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Abstract—The Debye expansion integrals obtained by application of
the Modified Watson Transformation and Debye series expansion to the
Mie series for the high frequency plane wave transmitted into a double
negative (DNG) cylinder are solved in the geometrically lit regions of
the corresponding Debye series terms. The Debye series expansion
is made up to the possible maximum term after which double ray
field formation is first observed. Using the steepest descent method
and the geometrical optics approximation, the role of the lower ray in
the double-ray field formation is pointed out. For refractive indices
satisfying |n| ≥ 10, it is shown that the maximum Debye series term
index up to which simple single-ray tracing can be performed is bigger
for a DNG cylinder than that for a DPS cylinder and the difference
between the term indices increases as |n| increases.

1. INTRODUCTION

Double-negative (DNG) or left-handed (LH) metamaterials are
artificial materials which exhibit a negative permittivity and a negative
permeability simultaneously over a specific frequency range. These
metamaterials were first introduced in [1] in 1968 by Veselago. The
fundamentals of the physical realization of DNG metamaterials using
split ring resonators and thin wires are presented in [2, 3]. In [4, 5], the
construction of a DNG metamaterial and the experimental verification
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of the double-negativeness are reported. Recently proposed new
structures for DNG metamaterials are presented in the references
from [6] to [9]. Some recent applications of DNG metamaterials are
given in the references from [10] to [14].

The transmission of a high frequency plane wave into a DNG
infinitely long cylinder can be expressed using Mie series. However,
Mie series does not reveal the physical mechanisms of the transmission
process. In addition, the convergence speed of the Mie series can be
a problem in some cases. In order to gain physical insight into the
transmission process and overcome the convergence speed problem,
the Modified Watson transform with Debye series expansion is applied
to the Mie series. Watson transform was first used in [15]. Some other
applications can be found in the references from [16] to [18]. Debye
series expansion was first used in [19]. More instances of the Debye
series expansion applications can be located in the references from [20]
to [25].

The aim of this article is to examine the high frequency
transmission into the DNG cylinder regions geometrically lit by only a
single ray. The examination is made up to the maximum Debye series
term after which double ray field formation is first observed. The
differences between a DNG cylinder and a double positive cylinder are
pointed out. The article is in some sense a continuation of [26].

As to the outline of the article, in the Section 2, the
electromagnetic problem is defined and the Mie series solution is given.
In the Section 3, the physical picture for the single-ray field formation
is drawn for a general Debye series term using the geometrical
optics (GO) approximation and the steepest descent method. In the
Section 4, the numerical results are provided to validate the physical
picture of the single-ray field formation. The differences between a
DNG cylinder and a DPS cylinder are indicated. The conclusions are
presented in the Section 5.

2. PROBLEM DESCRIPTION

A double-negative (DNG) cylinder of infinite length is illuminated by a
high frequency plane wave propagating in the −x direction in the free
space. The time harmonic dependence is assumed to be e−jωt where ω
is the angular frequency. The problem geometry is shown in Figure 1.
The electric field intensity vector of the incident plane wave is given as
follows:

~Ei = âze
−jk0x (1)

k0 is the wavenumber of the free space. If the Mie series expansions
of the electric field intensity vectors of the incident and transmitted
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Figure 1. The problem geometry.

electromagnetic waves are carried out, then the following expressions
are obtained:

~Ei = âz

∞∑

l=−∞
j−lJl (k0ρ) ejlφ (2)

~Et = âz

∞∑

l=−∞
dlJl (nk0ρ) ejlφ (3)

j is equal to
√−1 and n the refractive index of the DNG cylinder.

