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Abstract—A problem of electromagnetic fields excitation by a system
of finite-dimensional material bodies in two arbitrary electrodynamic
volumes coupled by holes, cut in a common boundary of the volumes,
is defined in a rigorous formulation. For the system containing two
material bodies and one coupling hole, the problem is reduced to a
system of two-dimensional integral equations relative to surface electric
currents on the material bodies and equivalent magnetic current in
the coupling hole. The resulting integral equations are correctly
transformed to a system of one-dimensional equations for currents in a
narrow slot and on thin impedance vibrators, which may have irregular
electrophysical and geometrical parameters. The resulting equations
system for a transverse slot in a broad wall of a rectangular waveguide
and impedance vibrators with variable surface impedance is solved
by a generalized method of induced electro-magneto-motive forces
(EMMF) under assumption that interaction between the vibrators and
the slot is absent. Calculated and experimental plots of electrodynamic
characteristics for this vibrator-slot structure are presented.

1. INTRODUCTION

Linear vibrator-slot radiators are widely used now as stand-alone
transceiver structures, elements of antenna systems, and devices in
antenna feed lines [1–4]. The widespread use of combined vibrator-slot
structures is a prerequisite for theoretical analysis of such systems.
The vibrators can be located either in a half-space over an infinite
perfectly conducting plane in which a hole is cut for coupling
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with another electrodynamic volume (a half-space over an infinite
perfectly conducting plane, a waveguide, a resonator etc.) [5–8] or
in waveguide transmission lines [9–13]. A special place among the
combined vibrator-slot structures occupies multielement systems [14–
20]. However, in above-mentioned and other publications on the
subject authors have supposed that vibrators are perfectly conducting
or are made of a metal with finite conductivity. To explore new
possibilities to control characteristics of slotted-waveguide radiating
elements there arises necessity to study vibrators with variable complex
surface impedance.

A problem of electromagnetic waves scattering and radiation by
a three-cell system, consisting of a transverse slot in a broad wall
of a rectangular waveguide and two vibrators with variable surface
impedance, was solved by generalized method of induced EMMF. The
solution is based on analysis of a problem for multielement vibrator-
slot structure, formulated in a general form. Axes of vibrators are
located in a cross-section plane passing through a longitudinal axis of
a slot perpendicular to a waveguide broad wall. Current distribution
functions, obtained as analytical solutions of integral equations for
currents in a single impedance vibrator and in a single slot by
asymptotic averaging method, were used as basis functions.

2. PROBLEM FORMULATION AND INITIAL
INTEGRAL EQUATIONS

Let us formulate the problem of electromagnetic fields excitation (scat-
tering, radiation) by finite-size material bodies in two electrodynamic
volumes coupled by holes cut in their common boundary. Suppose
that there exists some arbitrary volume V1, bounded by a perfectly
conducting, impedance, or partially impedance surface S1, some parts
of which may be infinitely distant. The volume V1 is coupled with
another arbitrary volume V2 through holes Σn (n = 1, 2, . . . , N), cut
in the surface S1. The boundary between the volumes V1 and V2 in
the regions around the coupling holes has an infinitely small thickness.
Permittivity and permeability of the medium filling volumes V1 and
V2 are ε1, µ1 and ε2, µ2, respectively. Material bodies, enclosed in
local volumes Vm1 (m1 = 1, 2, . . . ,M1) and Vm2 (m2 = 1, 2, . . . ,M2),
bounded by smooth closed surfaces Sm1 and Sm2 , are allocated in the
volumes V1 and V2, respectively. The bodies have homogeneous ma-
terial parameters: permittivity εm1 , εm2 , permeability µm1 , µm2 , and
conductivity σm1 , σm2 . The fields of extraneous sources can be speci-
fied as the electromagnetic wave fields, incident on the bodies and the
holes (scattering problem), or as fields of electromotive forces, applied
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to the bodies (radiation problem), or as combination of these fields.
Without loss of generality, we assume that electromagnetic fields of
extraneous sources { ~E0(~r), ~H0(~r)} exist only in the volume V1. The
fields { ~E0(~r), ~H0(~r)} depend on the time t as eiωt (~r is the radius
vector of the observation point, ω = 2πf is an circular frequency and
f is frequency, measured in Hertz). We seek the electromagnetic fields
{ ~EV1(~r), ~HV1(~r)} and { ~EV2(~r), ~HV2(~r)} in the volumes V1 and V2, sat-
isfying Maxwell’s equations and boundary conditions on the surfaces
Sm1 , Sm2 , Σn, S1 and S2.

