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Abstract—This paper presents herein experiments and calculations of
electromagnetic induction between jointless track circuits (JTCs) and
track-circuit readers (TCRs). The paper uses transmission-line theory
to simulate JTC currents ahead of shunt points and electromagnetism
to calculate voltages induced in the TCR antenna. Based on these
calculations, the JTC-to-TCR range is defined. The paper derives
expressions for the amplitude and phase of the voltage induced in the
TCR antenna by the JTC current and uses them to quantitatively
analyze the train control system. Experiments verify the conclusions
reached based on the calculations.

1. INTRODUCTION

Jointless track circuits (JTCs) are a key component of train
control systems (TCSs) and are used for train detection. Through
electromagnetic induction, JTC currents in the rails can induce
voltages in track-circuit-reader (TCR) antennae, enabling continuous
transmission of train control information.

Currently, with the rapid development of high-speed railways,
train operations demand an ever-higher level of speed control.
Therefore, the track-train continuous information transmission process
(TTCITP) between JTCs and TCRs, which transfers information
about reliability and safety, must be fully adapted to the requirements
of high-speed railways. To do this, TTCITP theory must be perfected
to provide the basis for further research into the reliability and safety
of TCSs. However, because development of high-speed railways is at
different stages around the world, the railway devices and operating
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conditions differ; hence, the TTCITP does not attract sufficient
theoretical attention. To date, most research focuses either on JTCs
or TCRs separately.

For JTC, models of rail impedance and adjacent track interference
were based on the finite element method [1, 2]. In [3], the JTC-
signal frequency and phase were designed. In [4], distributive track-
circuit parameters were calculated using a semidiagonal matrix of
finite elements. In [5], a track circuit was digitally simulated via
boundary-condition analysis, and the adaptability of ballastless track
circuits was studied in [6]. Moreover, we have presented a model
of the normal-state rail-surface voltage and that of the short-circuit
current of the leading wheels and axle of the locomotive in the shunted
state [7, 8]. We also systematically analyzed the influence on the
JTC of compensation capacitors, ballast resistance, and transmitter
voltage [9]. For TCR, the magnetic-field distribution of an infinite-
length direct-current circuit was used to develop a static model of
electromagnetic induction by the track-circuit current of voltage in
the TCR antenna [10]. Finally, we used transmission-line theory to
study the transmission of voltage induced on TCR antenna to the host
computer [11].

This brief review of previous research shows that previous studies
of JTC and TCR do not analyze JTC and TCR as a whole
system but rather model the individual devices. Although research on
electromagnetic induction from JTC to TCR is available in [10], the
main problems studied treat the track circuit as a direct-current circuit
of infinite length and neglect the ballast resistance and compensation
capacitors. Such an approach is inconsistent with real operating
conditions, physical structures, and signal-transformation processes;
therefore, the conclusions of the research require experimental
verification. Furthermore, the voltage induced in the TCR antenna
is generally considered to be linear in the short-circuit current of the
leading wheels and axle of the locomotive [12, 13] and to depend on
the track-circuit-signal carrier frequencies [14]. However, to date,
no theoretical formula explains this linear relationship; therefore,
it is difficult to ascertain the linear relationship parameters. This
paper addresses these shortfalls by studying the entire JTC and TCR
together.

The paper is organized as follows: Section 2 briefly introduces
the work principle and the structures of JTC and TCR. Section 3
introduces the dynamic JTC signal current model. Section 4
introduces the model of the JTC-TCR electromagnetic-induction
process. Section 5 analyzes the amplitude and phase of the voltage
induced in the TCR antenna, the JTC current, and the relationship
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between the two. Section 6 presents experiments that verify the
calculated results for amplitude and phase. Finally, Section 7 concludes
the paper.

2. WORK PRINCIPLE AND STRUCTURES OF JTC
AND TCR

As shown in Figure 1, JTCs consist essentially of a transmitter, a
transmitting cable, transmitting electrical tuning units, track lines
with two rails and equal-spaced compensation capacitors, receiving
electrical tuning units, a receiving cable, and a receiver. The TCR is
an onboard device that consists of TCR antennae, TCR transmission
cable, and TCR host computer.

Figure 1. Basic structure and working principle of JTC and TCR.

According to installation specifications [12], one TCR antenna is
installed ahead of the leading locomotive wheels and over each rail.
As shown in Figure 2, the two antennae are perpendicular to their
respective rail. The performance and internal structure of the two
antennae are identical; both comprise an iron core about which two
independent coils are wound. In a given antenna, each coil is in series
with a similarly positioned coil from the other antenna to make a
diploid redundant structure, which improves the reliability of the TCR
antennae.