(ρ, φ) is the cylindrical coordinates of the field point and dl is the
coefficient of the Mie series expansion for the transmitted field. The
expression for dl is given as follows:

dl = j−l

[
Jl(β)H(1)′

l (β)− J ′l (β)H(1)
l (β)

]
[
Jl(α)H(1)′

l (β)− n
µr

J ′l (α)H(1)
l (β)

] (4)

where

β = k0a (5)
α = nβ (6)

f ′(z0) denotes differentiation with respect to the argument and is
calculated as follows:

f ′(z0) =
[
df(z)
dz

]

z=z0

(7)
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3. SINGLE-RAY DEBYE TERMS

A high frequency plane wave can be viewed as a collection of rays.
Hence, the fields transmitted into the DNG cylinder can be thought
to be the result of refracted and multiply reflected rays. This physical
picture is shown in Figure 2. Each term of the Debye series matches
with one of the rays shown in Figure 2. This physical picture is shown
to be valid for the first term of the Debye series in [26]. The validation
is to be generalized to the Debye series term of possible maximum
index after which double ray field formation is first observed. It will
be shown in the related part of this article that after a certain Debye
series term index, the field in the geometrically lit region is formed by
two rays.

y

x

incident ray

1st term
2nd term

3rd term

Figure 2. The physical picture of the transmission in a DNG cylinder.

Due to the detailed derivations and discussions in [26], the integral
for the qth term of the Debye series can be written for the DNG cylinder
as follows:

Etq =
1
2

∞+jε∫

−∞+jε

[
e−jv2πqe−jv(φ− 3π

2 ) + ejv(φ−π
2 )

]
T21

H
(2)
v (β)

H
(1)
v (|α|)

[
R11

H
(2)
v (|α|)

H
(1)
v (|α|)

]q−1

H(2)
v (|nk0ρ|)dv+

1
2

∞+jε∫

−∞+jε

[
e−jv2π(q−1)e−jv(φ−3π

2 )

+ejv(φ−π
2 )

]
T21

H
(2)
v (β)

H
(1)
v (|α|)

[
R11

H
(2)
v (|α|)

H
(1)
v (|α|)

]q−1

H(1)
v (|nk0ρ|)dv (8)
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where

T21 =
4j

πβH
(1)
v (β)H(2)

v (β)
(
[1 β] + |n|

|µr| [1 |α|]
) (9)

R11 = −
[1 β] + |n|

|µr| [2 |α|]
[1 β] + |n|

|µr| [1 |α|]
(10)

T21 is the coefficient of transmission of the incoming cylindrical wave
from the medium 2, i.e., the free space, to the medium 1, i.e., the DNG
medium. R11 is the coefficient of reflection of the outgoing cylindrical
wave from the boundary of the cylinder to the DNG medium. [i x]
(i = 1, 2) notation is defined as follows:

[i x] =
H

(i)′
v (x)

H
(i)
v (x)

(i = 1, 2) (11)

Since the geometrical optics (GO) approximation is to be used for the
physical interpretation of the transmission process in the geometrically
lit region, the Debye approximation for Hankel functions is to be
employed in the integrands in (8). The Debye approximations for
Hankel functions are

H(1)
v (z)∼

(
2
π

) 1
2 (

z2−v2
)− 1

4 exp
{

j
[(

z2−v2
) 1

2−v cos−1
(v

z

)
−π

4

]}
(12)

H(2)
v (z)∼

(
2
π

) 1
2(

z2−v2
)− 1

4 exp
{
−j

[(
z2−v2

) 1
2−v cos−1

(v

z

)
−π

4

]}
(13)

The Debye approximation of the second part of the integrand of the
first integral in (8) is given by A(v) exp[f(v)] where

A(v) =
(

2
π

) 1
2

T21R
q−1
11

[
(|n|k0ρ)2 − v2

]− 1
4 (

β2 − v2
)− 1

4

(|α|2 − v2)−
1
4

ej(2q−1)π
4 (14)

f(v) = j

[
− (

β2 − v2
) 1

2 +
(
(|n|k0ρ)2 − v2

) 1
2 − (2q − 1)

(|α|2 − v2
) 1

2

]

+jv

[
cos−1

(
v

β

)
− cos−1

(
v

|n|k0ρ

)

+(2q − 1) cos−1

(
v

|α|
)

+ φ− π

2

]
(15)
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The saddle point equation or the steepest descent equation is obtained
from f ′(v) = 0 as

j

[
cos−1

(
v

β

)
−cos−1

(
v

|n|k0ρ

)
+(2q − 1) cos−1

(
v

|α|
)

+φ−π

2

]
=0 (16)

If the variable transformation

v = β sin(x) (17)

is made in the saddle point equation, and the resulting equation is
solved using a mathematical software like Mathematica, then it will be
observed that x is the incidence angle of the upper ray that illuminates
the field point after q − 1 reflections. The verification of this fact can
be performed in several other ways.