To solve the above-mentioned problem we express the electromag-
netic fields in volumes V1 and V2 in terms of the tangential fields compo-
nents on the surfaces Sm1 , Sm2 and Σn. In the Gaussian CGS system of
units, the electromagnetic fields can be represented by the well-known
Kirchhoff-Kotler integral equations [12]:
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Ĝm
V1

(
~r, ~r ′n

) [
~nn, ~EV1

(
~r ′n

)]
d~r ′n



 ,

~HV1 (~r) = ~H0(~r) +
1

4πikµ1

(
graddiv + k2

1

)





M1∑
m1=1

∫
Sm1

Ĝm
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Here k = 2π/λ is the wave number, λ is the free space wavelength,
k1 = k

√
ε1µ1 and k2 = k

√
ε2µ2 are wave numbers in the media

filling the volumes V1 and V2, respectively; ~r ′m1,m2,n are radius-vectors
of sources allocated at the surfaces Sm1 , Sm2 and Σn; ~nm1,m2,n are
unit vectors of external normals to the surfaces; Ĝe

V1,V2
(~r, ~r ′) and

Ĝm
V1,V2

(~r, ~r ′) are the electric and magnetic tensor Green’s functions
for Hertz vector potentials in the coupled volumes satisfying the
vector Helmholtz equation and the boundary conditions on surfaces
S1 and S2. For the infinitely distant parts of surfaces S1 or S2 the
boundary conditions for the Green’s functions are transformed to the
Sommerfeld’s radiation condition.

Interpretation of the fields in the left-hand side of Equations (1)
depends upon position of an observation point ~r. If the observation
point ~r belongs to the surfaces Sm1 , Sm2 or to the apertures Σn, the
fields ~E(~r) and ~H(~r) represent the same field as in the integrals in the
right-hand sides of Equations (1). In this case, Equations (1) is non-
homogeneous linear integral Fredholm equations of the second kind,
which are known to have the unique solution. If the observation point
lies outside areas Vm1 , Vm2 and Σn, the Equations (1) becomes the
equalities determining the total electromagnetic field by the field of
specified extraneous sources. These equalities solve, in general terms,
the problem of electromagnetic fields excitation by finite size obstacles
if fields on the objects’ surfaces are known. Certainly, to find these
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fields, the Fredholm integral equations should be solved beforehand.
The Equations (1) can be also used to solve electrodynamics

problems if the fields on the material body surfaces can be defined by
additional physical considerations. For example, if induced currents
on well-conducting bodies (σ → ∞) are concentrated near the
body surface the skin layer thickness can be neglected and the
well-known Leontovich-Shchukin approximate impedance boundary
condition becomes applicable [4]
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complex surface impedance, normalized to the characteristic free space
impedance Z0 = 120π Ohm; the value of Z̄S(~r) may vary over the body
surface. The impedance boundary condition (2) allows transition in the
integral Equations (1) to the surface currents density. Without loss of
generality, we will do such transition for configuration consisting of
two material bodies in the volume V1 coupled with the volume V2 by a
single hole. Placing the observation point on the surfaces S11 and S21

and using the continuity conditions for the tangential components of
magnetic fields on the hole, we obtain the integral equations
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Ĝe
V1

(
~r, ~r ′2

)
~Je
2

(
~r ′2

)
d~r ′2+

∫

S11

Ĝe
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where c ≈ 2.998 · 1010 cm/c is the light velocity in vacuum.

3. INTEGRAL EQUATIONS FOR ELECTRIC AND
MAGNETIC CURRENTS IN THIN VIBRATORS AND
NARROW SLOTS

A solution of Equations (3) for material objects with complex surface
shape and for the coupling hole Σ of arbitrary geometry encounters
serious mathematical difficulties. However, if the cross-sectional
perimeter of the impedance cylinder is small as compared to its
length and to the wavelength in the ambient medium (thin vibrator
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approximation) and if the slot width satisfy analogues conditions
(narrow slot approximation), the solution of Equations (3) may be
simplified [12]. The approach used in [12] for the analysis of vibrator-
slot system can be generalized for multielement systems. In addition,
the boundary condition (2) can be extended to cylindrical vibrators
with arbitrary distribution of the complex impedance, regardless of the
exciting field structure and the electrical characteristics of the vibrator
material [4].