To control train speed and detect train occupancy, the transmitter
generates a JTC signal containing train target speed. The signal goes
through the transmitting cable, transmitting electronic tuning units
and then through the rails into the receiving end of JTC. The JTC
signal Uf (t) generated by the transmitter is [13, 14]

Uf (t) = Af cos[ω(t) + φ0], ω(t) = 2πfct + 2π∆fp

∫
sm(t)dt, (1)
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(b)(a)

Figure 2. Basic structure and position of TCR antennae. (a) Front
view. (b) Side view.

where Af , fc, ∆fp, and φ0 are the amplitude, carrier frequency,
frequency offset, and initial JTC-signal phase, respectively. The
quantity sm(t) is a 50% duty cycle square-wave signal of frequency
fd corresponding to a specific train target speed. Table 1 details the
frequency parameters of JTC signal.

Table 1. Frequency parameters of JTC signal.

JTC Type ZPW-2000A JTC

Domestic

frequency-shift

JTC

fc (Hz)

Up-train

direction
2001.4 1998.7 2601.4 2598.7 650 850

Down-train

direction
1701.4 1698.7 2301.4 2298.7 550 750

∆fp (Hz) ±11 ±55

fd (Hz) 10.3 + 1.1× n, n = 0 ∼ 17

7,8,8.5,9,9.5,11,

12,12.5,13.5,15,16,

16.5,17.5,18.5,20,

22.5,23.5,24.5,26

When a train enters a track circuit, the JTC signal is shunted
by the leading wheels and axle of the locomotive, following which
most of the JTC signal flows back into the transmitter with only
a small portion entering the receiver. Simultaneously, voltage is
induced electromagnetically in the TCR antenna by the JTC and
then transmitted into the TCR host computer through the TCR
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transmission cable. The train target speed is obtained by demodulation
and decoding in the TCR host computer and then transmitted to the
vital computer for train control.

3. MODEL OF JTC CURRENT IN SHUNTED STATE

To study the relationship between the JTC current and voltage induced
in the TCR antenna, we model and analyze the distribution of JTC
current ahead of the leading wheels and axle of the locomotive. Let
the near end of the transmitting units be the origin point o. The JTC
current Id(x, x1, t) of every point x1 ∈ [0, x] is modeled by transmission
line theory [15] (Figure 3).

Figure 3. Distribution model of JTC current in shunted state.

Rf is the equivalent shunt resistance of the train, ~Nc and ~Ne are
the equivalent four-terminal networks (EFTNs) of the transmitting
cable and transmitting electronic tuning units, respectively. ~Ng(x1)
and ~Ng(x− x1) are the EFTNs for the track lines from o to x1 and x1

to x, respectively. With the shunt point at x, ~Zd(x, x1) is the apparent
impedance from x1 to the receiving end and Id(x, x1, t) is the JTC
current at x1.

According to Figure 3 and Eq. (1), Id(x, x1, t) is

Id(x, x1, t) = Ad(x, x1) cos[ω(t) + φd(x, x1)]. (2)

Here, Ad(x, x1) and φd(x, x1) denote the amplitude and phase of
Id(x, x1, t), respectively, and are given as [16]

Ad(x, x1) = Af

/∣∣∣ ~Ns11(x1)~Zd(x, x1) + ~Ns12(x1)
∣∣∣ ,

φd(x, x1) = φ0 − arg
[

~Ns11(x1)~Zd(x, x1) + ~Ns12(x1)
]
,

(3)
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where | · | is the complex modulus operator, ~Ns11(x1) and ~Ns12(x1)
are the characteristic parameters of ~Ns(x1), and ~Ns(x1) is the overall
EFTN of devices from the transmitting cable to x1. ~Ns(x1) must
satisfy

~Ns(x1) =

[
~Ns11(x1) ~Ns12(x1)
~Ns21(x1) ~Ns22(x1)

]
= ~Nc × ~Ne × ~Ng(x1), (4)

where ~Ng(x1) is the EFTN of track lines from x1 to o and is

~Ng(x1) =

[
~Ng11(x1) ~Ng12(x1)
~Ng21(x1) ~Ng22(x1)

]
=

(
~Nt

)k1 × ~Ny(x1, k1lT /2). (5)

Here, ~Nt is the EFTN of a compensation unit, which consists of a
compensation capacitor C and two track lines of length lT /2, which
is half the distance between adjacent compensation capacitors. If ~Ncp

and ~Ngg(lT /2) are the EFTNs of the compensation capacitor C and
the track lines of length lT /2, respectively, then

~Nt =

[
~Nt11

~Nt12

~Nt21
~Nt22

]
= ~Ngg(lT /2)× ~Ncp × ~Ngg(lT /2), (6)

~Ngg(lT /2) =
[

cosh (~γg · lT /2) ~zg sinh (~γg · lT /2)
sinh (~γg · lT /2) /~zg cosh (~γg · lT /2)

]
. (7)

If ~zg and ~γg are the impedance and propagation constant of the
rails, respectively, then ~zd and ~γd are the impedance of the rail and
ballast resistance [8, 11], respectively, and are given by [17]