A geometrical relation between the incidence angle of the upper
ray and the field point angle can be obtained from the physical picture
in Figure 3. This relation is given for a general q as follows:

θ + cos−1

(
a
|n| sin θ

ρ

)
− (2q − 1) cos−1

(
sin θ

|n|
)

= φ (18)

In Figure 3, the dashed circle is called the field circle, i.e., the circle
on which the field point resides.

If the variable transformation is used in the saddle point equation,
then the following equation is obtained:

x + cos−1

(
a
|n| sinx

ρ

)
− (2q − 1) cos−1

(
sinx

|n|
)

= φ (19)

If Equation (19) is compared with Equation (18), then x turns out to
be the same as θ.

The upper ray incident on the point P (a, θ) has a phase of
−k0a cos(θ). After q−1 internal reflections, this phase must be summed
with the phase contribution due to the total path taken by the ray
according to the GO approximation. However, since the cylinder is
DNG and the phase velocity is opposite to the power propagation
direction, this phase contribution must be subtracted from the initial
phase. Hence, it is expected that the steepest descent evaluation of
the second part of the first integral contains this phase expression
in agreement with the GO approximation. The steepest descent
evaluation of the second part of the first integral is

1
2

{
A(v) exp[f(v)]

√
−2π

f ′′(v)

}

v=β sin(θ)

(20)



Progress In Electromagnetics Research B, Vol. 49, 2013 435

The phase of this expression is given by
[(

(|n|k0ρ)2 − v2
) 1

2 − (2q − 1)
(|α|2 − v2

) 1
2

]

v=β sin(θ)

− β cos(θ) (21)

Before each internal reflection of the ray, a path of length

2
[
a2 −

(a

n
sin θ

)2
] 1

2

(22)

is taken by the ray. After the last internal reflection, a path of length
[
a2 −

(
a

|n| sin θ

)2
] 1

2

−
[
ρ2 −

(
a

|n| sin θ

)2
] 1

2

(23)

The total length of the path taken by the ray is given as

(2q − 1)

[
a2 −

(
a

|n| sin θ

)2
] 1

2

−
[
ρ2 −

(
a

|n| sin θ

)2
] 1

2

(24)

Then, according to the GO, the phase of the incident wave must take

y

x

F (ρ, φ)

P (a, θ)

θ

Figure 3. The physical picture
of the transmission by the upper
ray in a DNG cylinder for q = 3.
The first intersection of the upper
ray with the field circle for q = 3.

y

x

F (ρ, -φ)

P (a, -θ)

θ

Figure 4. The physical picture
of the transmission by the lower
ray in a DNG cylinder for q = 3.
The first intersection of the lower
ray with the field circle for q = 3.
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the following form:

−β cos(θ)− |n|k0



(2q − 1)

[
a2 −

(
a

|n| sin θ

)2
] 1

2

−
[
ρ2 −

(
a

|n| sin θ

)2
] 1

2



 (25)

The expression in (25) is the same as the expression in (21). Hence,
this is another verification for the fact that the ray of incidence angle
θ forms the field at the point (ρ, φ). The amplitude verification of this
fact is to be carried out numerically by comparing the steepest descent
method (SDM) results with the Mie series results.

Now, the physical picture for the lower ray, i.e., the ray incident
on the point P (a,−θ), is to be drawn and verified since the lower ray
is critical in the field formation by two-rays. This field formation is
represented by the first part of the integrand of the first integral in (8)
and is shown in Figure 4.

