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Abstract—We investigate the wave propagation properties in lossy
structures with graded permittivity and permeability involving left-
handed metamaterials. An exact analytic solution to Helmholtz’
equation for a lossy case with both real and imaginary parts
of permittivity and permeability profile, changing according to a
hyperbolic tangent function along the direction of propagation, is
obtained. It allows for different loss factors in RHM and LHM media.
Thereafter, the corresponding numerical solution for the field intensity
along the composite structure is obtained by means of a dispersive
numerical model of lossy metamaterials that uses a transmission line
matrix method based on Z-transforms. We present the expressions and
graphical results for the field intensity along the composite structure
and compare the analytic and numerical solutions, showing that there
is an excellent agreement between them.

1. INTRODUCTION

Electromagnetic metamaterials (MM) are defined as artificial compos-
ites with electromagnetic properties not readily found in nature. A
special class of MMs are the left-handed materials (LHM). The first
theoretical description of LHMs was done by Veselago in 1967 [1], but
only after three decades their actual practical implementations were
described by Pendry [2, 3].
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LHM are typically produced using subwavelength “particles”
with negative effective relative permittivity and permeability as their
structural units. The first proposed LHM particles were split-
ring resonators (SRR) and nanowires that simultaneously furnish
negative permeability and permittivity [3]. Wire media and SRRs
are still widely used in the microwave domain and well understood,
but a number of other “particles” like complementary split-ring
resonators [4], plate pairs and cut-wire pairs [5] and double fishnets [6–
8] have been studied. The first experimental confirmation of a left-
handed material was published in 2001 [9]. Presently, the experimental
fishnet-type LHM for the visible range of frequencies have been
fabricated and described [10].

The novel and often counter-intuitive properties of the LHM,
including the inverse Doppler effect, radiation tension instead of
pressure and negative index of refraction (negative phase velocity)
etc. [11, 12] resulted in the proposals of a number of applications.
They include superlenses and hyperlenses enabling imaging far below
the diffraction limit [13, 14], resonant cavities and waveguides with
geometrical dimensions orders of magnitude smaller than the operating
wavelength [15], as well as transformation optics [16–18], plasmonic
waveguides [19] and invisibility cloaks [16–18, 21].

The use of transformation optics [16–18, 20, 21], provides an
additional degree of design freedom where one is free to tailor
any desired distortion of space from the point of view of wave
propagation. This is basically done by mapping such distortions onto
the spatial distribution of electromagnetic properties of material in the
conventional Cartesian space [22]. Such artificially crafted spatially
changing electromagnetic properties then allow arbitrary tailoring
of the propagation of electromagnetic waves [21]. Because of the
scalability of Maxwell’s equations, this kind of propagation control
extends in principle over any desired wavelength range, the most
often targeted ranges being microwave, optical (including visible) and
terahertz.

Most of the cases consider structures with abrupt interfaces
towards the surrounding positive index material (“right-handed”
media, RHM) and constant permittivity and permeability (and hence,
the constant refractive index) within the MM structure. There is
however a growing theoretical and practical interest for MMs with
spatially varying permittivities and permeabilities and with gradual
transitions from the RHM to LHM and vice versa, since many
real-world applications would benefit from such structures. Graded
permittivities and permeabilities are interesting for transformation
optics and hyperlenses [23], and a class of the invisibility cloaks [16, 21]
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using spherically graded MM has been described [24]. Various other
proposed applications of graded MM-composites include beam shaping
and directing, enhancement of nonlinear effects [25], superlenses [26],
etc.

The first paper dedicated to gradient refractive index LHM was
published in 2005 [27]. The analytical approaches to graded MM-
structures, as the one discussed in the present paper, are of special
interest since they ensure fast, simple and direct determination of
the field distribution and the calculation of the wave propagation
parameters within such materials. Some publications include [28–34].

In the present paper we present an exact analytical solution of
Helmholtz’ equation for the wave propagation through a lossy graded
MM-structure, where both the permittivity and the permeability
vary according to a hyperbolic tangent function. We consider the
most general case of lossy wave propagation with constant impedance
throughout the entire structure, where loss factors can be chosen
arbitrarily in both RHM and LHM parts. This provides the
opportunity to model the significantly higher losses in LHM materials
compared to those in the RHM materials.

In addition to that, a numerical model, developed in [35] by
using the Transmission Line Matrix (TLM) method based on Z-
transforms [36, 37] and capable to take into account the dispersive
properties of metamaterials in the time-domain, is presented in some
detail here and the numerical solutions compared to the analytically
obtained solutions.