Let us transform the Equations (3) for thin vibrators made of
circular cylindrical wires and a narrow rectilinear slot that is, if the
inequalities
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hold. Here λ1,2 are the wavelengths in corresponding media; r1,2 and
2L1,2 are vibrator radii and lengths; d and 2L3 are the slot width and
length. Then the electric currents induced in the vibrators and the
equivalent magnetic current in the slot can be presented as
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where ~es1(2)
and ~es3 are units vectors, oriented along the vibrators and

slot axes, respectively; s1(2) and s3 are local coordinates related to
vibrators and slot axes; ψ1(2)(ρ1(2), ϕ1(2)) are functions of transverse
(⊥1(2)) polar coordinates ρ1(2), ϕ1(2) for vibrators; χ(ξ) is a function of
transverse coordinate ξ for the slot. The functions ψ1(2)(ρ1(2), ϕ1(2))
and χ(ξ) satisfy the normalizing conditions
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and unknown currents (indexes “e” and “m” are omitted), J1(2)(s1(2))
and J3(s3), satisfy the boundary conditions

J1(2)(±L1(2)) = 0 , J3(±L3) = 0 . (8)

The system of one-dimensional integral equations for currents, which
takes into account mutual interaction between the vibrators and slot,
can be derived by projecting the Equations (3a), (3b) on the vibrator
axes, the Equation (3c) on the slot axis and by using inequalities
[~n1(2), ~J1(2)(~r1(2))] ¿ 1 resulting from (5). This equations system may
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be presented as
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Here zi1(2)(s1(2)) are internal impedances per unit lengths of
the vibrators ([Ohm/m]), (ZS1(2)(~r1(2)) = 2πr1(2)zi1(2)(~r1(2))),
E0s1(2)

(s1(2)) and H0s3(s3) are projections of the fields induced by the
extraneous sources on the vibrators and the slot axes, GV1
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If the interactions between the vibrators and the slot are absent,
the equations system (9) is simplified and can be written as
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Since the Green’s functions in Equations (9) and (10) are not
specified in an explicit form, these equations are valid for any
electrodynamic volumes, provided that the Green’s functions are
known or can be constructed.

4. MULTIELEMENT VIBRATOR-SLOT STRUCTURE IN
A RECTANGULAR WAVEGUIDE

As an example, let us consider a problem of electromagnetic waves
scattering by a narrow rectilinear transverse slot in a broad wall of
a rectangular waveguide containing passive impedance vibrators and
extraneous field sources.

Let a fundamental wave H10 propagates in a hollow (ε1 = µ1 = 1)
infinite rectangular waveguide with perfectly conducting walls (index
Wg) from the area z = −∞. In a cross sectional plane of the
waveguide several unbalanced thin impedance vibrators (monopoles)
are placed and a narrow slot is cut in the broad wall of the waveguide
symmetrically relative to its longitudinal axis. The slot radiates into
the free half-space (ε2 = µ2 = 1) over an infinite perfectly conducting
plane (index Hs). Since the axes of the vibrators and slot lie in
{x0y} plane, interaction between the vibrators and the slot over the
waveguide cavity is absent (Figure 1).

The waveguide size is {a×b}, the vibrator radii and lengths are r1,2

 

Figure 1. The geometry of the vibrator-slot structure and notations.
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and 2L1,2; the thickness of the waveguide wall is h, the slot width and
length are d and 2L3. The equations system (10) for this configuration
may be reduced to
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ds2
2

+k2

)



L2∫

−L2

J2(s′2)G
Wg
s2

(s2, s
′
2)ds′2+

L1∫

−L1

J1(s′1)G
Wg
s1

(s2, s
′
1)ds′1





=−iω [E0s2(s2)− zi2(s2)J2(s2)] , (11b)
(

d2

ds2
3

+k2
1

) L3∫

−L3

J3(s′3)
[
GWg

s3
(s3,s

′
3)+GHs

s3
(s3, s

′
3)
]
ds′3=−iωH0s3(s3). (11c)

Here GWg
s1,2(s1,2, s

′
1(2)) and GWg,Hs

s3 (s3, s
′
3) are the tensor Green’s

functions components for a rectangular waveguide and half-space above
the plane [3, 4], s1 = −L1 and s2 = −L2 are coordinates of the vibrator
mirror images, relative to the lower broad wall of the waveguide [4].

The equations system (11) was solved by the generalized method of
induced EMMF [12, 13], using approximate expressions for the currents
J1(2)(s1(2)) = J0

1(2)f1(2)(s1(2)) and J3(s3) = J0
3f3(s3). Here J0

1(2)

and J0
3 are unknown current amplitudes, f1(2)(s1(2)) and f3(s3) are

distribution functions, obtained by solving equations for currents in
a single vibrator and a slot by averaging method [21, 22]. For the
vibrator-slot structure excited by fundamental wave H10 according
to [13], we have

f1(s1) = cos k̃1s1 − cos k̃1L1, (12a)

f2(s2) = cos k̃2s2 − cos k̃2L2, (12b)
f3(s3) = cos ks3 − cos kL3, (12c)

where k̃1(2) = k − i2πzav
i1(2)

Z0Ω1(2)
, zav

i1(2) = 1
2L1(2)

L1(2)∫
−L1(2)

zi1(2)(s1(2))ds1(2) are

length-average values of the vibrator internal impedance [4, 23], Ω1(2) =
2 ln(2L1(2)/r1(2)).