~zg =
√

~zd~γd, ~γg =
√

~zd/~γd. (8)
If k1 is the number of complete compensation units in the track

lines from o to x1, then ~Ny(x1, k1lT /2) is the EFTN of the remaining
part (which cannot constitute a complete compensation unit) of the
track lines from o to x1, except for the k1 complete compensation
units. ~Ny(x1, k1lT /2) is given by

~Ny(x1, k1lT /2) =





~Ngg(x1 − k1lT /2),
k1lT /2 ≤ x1 < (k1 + 1)lT /2
~Ngg(xT /2)× ~Ncp × ~Ngg[x1 − (k1 + 1)lT /2],
(K1 + 1)lT /2 ≤ x1 < (k1 + 2)lT /2,

(9)

and ~Zd(x, x1) is [18–20]
~Zd(x, x1)

=
(
~Ng11(x−x1)Rf + ~Ng12(x−x1)

)/(
~Ng21(x−x1)Rf + ~Ng22(x−x1)

)
,(10)
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where ~Ng11(x−x1) and ~Ng12(x−x1) are the characteristic parameters
of ~Ng(x− x1), which is the EFTN of the track lines from x1 to x and
satisfies

~Ng(x− x1) =

[
~Ng11(x− x1) ~Ng12(x− x1)
~Ng21(x− x1) ~Ng22(x− x1)

]

= ~Ny(x1, k1lT /2)−1 ×
(

~Nt

)k2+1
, (11)

where k2 is the number of the complete compensation units in the track
lines from x1 to x.

According to Eqs. (3)–(11), Ad(x, x1) and φd(x, x1) can be
simulated when the shunt point is the entry point (x = lg, where
lg is the total JTC length) and the JTC midpoint (x = lg/2),
respectively (Figure 4). According to the JTC adjustment sheet [21],
the corresponding simulation settings are lg = 960 m, fc = 2601.4Hz,
Af = 78V, rd = 3Ω · km, Rf = 0.25Ω, and the total number of
compensation capacitors in one JTC is k = 12.

Figure 4 shows that overall, Ad(x, x1) and φd(x, x1) both gradually
increase from the receiving to the transmitting end of the JTC. The
detailed variations of Ad(x, x1) and φd(x, x1) depend on the locations
of the compensation capacitors; between two adjacent compensation
capacitors, the variations of Ad(x, x1) and φd(x, x1) are small and
relatively stable. However, Ad(x, x1) and φd(x, x1) both use the
compensation capacitors as demarcation points; hence, on each side of
the compensation capacitors Ad(x, x1) oscillates stepwise and φd(x, x1)
gradually increases stepwise. In addition, Ad(x, x1) and φd(x, x1)
depend similarly on the shunt point x; namely Ad(x, x1), x1 ∈ [0, C6]
and Ad(x, x1), x1 ∈ [C6, C12], and φd(x, x1), x1 ∈ [0, C6] and
φd(x, x1), x1 ∈ [C6, C12] are essentially identical; the only difference

(b)(a)

Figure 4. Simulation of (a) amplitude Ad(x, x1) and (b) phase
φd(x, x1) of Id(x, x1, t), where x = lg, x = lg/2, x1 ∈ [0, x] with lg
being the total JTC length.
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being that Ad(x, x1), x1 ∈ [0, C6] and φd(x, x1), x1 ∈ [0, C6] are closer
to the transmitting end of the track circuit and hence are greater than
Ad(x, x1), x1 ∈ [C6, C12] and φd(x, x1), x1 ∈ [C6, C12].

Note that the compensation capacitors, which are in parallel with
the rails lines, cause ~Zd(x, x1), ~Ns11(x1), and ~Ns12(x1) to vary on each
side; therefore, they directly affect the impedance-matching capability
of the JTC, thereby causing large variations between the incident and
reflected signals. When x1 lies between two adjacent compensation
capacitors, there are no compensation capacitors within in this region;
hence, ~Zd(x, x1), ~Ns11(x1), and ~Ns12(x1) are smoother in this region.

4. MODEL OF ELECTROMAGNETIC INDUCTION
BETWEEN JTC AND TCR

As discussed above, the compensation capacitors cause Ad(x, x1)
and φd(x, x1) between the shunt point x and the origin o to vary
discontinuously, which differs from the original mechanical-insulation
track circuit. Therefore, to study how the stepwise variation of the
JTC current influences the voltage induced in the TCR antenna, we
model the electromagnetic induction between the JTC and TCR. This
mainly consists of calculating the magnetic flux in the TCR antenna,
delimiting the region in which that JTC current mainly contributes
to the induced voltage, and mathematically describing the voltage
induced in the TCR antenna.

4.1. Calculation of Magnetic Flux in TCR Antenna

As shown in Figure 5, we take O to be the origin of a Cartesian
coordinate system. The dimensions of the TCR antenna are ab = 2lb,
ad = 2la, and ag = 2lc, the widths of the coils are lq, the number of
turns is qm, the distance from the iron-core center to the inner edge of
the coils is lp, the height from the lower edge of the iron core to the rail
surface is lh, the horizontal distance from the leading-wheel axle center
to the TCR antenna center is lm, and e(x0, y0, z0) is an arbitrary point
on the TCR-antenna induction coils.

