverse scattering
problems. We first explore the structure of a MUSIC-type imaging
function by finding a relationship between it and the Bessel function
of order zero of the first kind. Then, we design multi-frequency based
MUSIC-type imaging in order to improve the traditional one, and
establish a relationship with the Bessel function of integer order of
the first kind. Some numerical experiments are presented to support
the results of our investigation.

1. INTRODUCTION

The inverse scattering problem for identification of the shape of
perfectly conducting cracks is an interesting research topic in
mathematics, physics, and various applied sciences. To the best of
our knowledge, the two-dimensional inverse scattering problem from a
perfectly conducting crack that satisfies Dirichlet boundary condition
was first investigated in [19], where a Newton method is presented for
determining the approximate shape of a crack based on the Fréchet
derivative.

Generally, when performing a Newton-type iterative algorithm, a
good initial guess that is close to the unknown target (here, a crack)
must be applied in order to avoid the non-convergence or appear-
ance of local minima. For this reason, various non-iterative shape
reconstruction algorithms, such as linear sampling method [7, 8, 12, 18],
topological derivative [2, 20, 24, 25], Kirchhoff and subspace migra-
tions [3, 16, 17, 22, 23, 27], SAR imaging technique [9, 15, 32–35], and
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MUltiple SIgnal Classification (MUSIC) [4, 5, 11, 26, 28], have been in-
vestigated.

Among these, the MUSIC-type algorithm has been shown to be
feasible in various inverse scattering problems and generalized to the
imaging of arbitrarily shaped targets in two- and three-dimensional
problems. Related works can be found in [1, 6, 10, 14, 29, 31, 36, 37] and
references therein. However, contrary to the theoretical evaluations,
sometimes the MUSIC algorithm does not yield good results, or it
generates unexpected artifacts that are similar in shape to the target of
interest. Hence, a careful investigation of the mathematical properties
of the MUSIC algorithm must be considered.

Motivated by the above, this paper addresses the identification
of some properties of the MUSIC-type imaging algorithm in inverse
scattering from perfectly conducting cracks at a fixed single frequency.
For this purpose, we investigate a relationship between the MUSIC-
type imaging function and the Bessel function of order zero of the first
kind. This relationship leads to an explanation of why the MUSIC
algorithm cannot be applied to the limited-view inverse scattering
problems and why it generates some artifacts that are similar in
shape to the crack(s). Based on this relationship, we analyze multi-
frequency based MUSIC algorithm and discover a relationship with
the Bessel function of integer order of the first kind. This result
explains why multi-frequency MUSIC algorithm is an improvement
on the traditional one.

This paper is organized as follows. In Section 2, we briefly survey
the two-dimensional direct scattering problem, far-field pattern, and
MUSIC algorithm. In Section 3, we identify the structure of the
MUSIC-type imaging function, and discuss its properties, and then
introduce a multi-frequency MUSIC imaging function, and discover its
structure. Some numerical experiments are shown in Section 4. In
Section 5, our conclusions are briefly presented.

2. DIRECT SCATTERING PROBLEM AND MUSIC
ALGORITHM

In this section, we briefly survey the two-dimensional direct scattering
problem for the existence of perfectly conducting cracks, and the
MUSIC algorithm. A more detailed discussion can be found in [19, 26].

2.1. Two-dimensional Direct Scattering Problem

First, we consider the two-dimensional electromagnetic scattering by
a perfectly conducting crack, Γ, located in the space R2. Assume that
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the crack is a smooth, nonintersecting curve, that can be represented
as

Γ = {φ(t) : t ∈ [−1, 1]}
where φ[−1, 1] −→ R2 is an injective piecewise smooth function.