Figure 1. Propagation of a wave through a graded index structure
with a hyperbolic tangent profile.
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2. PROBLEM FORMULATION

We assume the time-harmonic waves with an exp(−iωt) dependency in
isotropic materials, where the effective medium approximation is valid.
The geometry of the problem is illustrated in Figure 1. The electric
field is directed along the y-axis, ~E(~r) = E(x)~ey, whereas the magnetic
field is directed along the z-axis, ~H(~r) = H(x)~ez. The propagation
direction of the wave is along the x-axis. Since the fields depend only
on the x-coordinate, the one-dimensional Helmholtz’ equations have
the form [30]

d2E

dx2
− 1

µ

dµ

dx

dE

dx
+ω2µεE(x) = 0,

d2H

dx2
− 1

ε

dε

dx

dH

dx
+ω2µεH(x) = 0, (1)

where ε = ε(ω, x) and µ = µ(ω, x) are the frequency-dependent
and stratified dielectric permittivity and magnetic permeability,
respectively.

3. SOLUTIONS OF THE FIELD EQUATIONS

We assume an inhomogeneous medium for which the effective
permittivity and permeability vary according to following hyperbolic
tangent functions

µ(ω, x)=−µ0µR tanh(ρx)−iµ0

[
µI1+µI2

2
−µI1−µI2

2
tanh(ρx)

]
, (2)

ε(ω, x)=−ε0εR(ω) tanh(ρx)−iε0

[
εI1+εI2

2
− εI1−εI2

2
tanh(ρx)

]
, (3)

where ρ is a parameter describing the steepness of the transition from
the RHM material at x < 0 to the LHM material at x > 0. For
passive materials, we require εI1, εI2 > 0 and µI1, µI2 > 0. A constant
wave impedance throughout the structure, requires that the real and
imaginary parts of the effective permittivity and permeability satisfy
the condition

β(ω) =
µI1 + µI2

2µR − i(µI1 − µI2)
=

εI1 + εI2

2εR − i(εI1 − εI2)
. (4)

When the condition (4) is satisfied, we have

µ(ω, x) = −µ0
µI1 + µI2

2β
(tanh(ρx) + iβ),

ε(ω, x) = −ε0
εI1 + εI2

2β
(tanh(ρx) + iβ),

(5)
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Note that the wave impedance Z = Z0Z(ω) =
√

µ(ω, x)/ε(ω, x) is
constant throughout the entire structure and there is no reflection on
the graded interface between the two materials. The two differential
Equation (1) have the exact solutions

E(x)=E0e
−κβx [2 cosh (ρx)]i

κ
ρ , H(x)=H0e

−κβx [2 cosh (ρx)]i
κ
ρ , (6)

where E0 and H0 are the amplitudes of the electric and magnetic fields
at the boundary x = 0, and

κ = k + iα =
ω

c

√
µRεR + i

ω

2c

√
εR

µR
(µI2 − µI1), (7)

We note that in the absence of losses, the results (6) are reduced to
the results in references [30] and [34] as special cases. Specifically
in [34] we consider a solution for the oblique incidence on the graded
interface with a less general profile function which is also used in [30].
Choosing the normal incidence with incident angle θ = 0 in [34] we
obtain the lossy solutions with uniform loss factors in the entire space.
The empirical data suggests however that the loss factors in RHM
and LHM media are generally very different. Thus in the present
paper, unlike the analysis in [34], we introduce a more general graded
interface model such that the loss factors in the RHM and LHM media
can be chosen different from each other. This point will be further
highlighted below. The one-dimensional field distribution based on
the results (6) is shown in Figure 2. The field amplitudes are related
by E0 = Z0Z(ω)H0. The exact solutions (6) are valid for arbitrary
steepness ρ of the graded index interface and arbitrary losses. In the
RHM material, we obtain for x → −∞
E(x, t) ∼ E0e

−γ1x cos(ωt− kx), H(x, t) ∼ H0e
−γ1x cos(ωt− kx),

γ1 =
ω

c

√
εR

µR
µI1

(8)

In the LHM material, we obtain for x → +∞ that

E(x, t) ∼ E0e
−γ2x cos[ωt− (−k)x],

H(x, t) ∼ He−γ2x cos[ωt− (−k)x], γ2 =
ω

c

√
εR

µR
µI2

(9)

For x → −∞, it follows (8) that the wave in the RHM with the
wavevector ~kRHM = +k~ex propagates in the +x-direction. For
x → +∞, it follows (9) that the wave in the LHM with wavevector
~kLHM = −k~ex propagates in the −x-direction. The energy flux (the
Poynting vector) is still in the +x-direction in both media as expected.
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Figure 2. 1D field distribution based on the Equation (6).