The Biot-Savart law [22, 23] gives the magnetic-induction intensity
Be [24] generated by the JTC current in the rails from x to x1 (x1 ∈
[0, x]) at the arbitrary point e(x0, y0, z0) as

Be(x, x1, t, x0, y0, z0) =
µ0µr

4π

∫ x

x1

Id

(
x, x′, t

) (
y2
0 + z2

0

)1/2

(√
(|x0 − x′|)2 + y2

0 + z2
0

)−3

dx′, (12)
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Figure 5. Coordinate system for TCR antenna, rails, and leading
wheels.

where µ0 is the permeability of vacuum and µr the relative permeability
of the iron core. The corresponding magnetic flux Φe(x, x1, z0, t) of Sz

is [25]

Φe(x, x1, z0, t) =
qm

lq

lh+2la∫

lh

x−lm+lb∫

x−lm−lb

Be(x, x1, t, x0, y0, z0)

y0

(
y2
0 + z2

0

)−1/2
dx0dy0. (13)

Let the total magnetic flux in each induction coil of a TCR antenna
be Φ1(x, x1, t) and Φ2(x, x1, t), where

Φ1(x, x1, t) = Φ11(x, x1, t)− Φ12(x, x1, t) = Φ2(x, x1, t)
= Φ22(x, x1, t)− Φ21(x, x1, t), (14)

with Φ11(x, x1, t) and Φ22(x, x1, t) being the total self-magnetic flux of
each induction coil in a TCR antenna. According to Eq. (13), they can
be expressed as [25]

Φ11(x, x1, t) = Φ22(x, x1, t) =
∫ lp+lq

lp

Φe(x, x1, z0, t)dz0. (15)

The fluxes Φ12(x, x1, t) and Φ21(x, x1, t) are the mutual magnetic fluxes
of the two induction coils in one TCR antenna and can be expressed
as [25]

Φ12(x, x1, t) = Φ21(x, x1, t) = Ic(x, x1, t)Mc, (16)
where Ic(x, x1, t) is the self-inductance current in the coils:

Ic(x, x1, t) =
1
~zc

dΦ11(x, x1, t)
dt

. (17)
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In Eq. (17), ~zc is the impedance of one coil and Mc (H) the mutual-
induction coefficient of the two coils in one TCR antenna [26, 27]:

Mc =

lp+lq∫

lp

lh+2la∫

lh

x−lm+lb∫

x−lm−lb

[Mab(x0, y0, z0) + Mbc(x0, y0, z0)

+Mcd(x0, y0, z0) + Mda(x0, y0, z0)]dx0dy0dz0, (18)

where Mab(x0, y0, z0), Mbc(x0, y0, z0), Mcd(x0, y0, z0), and Mda(x0, y0,
z0) (H/m3) are the magnetic-induction coefficients at the arbitrary
point e(x0, y0, z0) in one coil in the directions ab, bc, cd, and da. These
coefficients connect the self-inductance current Ic(x, x1, t) of the other
coil of the same TCR antenna (Figure 6). They are given by

Mab(x0, y0, z0) =
qmµ0µr

4π(z0 + lp)

(
e′1a1

ea2
− e′1b1

eb2

)
,

Mbc(x0, y0, z0) =
qmµ0µr

4π(z0 + lp)

(
e′2b1

eb2
− e′2c1

ec2

)
,

Mcd(x0, y0, z0) =
qmµ0µr

4π(z0 + lp)

(
e′3c1

ec2
− e′3d1

ed2

)
,

Mda(x0, y0, z0) =
qmµ0µr

4π(z0 + lp)

(
e′4d1

ed2
− e′4a1

ea2

)
,

(19)

where ea2, eb2, ec2, and ed2 are the distances from e(x0, y0, z0) in one
coil to a2, b2, c2, and d2 in the other coil of the same TCR antenna,
respectively. They are given by

ea2 =
√

(x0 − x + lm − lb)2 + (y0 − lh)2 + (z0 + lp)2,

ec2 =
√

(x0 − x + lm + lb)2 + (y0 − lh − 2la)2 + (z0 + lp)2,

eb2 =
√

(x0 − x + lm + lb)2 + (y0 − lh)2 + (z0 + lp)2,

ed2 =
√

(x0 − x + lm − lb)2 + (y0 − lh − 2la)2 + (z0 + lp)2.

(20)

e′1, e′2, e′3, and e′4 are the perpendicular points of e(x0, y0, z0) in the
directions of ab, bc, cd, and da, respectively. The quantities a1, b1, c1,
and d1 are located in the same coil as e, and e′1a, e′1b, e′2b, e′2c, e′3c,
e′3d, e′4d and e′4a are the distances from e′1 to a, e′1 to b, e′2 to b, e′2 to
c, e′3 to c, e′3 to d, e′4 to d, and e′4 to a, respectively. They satisfy

e′1a = e′3d = |x0 − x + lm − lb| , e′2b = e′4a = |y0 − lh| ,
e′1b = e′3c = |x0 − x + lm + lb| , e′2c = e′4d = |y0 − lh − 2la| .