In this paper, we consider only the Transverse Magnetic (TM)
polarization case. Let u(x) be the time-harmonic total field that
satisfies the two-dimensional Helmholtz equation{

∆u(x) + k2u(x) = 0 in R2\Γ
u(x) = 0 on Γ (1)

with a positive wavenumber k. It should be noted the total field can
be decomposed as

u(x) = uinc(x) + uscat(x),

where uinc(x) = exp(jkθ · x) is the given incident field with incident
direction θ ∈ S1 (unit circle), and uscat(x) is the unknown scattered
field that satisfies the Sommerfeld radiation condition

lim
|x|→∞

√
|x|

(
∂uscat(x)

∂|x| − jkuscat(x)
)

= 0

uniformly in all directions x̂ = x
|x| .

According to the result in [19], uscat(x) can be represented as a
single-layer potential with unknown density ϕ(y; θ)

uscat(x) =
∫

Γ
Φ(x,y)ϕ(y; θ)dy for x ∈ R2\Γ,

where Φ is the two-dimensional fundamental solution of the Helmholtz
equation

Φ(x,y) = − j

4
H1

0 (k|x− y|) for x 6= y. (2)

Here, H1
0 denotes the Hankel function of order zero and of the first

kind. The far-field pattern u∞(x̂; θ) of the scattered field uscat(x) is
defined on S1 such that

uscat(x) =
exp(jk|x|)√

|x|

{
u∞(x̂; θ) + O

(
1
|x|

)}

uniformly in all directions x̂ = x
|x| and |x| −→ ∞. From the above

representation and the asymptotic formula for (2), the far field pattern
is given by

u∞(x̂;θ) = −exp(jπ/4)√
8πk

∫

Γ
exp(−jkx̂ · y)ϕ(y; θ)dy. (3)
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2.2. MUSIC-type Imaging Function: An Introduction

Next, we introduce the traditional MUSIC-type algorithm for imaging
of cracks. For the sake of simplicity, we exclude the constant − exp(jπ/4)√

8πk

from formula (3).
Throughout this paper, we assume that the crack is divided into

M different segments of size of the order of half the wavelength λ
2 .

Bearing in mind the Rayleigh resolution limit for far-field data, only
one point at each segment is expected to contribute at the image space
of the response matrix K (see [1, 5, 26, 28] for instance). Each of these
points, say, ym for m = 1, 2, . . . ,M , can be imaged via the MUSIC-
type algorithm. Based on this assumption, let us consider the following
Singular Value Decomposition (SVD) of the Multi-Static Response
(MSR) matrix K = [u∞(x̂p; θq)]Np,q=1 ∈ CN×N :

K =
M∑

m=1

σmUmV∗
m, (4)

where superscript ∗ is the mark of Hermitian, Um and Vm ∈ CN×1 are
respectively the left- and right-singular vectors of K, and σm denotes
singular values that satisfy

σ1 ≥ σ2 ≥ . . . ≥ σM > 0 and σm = 0 for m ≥ M + 1.

Then, {U1,U2, . . . ,UM} and {UM+1,UM+2, . . . ,UN}, are the basis
for the signal and null (or noise) space of K, respectively. Therefore,
one can define the projection operator onto the null (or noise) subspace,
PN : CN×1 −→ CN×1. This projection is given explicitly by

PN := IN −
M∑

m=1

UmU∗
m, (5)

where IN denotes the N × N identity matrix. For any point z ∈ R2,
we define a test vector f(z) ∈ CN×1 as

f(z) =
[

exp(jkθ1 · z), exp(jkθ2 · z), . . . , exp(jkθN · z)
]T

.

Then, it can be shown that there exists N0 ∈ N such that for any
N ≥ N0, the following statement holds (see [1, 5, 11, 26, 28]):

f(z) ∈ Range(KK) if and only if z ∈ {y1,y2, . . . ,yM}.
Using this, we can design a MUSIC-type imaging function W :
CN×1 −→ R such that

W (z) = |PN (f(z))|−1 =
1

|PN (f(z))| . (6)
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Then, the map of W (z) will have peaks of large and small magnitudes
at z ∈ Γ and z ∈ R2\Γ, respectively.