For this case, the Debye approximation of the related integrand is
to be made after using the following relation for the Hankel function
of the second kind:

H(2)
v (z) = ejvπH

(2)
−v (z) (26)

The Debye approximation is then made by replacing v by −v in
Equation (13). If the Debye approximation of the first part of the
first integrand is denoted by A(v) exp[f(v)], then

A(v) =
(

2
π

) 1
2

(
β2−v2

)− 1
4

(
(|n|k0ρ)2−v2

)− 1
4

(|α|2 − v2)−
1
4

T21(R11)q−1ej(2q−1)π
4 (27)

f(v) = j

[
− (

β2 − v2
) 1

2 +
(
(|n|k0ρ)2 − v2

) 1
2 − (2q − 1)

(|α|2 − v2
) 1

2

]

+j(−v)
[
cos−1

(−v

β

)
− cos−1

( −v

|n|k0ρ

)

+(2q − 1) cos−1

(−v

|α|
)

+ φ− 5π

2

]
(28)

The saddle point equation is obtained from f ′(v) = 0 as follows:

j(−1)
[
cos−1

(−v

β

)
− cos−1

( −v

|n|k0ρ

)

+(2q − 1) cos−1

(−v

|α|
)

+ φ− 5π

2

]
= 0 (29)
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Let the variable transformation

v = β sin(−x) (30)

be used in the saddle point equation to attain the following form:

−x− 2π − cos−1

(
a
|n| sinx

ρ

)
+ (2q − 1) cos−1

(
sinx

|n|
)

= −φ (31)

A geometrical relation can be obtained between the field point angle
and the incidence angle of the lower ray for a general q using the
physical picture in Figure 4 as follows:

−θ − cos−1

(
a
|n| sin θ

ρ

)
+ (2q − 1) cos−1

(
sin θ

|n|
)

= −φ (32)

If Equations (31) and (32) are compared to each other, then it can be
determined that

x = θ − 2π (33)

This means that the field at the point F (ρ,−φ) is formed by the lower
ray of the incidence angle −θ.

The phase of the steepest descent evaluation of the integral
corresponding to the lower ray is
[(

(|n|k0ρ)2 − v2
) 1

2 − (2q − 1)
(|α|2 − v2

) 1
2

]

v=β sin(−θ)

−β cos(θ) (34)

Before arriving at the field point, the lower ray takes the path of the
same length as the upper ray. Hence, the total phase of the lower ray
at the field point is given by Equation (25) which is the same as the
expression in (34). Hence, the field formation at the point F (ρ,−φ) is
verified from the phase viewpoint.

Up to this point, the physical picture for the first part of the
integral in (8) which contains the H

(2)
v (|n|k0ρ) function has been

drawn. It has been observed that this integral represents the field
formation as a result of the first intersection of a ray with the field
circle. From another point of view, this ray is an incoming ray. It is
time to describe the field formation mechanism for the second part of
the integral that has the H

(1)
v (|n|k0ρ) function.

The Debye approximation of the second part of the second integral
in (8) is denoted by A(v) exp[f(v)] where

A(v) =
(

2
π

) 1
2

T21R
q−1
11

[
(nk0ρ)2 − v2

]− 1
4
(
β2 − v2

)− 1
4

(α2 − v2)−
1
4

ej(2q+1)π
4 (35)
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f(v) = j

[
− (

β2 − v2
) 1

2 −
(
(|n|k0ρ)2 − v2

) 1
2 − (2q − 1)

(|α|2 − v2
) 1

2

]

+jv

[
cos−1

(
v

β

)
+ cos−1

(
v

|n|k0ρ

)

+(2q − 1) cos−1

(
v

|α|
)

+ φ− π

2

]
(36)

The saddle point equation, f ′(v) = 0, is

j

[
cos−1

(
v

β

)
+ cos−1

(
v

|n|k0ρ

)
+ (2q − 1) cos−1

(
v

|α|
)