(21)
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Figure 6. Coordinate system of TCR antenna.

4.2. Delimiting JTC-to-TCR Range

Based on the discussion above, the magnetic flux in the TCR antenna
generated by the JTC currents in the track lines from x to o can be
calculated using Eqs. (12)–(21). Because the JTC current ahead of
the shunt point fluctuates stepwise, with the compensation capacitors
serving as demarcation points, the JTC-to-TCR range (in which the
JTC current contributes the most to the induced voltage) must be
determined to simplify the calculation of the electromagnetic induction
between the JTC and the TCR antenna. This range can be determined
by calculating the contribution to the magnetic flux in the TCR
antenna by the JTC current from every point in the track lines ahead
of the shunt point x.

Based on the simulation settings given for Figure 4 and using
Eqs. (12)–(21), the total magnetic flux Φ1(x, x1, t), x1 ∈ [0, x] in the
TCR-antenna induction coils is calculated for several shunt points.
The simulation step is ∆x = 0.001m, the number of simulation steps
is j = 0, 1, . . . , bx/∆xc, where

x1 = x− j∆x. (22)
Figure 7 shows the simulation result. We find that the JTC-to-TCR
range is independent of the shunt points and that the flux contribution

Figure 7. Simulation of Φ(x, x1, t)(x = 960, x = 480, x = 10).
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is approximately the same from the origin to the shunt point as from
three meters before the shunt point to the shunt point. Thus,

Φ1(x, x1, t), x ∈ [0, x] ≈ Φ1(x, x1, t), x1 ∈ [x− 3, x]. (23)

We also analyze the contribution of the current at each point in
the JTC-to-TCR range to the magnetic flux at the TCR antenna. The
magnetic flux at the TCR antenna is

∆Φ1(x, j, t) = Φ1 [x, x− (j + 1)∆x, t]− Φ1(x, x− j∆x, t),

j = 0, 1, 2, . . . , b(3−∆x)/∆xc , x ∈ [0, lg]. (24)

Figure 8 shows the flux change ∆Φ1(x, j, t) between each simulation
step [x−(j+1)∆x, x−j∆x], j = 0, 1, 2, . . . , [(3−∆x)/∆x], x ∈ [0, lg].

Figure 8 shows that the maximum magnetic flux at the TCR
antenna is generated by the JTC current at a point 1.5m before the
shunt point; namely

∆Φ1 (x, b(1.5)/∆xc , t) = max (∆Φ1(x, j, t)) ,

j = 0, 1, 2, . . . , b(3−∆x)/∆xc , x ∈ [0, lg].
(25)

The distance of 1.5 m is not only half of the JTC-to-TCR range, but
also the location of the TCR antenna center.

Figure 8. Simulation of ∆Φ1(x, j, t) (x = 960, x = 480, x = 10).

4.3. Model of Voltage Induced in TCR Antenna

Based on the above conclusions and the Faraday law of electromagnetic
induction [28], the induced voltages ε1(x) and ε2(x) generated in the
two sets of induction coils in a pair of TCR antennae are equal and
can be expressed as

ε1(x) = ε2(x) = −2dΦ1(x, x− 3, t)
dt

= −2dΦ2(x, x− 3, t)
dt

. (26)
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According to Eqs. (14)–(17) and (26), ε1(x) and ε2(x) can be
rewritten as

ε1(x) = ε2(x) = −2
(

dΦ11(x, x− 3, t)
dt

+
Mc

~zd

d2Φ11(x, x− 3, t)
dt2

)

= −2
(

dΦ22(x, x− 3, t)
dt

+
Mc

~zd

d2Φ22(x, x− 3, t)
dt2

)
. (27)

Here supposes a integral function F [fun(·)] as:

F [fun(·)] =
∫ lp+lq

lp

∫ lh+2la

lh

∫ x−lm+lb

x−lm−lb[∫ x

x−3
fun(·)y0

[√
(|x0−x′|)2+y2

0+z2
0

]−3

dx′
]
dx0dy0dz0 (28)

From Eqs. (2), (12), (13), (15), and (27), we find
ε1(x) = ε2(x) = F

[
ak1Ik1

(
x, x′, t

)]
+ F

[
ak2Ik2

(
x, x′, t

)]
, (29)

where
Ik1(x, x′, t) = Ad(x, x′) sin

[
ω(t) + φd

(
x, x′

)]
,

ak1 = µ0µrqm[fc + ∆fpsm(t)]/lq,

Ik2(x, x′, t) = Ad(x, x′) cos
[
ω(t) + φd

(
x, x′

)]
,

ak2 = 2πµ0µrqmMc[fc + ∆fpsm(t)]2/~zclq,

(30)