3. STRUCTURE ANALYSIS OF MUSIC-TYPE IMAGING
FUNCTION

In order to perform an analysis of MUSIC-type imaging, we introduce
two lemmas derived in [3] and [13].

Lemma 3.1 (see [3]). For θn ∈ S1, define D(y) ∈ CN×1 as

D(y) =
[

exp(jkθ1 · y), exp(jkθ2 · y), . . . , exp(jkθN · y)
]T

.

Then, the left singular vectors Um of the MSR matrix K is of the form

Um ≈ D(ym)
|D(ym)| =

D(ym)√
N

(7)

for m = 1, 2, . . . , M .
Lemma 3.2 (see [13]). For sufficiently large N , θn ∈ S1, and

y ∈ R2, the following relationship holds:

1
N

N∑

n=1

exp(jkθn · y) ≈ 1
2π

∫

S1
exp(jkθ · y)dS(θ) = J0(k|y|).

3.1. Single-frequency MUSIC-type Imaging

Now, we explore the structure of the traditional MUSIC-type imaging
function (6). For the sake of simplicity, we assume that the incident
and observation direction configurations are same, i.e., x̂p = −θp, for
p = 1, 2, . . . , N . Then, based on Lemmas 3.1 and 3.2, we can obtain
the following structure of MUSIC-type imaging function.

Theorem 3.3 For sufficiently large N and k, W (z) of (6) is of
the form:

W (z) =
1

|PN (f(z))| ≈
1√
N

(
1−

M∑

m=1

J0(k|z− ym|)2
)−1/2

,

where Jn(·) denotes the Bessel function of integer order n of the first
kind.

Proof. Applying Lemma 3.1, we can evaluate the following

PN (f(z)) =

(
I−

M∑

m=1

UmU∗m

)
f(z) =




exp(jkθ1 · z)
exp(jkθ2 · z)

...
exp(jkθN · z)


−

M∑

m=1

A
N

,
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where A ∈ CN×1 is defined as

A :=




exp(jkθ1 · z) +
∑

n∈N1

exp
(

jk(θ1 · ym + θn · (z− ym))
)

exp(jkθ2 · z) +
∑

n∈N2

exp
(

jk(θ2 · ym + θn · (z− ym))
)

...

exp(jkθN · z) +
∑

n∈NN

exp
(

jk(θN · ym + θn · (z− ym))
)




.

Here, the set Np is defined as follows: for p = 1, 2, . . . , N ,

Np := {1, 2, . . . , N}\{p}.
Note that since

exp(jkθp · z) = exp(jkθp · ym) exp
(

jkθp · (z− ym)
)

,

we can observe that for p = 1, 2, . . . , N ,

1
N

M∑

m=1


exp(jkθp · z)+

∑

n∈Np

exp
(

jk(θp · ym+θn · (z− ym))
)


=
1
N

M∑

m=1

(
exp(jkθp · ym)

N∑

n=1

exp
(

jkθn · (z− ym)
))

=
M∑

m=1

exp(jkθp · ym)J0(k|z− ym|).

Hence,

PN (f(z)) =




exp(jkθ1 · z)−
M∑

m=1

exp(jkθ1 · ym)J0(k|z− ym|)

exp(jkθ2 · z)−
M∑

m=1

exp(jkθ2 · ym)J0(k|z− ym|)
...

exp(jkθN · z)−
M∑

m=1

exp(jkθN · ym)J0(k|z− ym|)




.
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With this, we arrive

|PN (f(z))| =
(
PN (f(z))PN (f(z))

)1/2

=

(
N∑

n=1

(
1− (Λ1 + Λ1) + (Λ2Λ2)

))1/2

,

where Λ denotes the complex conjugate of Λ and

Λ1 : =
M∑

m=1

exp(jkθn · (z− ym))J0(k|z− ym|)

Λ2 : =
M∑

m=1

exp(jkθn · ym)J0(k|z− ym|).