+ φ− π

2

]
= 0

(37)
Using the variable transformation v = β sin(x) in the saddle point
equation yields the following form:

−x + cos−1

(
a
|n| sinx

ρ

)
+ (2q − 1) cos−1

(
sinx

|n|
)

= −φ (38)

From Figure 5, a geometrical relation between the upper ray incidence
angle and the field angle can be derived as follows:

−θ + cos−1

(
a
|n| sin θ

ρ

)
+ (2q − 1) cos−1

(
sin θ

|n|
)

= −φ (39)

If Equation (38) is compared to Equation (39), then it can be observed
that x = θ. Hence, the solution of the saddle point equation is the
incidence angle of the upper ray.

The steepest descent evaluation of the integral has the following
phase part:
[
−

(
(|n|k0ρ)2 − v2

) 1
2 − (2q − 1)

(|α|2 − v2
) 1

2

]

v=β sin θ

− β cos(θ) (40)

The upper ray of phase −β cos θ takes a path of length

2

[
a2 −

(
a

|n| sin θ

)2
] 1

2

(41)

before each internal reflection. After the last internal reflection, there
is a path of length

[
a2 −

(
a

|n| sin θ

)2
] 1

2

+

[
ρ2 −

(
a

|n| sin θ

)2
] 1

2

(42)
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to arrive at the field point. The total path length is then

(2q − 1)

[
a2 −

(
a

|n| sin θ

)2
] 1

2

+

[
ρ2 −

(
a

|n| sin θ

)2
] 1

2

(43)

According to the GO, the final phase of the ray must be as follows:

−β cos(θ)− |n|k0



(2q − 1)

[
a2 −

(
a

|n| sin θ

)2
] 1

2

+

[
ρ2 −

(
a

|n| sin θ

)2
] 1

2



 (44)

The expression in (40) is the same as the one in (44). Hence, the
physical picture in Figure 5 is verified in terms of the phase. The
amplitude verification will be made by comparing the steepest descent
method results with the Mie series results.

y

x

F (ρ, φ)

P (a, θ)

θ

Figure 5. The physical picture of
the transmission by the upper ray
in a DNG cylinder for q = 3. The
second intersection of the upper
ray with the field circle for q = 3.

y

x

F (ρ, -φ)

P (a, -θ)

θ

Figure 6. The physical picture of
the transmission by the lower ray
in a DNG cylinder for q = 3. The
second intersection of the lower
ray with the field circle for q = 3.

The physical picture shown in Figure 6 is to be proven now. The
physical picture is related with the first part of the second integral
in (8). After the application of the Debye approximation using the
relation

H(1)
v (z) = e−jvπH

(1)
−v (z) (45)
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the integrand can be written as A(v) exp[f(v)] where

A(v) =
(

2
π

) 1
2

(
β2−v2

)− 1
4

(
(|n|k0ρ)2−v2

)− 1
4

(|α|2 − v2)−
1
4

T21(R11)q−1ej(2q+1)π
4 (46)

f(v) = j

[
− (

β2 − v2
) 1

2 −
(
(|n|k0ρ)2 − v2

) 1
2 − (2q − 1)

(|α|2 − v2
) 1

2

]

+j(−v)
[
cos−1

(−v

β

)
+ cos−1

( −v

|n|k0ρ

)

+(2q − 1) cos−1

(−v

|α|
)

+ φ− 5π

2

]
(47)

The saddle point equation is

j(−1)
[
cos−1

(−v

β

)
+ cos−1

( −v

|n|k0ρ

)

+(2q − 1) cos−1

(−v

|α|
)

+ φ− 5π

2

]
= 0 (48)

The variable transformation v = β sin(−x) yields the following form
for the saddle point equation:

−x− 2π + cos−1

(
a
|n| sinx

ρ

)
+ (2q − 1) cos−1

(
sinθ

|n|
)

= −φ (49)

The geometrical relation between the field point angle and the ray
incidence angle can be derived from Figure 6 as

−θ + cos−1

(
a
|n| sin θ

ρ

)
+ (2q − 1) cos−1

(
sin θ

|n|
)

= −φ (50)

If Equation (48) is compared with Equation (49), then it can be
determined that

x = θ − 2π (51)
which means that the lower ray forms the field at the field point shown
in Figure 6.