Note that ak1 and ak2 are both approximately constant because fc,
∆fp, and sm(t) (the parameters of the JTC signal; Table 1) and µ0,
µr, qm, lq, lp, lh, la, lm, lb, and ~zc are all constants, known, and can
be obtained from the inward structure and installation standard of the
TCR antenna [12]. Furthermore, Ik1(x, x′, t) and Ik2(x, x′, t) can be
written as

Ik1(x, x′, t) =Ad(x, x′) cos[φd(x, x′)] sin[ω(t)]
+ Ad(x, x′) sin[φd(x, x′)] cos[ω(t)],

Ik2(x, x′, t) =Ad(x, x′) cos[φd(x, x′)] cos[ω(t)]
−Ad(x, x′) sin[φd(x, x′)] sin[ω(t)].

(31)

Substituting Eq. (31) into Eq. (29), we find
ε1(x) = ε2(x) = aε1(x) sin[ω(t)] + aε2(x) cos[ω(t)], (32)

where
aε1(x) =F [Ad(x, x′)ak1 cos(φd(x, x′))]

− F [Ad(x, x′)ak2 sin(φd(x, x′))],
aε2(x) =F [Ad(x, x′)ak1 sin(φd(x, x′))]

+ F [Ad(x, x′)ak2 cos(φd(x, x′))],

(33)
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If there exists a phase function φε(x) satisfying

cos[φε(x)] = aε1(x)/
√

aε1(x)2 + aε2(x)2,

sin[φε(x)] = aε2(x)/
√

aε1(x)2 + aε2(x)2,
(34)

then inserting Eqs. (32) and (33) into Eq. (31) gives
ε1(x) = ε2(x) = Aε(x) sin {[ω(t)] + φε(x)} , (35)

where Aε(x) and φε(x) are the amplitude and phase of ε1(x) and ε2(x),
respectively, and are given by
Aε(x) =

√
aε1(x)2 + aε2(x)2, φε(x) = angle [aε1(x) + iaε2(x)] . (36)

The operator angle(·) is the complex phase operator and i is the
imaginary unit of complex.

5. DEPENDENCE OF VOLTAGE INDUCED IN TCR
ANTENNA ON AMPLITUDE AND PHASE OF JTC
CURRENT

Comparison of Eqs. (35) and (2) reveals that although electromagnetic
induction between the JTC and TCR may change the corresponding
amplitude and phase, the parameters fc, ∆fp, and fd, remain
unchanged. Therefore, we analyze the electromagnetic induction
between the JTC and TCR from the viewpoints of amplitude and
phase.

5.1. Simulation of Voltage Amplitude and Phase Induced in
TCR Antenna by JTC Current

Based on the simulation settings used for Figure 4 and according to
Eqs. (3) and (36), we simulate the amplitude Aε(x) and phase φε(x),
respectively, of the voltage induced in the TCR antenna, the amplitude
Ad(x, x− lm) and phase φd(x, x− lm) of the JTC current beneath the
center of the TCR antenna, and the amplitude Ad(x, x) and phase
φd(x, x) of the short-circuit current flowing through the leading wheels
and axle of the locomotive. The results of the simulation are shown in
Figures 9 and 10.

5.2. Relationship between Voltage Amplitude and Phase
Induced in TCR Antenna by JTC Current

5.2.1. No Compensation Capacitors in JTC-to-TCR Range

The results shown in Figures 9 and 10 indicate that when there are no
compensation capacitors in the JTC-to-TCR range,

Ad(x, x) ≈ Ad(x, x− lm), φd(x, x) ≈ φd(x, x− lm), (37)
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(c)(b)(a)

(f)(e)(d)

Figure 9. Results of simulation of (a) Aε(x), (b) Ad(x, x − lm),
(c) Ad(x, x), (d) Ad(x, x − lm) − Ad(x, x), (e) ratio of Aε(x) to
Ad(x, x− lm) and (f) ratio of Aε(x) to Ad(x, x).

(b)(a) (c)

(d) (e)

Figure 10. Results of simulation of (a) φε(x), (b) φd(x, x − lm),
(c) φd(x, x), (d) error between φε(x) and φd(x, x − lm), and (e) error
between φε(x) and φd(x, x).
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Eq. (37) can be understood by considering the attenuation constant
α and phase-shift constant β of the JTC. These constants refer to
the amplitude attenuation and phase delay of the JTC signal per unit
length of rail, respectively, and can be expressed by the rail propagation
constant ~γg [Eq. (8)]; namely, α = real(~γg) and β = Im(~γg) [29, 30].
From the parameters of the JTC devices [12], we know that the
amplitude attenuation and phase delay of the JTC signal after flowing
through 3 m of rail are small (∼ 10−3). From Eq. (25), Ad(x, x′) and
φd(x, x′) are approximately equivalent in the range x′ ∈ [x− 3, x]:

{
Ad

(
x, x′

) ≈ Ad (x, x− lm)