Applying Lemma 3.2, we can evaluate
N∑

n=1

Λ1 =
N∑

n=1

M∑

m=1

exp(jkθn · (z− ym))J0(k|z− ym|)

=
M∑

m=1

(
N∑

n=1

exp(jkθn · (z− ym))

)
J0(k|z− ym|)

= N

M∑

m=1

J0(k|z− ym|)2, (8)

and similarly
N∑

n=1

Λ1 = N

M∑

m=1

J0(k|z− ym|)2. (9)

Based on the orthonormal property of singular vectors, we can observe
that

UpU∗
q =

1
N

N∑

n=1

exp(jkθn · (yp − yq)) = J0(k|yp − yq|)

≈
√

2
πk|yp − yq|

cos
(
k|yp − yq| −

π

4

)
−→ 0 (10)

for p 6= q and sufficiently large k. Applying this property (10), we can
observe that

Λ2Λ2 =
M∑

p=1

M∑

q=1

exp(jkθn · yp)J0(k|z−yp|) exp(−jkθn · yq)J0(k|z−yq|).
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Hence, applying Lemma 3.2 yields
N∑

n=1

Λ2Λ2 =
N∑

n=1

M∑

p=1

M∑

q=1

exp(jkθn · (yp − yq))J0(k|z− yp|)J0(k|z− yq|)

= N
M∑

p=1

M∑

q=1

J0(k|yp − yq|)J0(k|z− yp|)J0(k|z− yq|).

If p 6= q, then by property (10), J0(k|yp−yq|) = 0. If p = q, then since
J0(0) = 1, we can obtain

N∑

n=1

Λ2Λ2 = N

M∑

m=1

J0(k|z− ym|)2. (11)

Therefore, by (8), (9), and (11), we can obtain

|PN (f(z))| =
√

N

(
1−

M∑

m=1

J0(k|z− ym|)2
)1/2

.

This ends the proof.
Note that J0(x)2 has the maximum value 1 at x = 0. This

is the reason why the map of |PN (f(z))| plots magnitude ∞ at
z = ym ∈ Σm. Moreover, the oscillating property of J0(x)2 tells why
imaging function (6) plots artifacts similar to the shape of crack(s).
Hence, this oscillating pattern of the Bessel function must be reduced
or eliminated in order to improve the imaging performance. One way
to do so is to apply k = +∞ in theory. Another way is to apply several
frequencies to the imaging function (6).

3.2. Multi-frequency MUSIC-type Imaging

Now, we consider multi-frequency MUSIC-type imaging in order to
improve the traditional single-frequency one. For given S− different
wavenumbers 0 < k1 < k2 < . . . < kS , we collect MSR matrix K(ks)
and then perform SVD as

K(ks) =
M∑

m=1

σm(ks)U(ks)V(ks).

Then, by Lemma 3.1, singular vectors Um(ks) ∈ CN×1 are given by

Um(ks) ≈ 1√
N

[
exp(jksθ1 · y), exp(jksθ2 · y), . . . , exp(jksθN · y)

]T

.
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Let us choose a test vector f(z, ks) ∈ CN×1 × R as

f(z, ks) =
[

exp(jksθ1 · z), exp(jksθ2 · z), . . . , exp(jksθN · z)
]T

,

and define projection operator PN : CN×1 × R −→ CN×1 as

PN (f(z, ks)) =

(
I−

M∑

m=1

Um(s)U∗
m(s)

)
f(z, ks).