The phase of the steepest descent evaluation of the integral is[
−

(
(|n|k0ρ)2 − v2

) 1
2 − (2q − 1)

(|α|2 − v2
) 1

2

]

v=β sin θ

− β cos(θ) (52)

Before arriving at the field point, the lower ray takes the path of the
same length as the upper ray. Hence, the total phase of the lower ray
at the field point is given by Equation (44) which is the same as the
expression in (51). Hence, the field formation at the point F (ρ,−φ) is
verified from the phase viewpoint.
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4. NUMERICAL RESULTS AND DISCUSSION

The Mie series results for the qth term of the Debye series of the
transmitted field is given in [26] as follows:

Etq =
∞∑

l=−∞

j−l

2
e−jl2qπT21R

q−1
11

H
(2)
l (β)

H
(1)
l (|α|)

[
H

(2)
l (|α|)

H
(1)
l (|α|)

]q−1

H
(2)
l (|n|k0ρ)

+
∞∑

l=−∞

j−l

2
e−jl(2q−2)πT21R

q−1
11

H
(2)
l (β)

H
(1)
l (|α|)

[
H

(2)
l (|α|)

H
(1)
l (|α|)

]q−1

H
(1)
l (|n|k0ρ) (53)

The first series in (52) is compared to the steepest descent evaluation
of the first integral in (8). The same comparison is performed between
the second series in (52) and the steepest descent evaluation of the
second integral in (8). The results of these comparisons are displayed
for the following parameters:

n = 10
β = 50π

|n|k0ρ =
29
38

(54)
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Figure 7. Mie series versus SDM, first intersection, q = 2.
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Figure 8. Mie series versus SDM, first intersection, q = 3.
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Figure 9. Mie series versus SDM, first intersection, q = 4.
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Figure 10. Mie series versus SDM, first intersection, q = 5.
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Figure 11. Mie series versus SDM, first intersection, q = 6.
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Figure 12. Mie series versus SDM, first intersection, q = 7.

The percentage (%) error is defined as follows:

% error =
|Mie series result− SDM result|

|Mie series result| (55)

The figures from Figures 7 to 15 show that the Mie series results are
in good agreement with the SDM results in a certain range of q, the
index of the Debye term. In this way, the amplitude verification of the
physical picture for the first intersection is performed.

The physical picture breaks down when q becomes 10 for the first
intersection results. The reason of this failure can be determined if the
geometrical relation between the incidence angle and the field angle,
i.e., Equation (18), is plotted in Figure 16 for q values up to 10. For
q = 10, the field angle starts from 180◦, monotonically increases to and
crosses 360◦, then stops at 10.6◦. Remembering the role of the lower
ray which is the field formation at the field point F (ρ,−φ) when the
field point of the upper ray is F (ρ, φ) reveals the fact that the field
points in the field angle range [349.4◦, 360◦] ∩ [0◦, 10.6◦] are actually
illuminated by both the upper ray and the lower ray. Hence, the single-
ray picture is not valid in the field angle range [349.4◦, 360◦]∩[0◦, 10.6◦]
which is a double-ray region. The single-ray picture is not valid in the
transition region from the single ray region to the double ray region
either. In these two regions, there is no agreement between the Mie
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Figure 13. Mie series versus SDM, first intersection, q = 8.
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Figure 14. Mie series versus SDM, first intersection, q = 9.
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Figure 15. Mie series versus SDM, first intersection, q = 10.