φd

(
x, x′

) ≈ φd (x, x− lm)
x′ ∈ [x− 3, x], (38)

Substituting Eq. (38) in Eq. (33), Eq. (35) takes the form

ε1(x) = ε2(x) = kε

√
a2

k1
+ a2

k2
Ad(x, x− lm) cos{[ω(t)] + φ′ε(x)}, (39)

where

kε = F [fun(·) = 1], (40)
φ′ε = −π/2 + angle{[ak1 cos(x, x− lm)− ak2 sin(x, x− lm)]

+i[ak1 sin(x, x− lm) + ak2 cos(x, x− lm)]}. (41)

If we suppose

sin(φk) = ak2/
√

a2
k1

+ a2
k2

, cos(φk) = ak1/
√

a2
k1

+ a2
k2

, (42)

then Eq. (41) gives

φ′ε(x) = −π/2 + φd(x, x− lm) + φk, (43)
φk = angle(ak1 + iak2). (44)

From Eqs. (30) and (39), kε and φk are constant, and owing to
the TCR antenna structure, the induction coefficient Mc is relatively
small and the impedance ~zc of the coil is relative large; thus, Eq. (44)
implies

ak1 À ak2 . (45)

Therefore, Eq. (44) becomes

φk ≈ 0. (46)

Defining a1 as the ratio of Aε(x) to Ad(x, x − lm) and using
Eq. (41), a1 can be written as

a1 = Aε(x)/Ad(x, x− lm) = kε

√
a2

k1
+ a2

k2
≈ kεak1

= kεµ0µrqm[fc + ∆fpsm(t)]/lq, (47)
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because µ0, µr, qm, lq, and kε are constant. For a given JTC, fc and
∆fp are constant from when a train enters the JTC to when it leaves
the JTC. According to Eqs. (39) and (2), the phase difference ∆φd(x)
between the voltage induced in the TCR antenna and the JTC current
is

∆φd(x) = φ′ε(x)− φd(x, x− lm) ≈ −π/2. (48)

For a given JTC, Eqs. (38), (47), and (48) indicate that with no
compensation capacitors in the JTC-to-TCR range, the amplitude of
JTC current is equivalent to that of the short-circuit current, and the
voltage amplitude in the TCR antenna is linear in the JTC current,
whereas the phases differs by about −π/2.

5.2.2. Compensation Capacitors in JTC-to-TCR Range

Figures 9 and 10 show that Ad(x, x′) and φd(x, x′) vary around the
compensation capacitors if these are present in the JTC-to-TCR range.
Thus, we cannot simplify Eq. (36). However, the influence of this
variation on a1 and ∆φd(x) is limited. Comparison of Eqs. (47) and
(48) reveals that the maximum deviations of the amplitude and phase
are 0.03% and 0.018%, respectively. With compensation capacitors
in the JTC-to-TCR range, the amplitude of JTC current cannot be
approximated as the short-circuit current. Only for cases that do not
require high accuracy can the amplitude and phase be approximated
by Eqs. (47) and (48).

6. EXPERIMENTAL VERIFICATION

6.1. Experimental Platform

Figure 11 shows the experimental platform, which mainly consists of
a comprehensive tester, a transmission cable, ballast bed, two rails,
an equivalent shunt resistance, two TCR antennae, two TCR receiving
cable, a TCR host computer, and a TCR lamp. The comprehensive
tester transmits many track circuit signals, including UM-71, ZPW-
2000, and the domestic JTC frequency-shift signal (DFSS), and works
with the TCR host computer to monitor the voltage induced in
the TCR antenna. Here, the train shunt point is simulated by an
equivalent resistance; therefore, the short-circuit current in the rails is
acquired from the measured short-circuit voltage divided by the shunt
resistance.
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Figure 11. Experimental platform.

(b)(a)

Figure 12. (a) Measured voltage induced in TCR antenna and
(b) corresponding JTC current for ZPW2000A JTC.

6.2. Verification of Voltage Amplitude Induced in TCR
Antenna by JTC Current and Their Linear Relationship

With the experimental platform, we measured the voltage induced
in the TCR antenna and the JTC current for ZPW2000A-JTC used
widely. Figure 12 shows the measured induced voltage and the
corresponding measured JTC current and their amplitude envelopes.
Figure 13 shows that the measured ratio Aε(x) to Ad(x, x− lm) agrees
with the calculated ratio [Eq. (47)].

Figure 13 shows that the ratio of the measured amplitude of the
induced voltage to the measured JTC current agrees with the ratio
calculated using Eq. (47) This result means that Eq. (47) reflects the
linear relationship between the voltage induced in the TCR antenna
and JTC current.

Equation (47) also shows that the calculated ratio a1 is related to
∆fp. For the ZPW2000A JTC, ∆fp = 11 Hz and fc = 1700–2600Hz.
Thus, ∆fp ¿ fc, so ∆fp only weakly influences the voltage induced
in the TCR antenna, making it difficult to distinguish the high and
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Figure 13. Measured amplitude ratio and that calculated using
Eq. (47). Measured values are from Figure 12.