4. NUMERICAL MODEL OF METAMATERIALS

A dispersive TLM Z-transform model of the lossy MTM-composite,
described in [35], is used here to verify the analytical solution for
gradient index metamaterials with arbitrary loss factor in RHM and
LHM presented in Sections 2 and 3. This model follows the notation
used in [36, 37] to describe various types of conventional linear time-
dependent materials with the purpose that it can be easily incorporated
into the algorithm of so-called Z-transform-based TLM method given
in [36]. TLM Z-transform model of the lossy MTM-composite is
based on Drude dispersive model as it allows to characterize MTM-
composite response in much wider frequency range than for example,
Lorentz dispersion model. Hovewer, it could be easily adapted to
describe any higher-order material responses. In this paper, the Drude
model describing the frequency dependence of electric and magnetic
conductivities is used

σe(ω) =
σe0

1 + iωτe
=

ω2
peτeε0

1 + iωτe
, σm(ω) =

σm0

1 + iωτm
=

ω2
pmτmµ0

1 + iωτm
, (10)

where ωpe,pm, τe,m and σe0,m0 are the electric and magnetic
plasma frequencies and the corresponding collision times and static
conductivities, respectively. For LHM which is matched to free-space,
the static electric and magnetic conductivities are related by σm0 =
Z2

0σe0 where Z0 is the wave impedance of free-space. As an alternative,
Drude model describing the frequency dependence of permittivity
and permeability (i.e., electric and magnetic susceptibilities) of MTM
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(a) (b) (c)

Figure 3. (a) Signal flow diagram of the general algorithm of TLM
method based on Z-transform [36]. (b) Dispersive TLM Z-transform
model for metamaterials — calculation of Ey in the time-domain. (c)
Dispersive TLM Z-transform model for metamaterials — calculation
of Hz in the time-domain.

composite can be used but both models give identical results as shown
in [35]. In addition, using the relations

ε(ω) = ε0

(
1− i

σe(ω)
ωε0

)
, µ(ω) = µ0

(
1− i

σm(ω)
ωµ0

)
, (11)

it is possible to determine permittivity and permeability from known
electric and magnetic conductivities and vice versa. In [36] the Drude
model was also used but only to describe an electric conductivity of
an unmagnetized plasma with collisions. Also, instead of exponential
Z-transform employed in [36] to transfer frequency dependence of
considered material properties to the Z-domain, the bilinear Z-
transform is adopted in [35] to develop TLM Z-transform model of
the lossy MTM as the bilinear discretisation provides a much more
accurate scheme.

The TLM scattering process incorporating the dispersive model
of the lossy MTM composite, can be represented, for considered field
components, with the flow graph shown in Figure 3.

Further details of the inclusion into the 3D TLM method of the
Z-transform models, developed for various types of conventional time-
dependent materials, as well as the expressions for vectors and matrices
from Figure 3(a) are given in [36]. The complete description of each
block in Figure 3 can also be found in [35].

5. GRAPHICAL PRESENTATION AND DISCUSSION
OF THE RESULTS

A comparison between the exact analytical solutions for the electric
field E(x), given by Equation (6) with the corresponding numerical
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(a) (b)

Figure 4. Numerical results (blue dash line) vs analytical results
(black solid line) for electric field E(x) as a function of x, with E0 = 1,
k = 2π/(10−6 m), ρ = 1/(10−6 m), κβ = 2π/(10−4 m) as well as (a)
α = 0.75κβ and (b) α = 0.50κβ.

results obtained by means of the dispersive TLM Z-transform model,
for two different values of the numerical parameters are presented in
Figure 4. From Figure 4, we see that the numerical and analytical
results show an excellent agreement with each other. Furthermore, we
see that there is no reflection at the interface between RHM and LHM,
as expected, since the impedance is constant throughout the entire
space. However we see that the loss factors γ1 and γ2 in RHM and
LHM respectively are different.

6. CONCLUSION

We present an exact analytic solution to lossy Helmholtz’ equations
with a hyperbolic tangent profile function along the direction of
propagation. The analytic expressions and graphical results for the
field intensities along the MM-composite structure are presented.
The model allows for arbitrary loss factors and arbitrary temporal
dispersion.

Furthermore, the enhanced Z-transform based TLM method which
enables the direct time-domain modelling of lossy metamaterials is
presented. The accuracy and stability of the model is demonstrated
for the gradient transitions of effective electromagnetic parameters for
which analytical solutions are presented in this paper. The model
can be easily adapted to describe Lorentz or higher-order material
responses and is generally usable to arbitrary gradient metamaterial
profiles.
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Finally, we note that the numerical benchmark of the exact
analytical results obtained in the present paper can be done very
accurately using other numerical methods, like for example the finite-
difference time-domain (FDTD) method. However for the present
purposes we have chosen the TLM-method, being an enhanced and
modified version of the finite difference method written using the
engineering notation. In our previous publications, we have used other
numerical techniques like for example the finite element method in [30].
The main purpose of the comparisons of our exact analytical results
with the corresponding numerical results is the exact benchmark of
the numerical methods and confirmation of the validity of the exact
analytical results.
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