With this, we introduce a multi-frequency based MUSIC-type
imaging function WMF : CN×1 × N −→ R defined by

WMF (z;S) =

(
1
S

S∑

s=1

|PN (f(z, ks))|2
)−1/2

then, based on Theorem 3.3, we can obtain the following result.
Theorem 3.4 Assume that kS and S are sufficiently large; then,

WMF (z; S) ≈
√

1
N

(
1−

M∑

m=1

Ψ(|z− ym|; k1, kS)

)−1/2

,

where function Ψ(t; k1, kS) is defined as

Ψ(t; k1, kS) : =
kS

kS − k1

(
J0(kSt)2 + J1(kSt)2

)
− k1

kS − k1

(
J0(k1t)2

+J1(k1t)2
)

+
∫ kS

k1

J1(k|y−ym|)2dk. (12)

Proof. According to the result in Theorem 3.3, we can calculate

1
S

S∑

s=1

|PN (f(z, ks))|2 ≈ 1
S

S∑

s=1

N

(
1−

M∑

m=1

J0(ks|z− ym|)2
)

=
N

S

(
S −

M∑

m=1

S∑

s=1

J0(ks|z− ym|)2
)

≈N

(
1−

M∑

m=1

1
kS − k1

∫ kS

k1

J0(k|y−ym|)2dk

)
.(13)

Then applying an indefinite integral of the Bessel function
(see [30, Page 35])

∫
J0(x)2dx = x

(
J0(x)2 + J1(x)2

)
+

∫
J1(x)2dx
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yields∫ kS

k1

J0(k|y− ym|)2dk = kS

(
J0(kS |y− ym|)2 + J1(kS |y− ym|)2

)

−k1

(
J0(k1|y− ym|)2 + J1(k1|y− ym|)2

)

+
∫ kS

k1

J1(k|y− ym|)2dk. (14)

Hence, by combining (13) and (14), we can obtain
S∑

s=1

|PN (f(z, ks))|2 ≈ N

(
1−

M∑

m=1

Ψ(|y− ym|; k1, kS)

)

Therefore,

WMF (z; S) ≈
√

1
N

(
1−

M∑

m=1

Ψ(|z− ym|; k1, kS)

)−1/2

.

This completes the proof.
Based on Lemmas 3.1 and 3.2, and Theorems 3.3 and 3.4, we can

examine some properties of the MUSIC-type imaging algorithm. They
can be summarized as follows.
(i) The total value of the incident and observation direction N

must be sufficiently large. This is why some unexpected
replicas appeared in the map of W (z) with a small number N
(see [28, Figure 7]).

(ii) The set of directions {θn}N
n=1 must span the unit circle S1. This

means that the MUSIC algorithm yields a good result in full-
view inverse scattering problems and a poor result in limited-view
problems (see [4, 23]).

(iii) J0(x) reaches its maximum value 1 at x = 0. This means that
for a nonzero wavenumber k, the map of W (z) will have plots
of large magnitude (almost ∞ in theory) at z = ym ∈ Γ for
m = 1, 2, . . . , M , and small magnitude (almost zero in theory)
at z /∈ Γ. However, due to the oscillation property of the Bessel
function, some artifacts of small magnitude are displayed.

(iv) According to the recent work [17], the last term of (12) can be
negligible. Since Ψ(x; k1, kS) reaches its maximum value 1 at x = 0
for any nonzero wavenumbers k1 and kS , the map of WMF (z; S)
has properties similar to those of W (z), except for less oscillation.
Hence, the map of WMF (z;S) should offer a better result than that
of W (z), i.e., the multi-frequency MUSIC algorithm successfully
improves the traditional one.
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4. NUMERICAL EXAMPLES

In order to verify Theorems 3.3 and 3.4, we present some numerical
examples. We apply a wavenumber of the form ks = 2π

λs
; where λs,

s = 1, 2, . . . , S(= 10), is the given wavelength. Here, ks are always
equi-distributed in the interval [k1, kS ]. For mapping the W (z), the
applied wavelength is kS . The observation directions θn are taken as

θn =
[
cos

2πn

N
, sin

2πn

N

]T

.