(b)(a)

Figure 14. (a) Measured voltage induced in TCR antenna and
(b) corresponding JTC current for DFSS JTC.

low side-band of the induced voltage [see Figure 12(a)] and verify
the relationship given by Eq. (47) between a1 and ∆fp. However,
for the DFSS JTC, ∆fp = 55Hz but fc ranges only from 550 to
850Hz, so the high and low side-band of the induced voltage are easily
distinguished. In this work, we used the DFSS JTC to verify the
theoretical relationship between a1 and ∆fp.

Figure 14 shows the measured induced voltage and the
corresponding measured JTC current for the DFSS JTC and their
amplitude envelopes. The resulting amplitude ratio is compared to
the ratio calculated using Eq. (47) in Figure 15.

From Figure 14(a), we can easily distinguish the high and low
side-band of the induced voltage. Figure 15 shows that the measured
amplitude ratio agrees with the ratio calculated with Eq. (47). This
result indicates that Eq. (47) reflects the relationship between a1 and
∆fp.

In conclusion, the voltage amplitude induced in the TCR antenna
is linear in the JTC current, as expressed by Eq. (47).
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Figure 15. Measured amplitude ratio and that calculated using
Eq. (47). Measured values are from Figure 14.

6.3. Verification of Phase between Voltage Induced in TCR
Antenna and JTC Current

The voltage induced in the TCR antenna and JTC current for the
ZPW2000A JTC were acquired to analyze their phases (Figure 16).

Figure 16 shows that the phase difference between the voltage
induced in the TCR antenna and JTC current of the ZPW2000A JTC
is about −π/2, which agrees with Eq. (48).

(b)(a)

Figure 16. (a) Phase of voltage induced in TCR antenna and JTC
current and (b) their phase difference.

7. STUDY OF THE INFLUENCE OF THE VELOCITY
OF THE TUDY TRAIN

With the rapid development of high-speed railways, this paper takes
into account the velocity of the train in the induction coupling between
JTC and TCR antenna. Here supposes fs as the sample frequency
of the TCR host computer, m as the number of the total sampling
points collected when the train passes through JTC, and v(n) (n =
1, 2, . . . , m) as the velocity of the train at each sampled time t = n/fs
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(n = 1, 2, . . . , m), then x can be expressed by

x =
n∑

j=1

v(j)/fs, (n = 1, 2, . . . , m). (49)

For simplicity, the paper focuses on the case that the train runs at a
constant velocity, namely

v(1) = v(2) = . . . = v(m) = v, (50)
therefore, Eq. (49) can be rewritten as

x = vn/fs = vt, (51)
substituting Eq. (51) in Eq. (36), Eq. (36) takes the form

Aε(vt)=
√

aε1(vt)2+aε2(vt)2, φε(vt)=angle [aε1(vt)+iaε2(vt)] . (52)
Based on the simulation settings used for Figure 4 and according

to Eq. (52), we simulate the amplitude Aε(vt) and phase φε(vt) of the
voltage induced in the TCR antenna respectively when v = 240 km/h
and 360 km/h, and analyze Aε(vt) and φε(vt) when the train passes
through the same position (x = 620 (m)) of the same JTC with
different velocities, as shown in Figure 17.

Figure 17 shows that when the train passes through the same
position of the same JTC with different velocities, whatever the
velocity of the train is, Aε(vt) and φε(vt) remain unchanged. Namely,
the velocity of the train has no influence on the amplitude and phase
of the voltage induced in the TCR antenna. This can be explained
by Eqs. (33) and (36), only Ad(x, x′) and φd(x, x′) are related to the
velocity of the train, and as known from Eqs. (3)–(11), for a given x in
the same JTC, no matter what the velocity of the train is, the values
of Ad(x, x′) and φd(x, x′) are unchanged.

As to Eqs. (47) and (48), they are irrelevant to the variable x,
namely the velocity of the train has no influence on the amplitude
linearity and the phase difference π/2 between the voltage induced in
the TCR antenna and JTC current.

(b)(a)

Figure 17. Results of simulation of (a) Aε(vt) and (b) φε(vt), where
v = 240 km/h and 360 km/h.
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8. CONCLUSION

As key components of TCSs, the JTC and TCR transmit track-train
control information by electromagnetic induction. This paper uses
transmission line theory and electromagnetism to model the JTC
current ahead of the shunt point and the voltage induced in the TCR
antenna, respectively. Using this model, the paper quantitatively
studies the relationship between the voltage induced in the TCR
antenna and JTC current. The results indicate that the JTC-to-
TCR range is about 3 m long and that within this range, the voltage
amplitude induced in TCR antenna is linear in the JTC current and
the phase difference is π/2, no matter what the velocity of the train
is. The equations derived herein for the amplitude and phase of the
voltage induced in the TCR antenna are verified experimentally and
are more precise than the existing method based on the short-circuit
current.
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