Table 1. For large |n| (|n| ≥ 10), the inequalities satisfied by q values
for which double-ray field formation first appears.

field point type inequality satisfied by q

first intersection, DNG (minimum even q) > n
(

π
4

)
+ 1

2
a
ρ + 1

2

second intersection, DNG (minimum odd q) > n
(

π
4

)− 1
2

a
ρ + 1

2

first intersection, DPS (minimum odd q) > n
(

1
2

)
+ 1

2
a
ρ + 1

2

second intersection, DPS (minimum even q) > n
(

1
2

)− 1
2

a
ρ + 1

2

series results and the SDM results.
The figures from Figures 17 to 24 show that the Mie series results

are in good agreement with the SDM results in a certain range of q,
the index of the Debye term. In this way, the amplitude verification
of the physical picture for the second intersection is performed. When
q becomes equal to 9, the physical picture for the second intersection
breaks down. If the plot of Equation (39) is examined for q = 9 in
Figure 25, then it can be observed that the field angle starts from
180◦, increases up to and crosses 360◦, then stops at 14.17◦. Due
to the role of the lower ray in the field formation, the field angle
range [345.83◦, 360◦]∩[0◦, 14.17◦] is a double-ray region. The single-ray
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picture is not valid in the double ray region and the region of transition
from the single-ray region to the double-ray region. Hence, in these
angle ranges, the Mie series results and the SDM results do not agree
with each other.

If the geometrical relation between the incidence angle and the
field angle is analyzed, then some differences will be detected between
a DNG cylinder and a DPS cylinder. In the Table 1, the minimum
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Figure 16. Incidence angle (degrees) versus field angle (degrees), first
intersection.
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Figure 17. Mie series versus SDM, second intersection, q = 2.

q values for which the double-ray field formation appears first are
tabulated for large |n| (|n| ≥ 10). If these relations are examined,
then it can be determined that the q value for the first appearance of
the double-ray field formation in a DNG cylinder is always larger than
the q value for a DPS cylinder. In addition, the difference between
the q value for a DNG cylinder and the q value for a DPS cylinder
increases as |n| increases. Hence, in a DNG cylinder, simple single-ray
tracing can be performed for a longer range of q value.
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Figure 18. Mie series versus SDM, second intersection, q = 3.
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Figure 19. Mie series versus SDM, second intersection, q = 4.
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Figure 20. Mie series versus SDM, second intersection, q = 5.
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Figure 21. Mie series versus SDM, second intersection, q = 6.
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Figure 22. Mie series versus SDM, second intersection, q = 7.
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Figure 23. Mie series versus SDM, second intersection, q = 8.
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Figure 24. Mie series versus SDM, second intersection, q = 9.

20 40 60 80

20

40

60

80

100

200

220

240

260

280

300

20

40

60

80

100

120

140

200

220

240

260

280

300

320

(a) q = 2 (b) q = 3

(c) q = 4 (d) q = 5

field angle

incidence angle

field angle

incidence angle

field angle

incidence angle

field angle

incidence angle

20 40 60 80

20 40 60 80 20 40 60 80

50

100

150

250

300

350

(e) q = 6 (f) q = 7

field angle

incidence angle

field angle

incidence angle
20 40 60 80 20 40 60 80



Progress In Electromagnetics Research B, Vol. 49, 2013 453

50

100

150

50

100

150

200

250

300

350

(g) q = 8 (h) q = 9

field angle

incidence angle

field angle

incidence angle
20 40 60 80 20 40 60 80

Figure 25. Incidence angle (degrees) versus field angle (degrees),
second intersection.

5. CONCLUSION

By applying the modified Watson transformation to the Mie series for
the transmitted field due to an incident high frequency plane wave and
using the Debye series expansion in the resulting integral expression,
the physical picture of the transmission process in the geometrically lit
region has been drawn for the single-ray field formation. It has been
proven that the field at F (ρ,−φ) is formed by a lower ray which is
symmetric to the upper ray which establishes the field at the point
F (ρ, φ). The role of the lower ray in the double-ray field formation has
been explained. It has been shown for |n| ≥ 10 that simple single-ray
tracing can be carried out for a longer q range in a DNG cylinder than
in a DPS cylinder. The fact that the difference between the range
lengths increases as |n| increases has also been stated.
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