To illustrate crack, three Γl are chosen:

Γ1 =

{[
s,

1
2

cos
sπ

2
+

1
5

sin
sπ

2
− 1

10
cos

3sπ

2

]T

: s ∈ [−1, 1]

}
,

Γ2 =
{[

2 sin
s

2
, sin s

]T
: s ∈

[
π

4
,
7π

4

]}
,

Γ3 = Γ(1)
3 ∪ Γ(2)

3 ,

where

Γ(1)
3 =

{[
s− 1

5
,−s2

2
+

3
5

]T

: s ∈
[
−1

2
,
1
2

]}
,

Γ(2)
3 =

{[
s +

1
5
, s3 + s2 − 3

5

]T

: s ∈
[
−1

2
,
1
2

]}
.

All the far-field data u∞(x̂p; θq) of (3) are generated by a
formulation involving the solution of a second-kind Fredholm integral
equation along Γl, refer to [21, Chapter 3] and [21, Chapter 4] for single
and multiple cracks, respectively. After generating the data, a 20 dB
Gaussian random noise is added to the unperturbed data to show the
robustness of the proposed algorithm. In order to obtain the number of
nonzero singular values Mf for each frequency, a 0.1-threshold scheme
(choosing first m singular values σm such that σm/σ1 ≥ 0.1) is adopted.
A more detailed discussion of thresholding can be found in [26, 28].

First, we consider the imaging result of Γ1 exhibited in Figure 1(a).
In this example, we applied N = 24 directions and wavelengths
λ1 = 0.6 and λ10 = 0.4. As we expected in Theorem 3.3, peaks of
large magnitude appear along Γ1 and artifacts of small magnitude in
the exterior of Γ1 as well. Note that, based on Figure 1(b), these peaks
of small magnitude can be eliminated by applying multiple frequencies.
This result supports Theorem 3.4.
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Next, we consider the result of Γ2. In this example, N = 64
directions, and λ1 = 0.7 and λ10 = 0.5 wavelengths are used. Similar to
Figure 1, the shape of Γ2 is well-reconstructed, but some replicas also
appeared in Figure 2(a). Fortunately, applying multiple frequencies
yields a more accurate result (see Figure 2(b)).

Figure 3 shows the application of the MUSIC algorithm for the
imaging of multiple cracks Γ3 with N = 64 directions and wavelengths
λ1 = 0.5 and λ10 = 0.3. Similar to Figures 1 and 2, we can conclude
that peaks of large magnitude appear along the cracks, and that the
multi-frequency MUSIC algorithm successfully improves the single-
frequency one.
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Figure 1. Shape reconstruction of Γ1. (a) Map of W (z). (b) Map of
WMF (z; 10).
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Figure 2. Shape reconstruction of Γ2. (a) Map of W (z). (b) Map of
WMF (z; 10).
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Figure 3. Shape reconstruction of Γ3. (a) Map of W (z). (b) Map of
WMF (z; 10).

5. CONCLUSION

Based on the indefinite integral of the Bessel function, we determined
the structure of the MUSIC-type imaging function. Owing to
the oscillation aspect of the Bessel function of integer order, we
investigated why unexpected artifacts appear in the image via the
MUSIC algorithm. This fact motivated us to propose a multi-frequency
MUSIC algorithm. It was confirmed that this algorithm successfully
improves the traditional algorithm.

We considered the MUSIC algorithm in full-view inverse scattering
problem. It is well-known that the MUSIC algorithm cannot be
applied to limited-view problems (see [4, 23]). In order to determine
the structure of imaging functions in the limited-view configuration,
the integration in Lemma 3.2 on the subset of a unit circle must
be evaluated. Unfortunately, this evaluation is very difficult to
perform. Therefore, identifying the structure of the MUSIC-type
imaging function in the limited-view problem will be an interesting
subject.

Finally, we considered the imaging function for the TM-
polarization case. The extension of our study to the Transverse
Electric (TE) polarization case (Neumann boundary condition) will
be a forthcoming work.
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