According to the generalized method of induced EMMF, we
multiply Equation (11a) by the function f1(s1), Equation (11b) by the
function f2(s2), and (11c) by the function f3(s3). Then we integrate
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the resulting equations over the vibrators and slot lengths and arrive to
a system of linear algebraic equations relative to the current amplitudes
J0

1,2 and J0
3

J0
1

[
Z11

(
kr1, k̃1L1

)
+ F z

1

(
k̃1r1, k̃1L1

)]
+ J0

2Z12

(
k̃1L1, k̃2L2

)

=− iω

2k
E1

(
k̃1L1

)
,

J0
2

[
Z22

(
kr2, k̃2L2

)
+ F z

2

(
k̃2r2, k̃2L2

)]
+ J0

1Z21

(
k̃2L2, k̃1L1

)

=− iω

2k
E2

(
k̃2L2

)
,

J0
3

[
ZWg

33 (kde, kL3) + ZHs
33 (kde, kL3)

]
= − iω

2k
H3(kL3).

(13)

Here
Z11(22)

(
kr1(2), k̃1(2)L1(2)

)

=
4π

ab

∞∑

m=1

∞∑

n=0

εn

(
k2 − k2

y

)
k̃2

1(2)

kkz

(
k̃2

1(2) − k2
y

)2 e−kzr1(2) sin2 kxx01(02)

×
[
sin k̃1(2)L1(2) cos kyL1(2) − (k̃1(2)/ky) cos k̃1(2)L1(2) sin kyL1(2)

]2

,

Z12(21)

(
k̃1(2)L1(2), k̃2(1)L2(1)

)

= 4π

ab

∞∑
m=1

∞∑
n=0

εn(k2 − k2
y)k̃1k̃2e

−kzr2(1)

kkz

(
k̃2
1 − k2

y

) (
k̃2
2 − k2

y

) sin kxx01 sin kxx02

×
[
sin k̃1L1 cos kyL1 −

(
k̃1/ky

)
cos k̃1L1 sin kyL1

]
(14)

×
[
sin k̃2L2 cos kyL2 −

(
k̃2/ky

)
cos k̃2L2 sin kyL2

]
,

ZWg
33 (kde, kL3)

=
8π

ab

∞∑

m=1,3...

∞∑

n=0,1...

εnk

kz(k2 − k2
x)

e−kz
de
4

× [sin kL3 cos kxL3 − (k/kx) cos kL3 sin kxL3]2,

ZHs
33 (kde, kL3)

= (Si4kL3 − iCin4kL3)− 2 cos kL3

×
[
2(sin kL3 − kL3 cos kL3)

(
ln

16L3

de
− Cin2kL3

−iSi2kL3) + sin 2kL3e
−ikL3

]
,
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E1(2)(k̃1(2)L1(2))=2H0
k

kgk̃1(2)

sin
π

a
x01(02)f(k̃1(2)L1(2)),

f(k̃1(2)L1(2))=sin k̃1(2)L1(2)−k̃1(2)L1(2) cos k̃1(2)L1(2),

H3(kL3)=2H0
1
k
f(kL3),

f(kL3)=sin kL3 − kL3 cos kL3,

F z
1(2)

(
k̃1(2)r1(2), k̃1(2)L1(2)

)
=− i

r1(2)

L1(2)∫

0

f2
1(2)(s1(2))Z̄S1(2)(s1(2))ds1(2).(15)

In the formulas (14), (15) εn = { 1, n = 0
2, n 6= 0 , kx = mπ

a , ky = nπ
b , kz =

√
k2

x + k2
y − k2, m and n are integers, kg = 2π/λg =

√
k2 − (π/a)2,

λg is the waveguide wavelength; Si and Cin are the integral sine and
cosine functions; Z̄S1(2)(s1(2)) = R̄S1(2)+iX̄S1(2)φ(s1(2)) are distributed
complex surface impedances, φ(s1(2)) is the prescribed functions, de =

de−
πh
2d is equivalent slot width which takes into account a wall thickness

h of the waveguide [3], H0 is the amplitude of incident wave.
The analytical solution of equations system (13) can be written as

J0
1 = − iω

2k

E1(Z22 + F z
2 )− E2Z12

(Z11 + F z
1 )(Z22 + F z

2 )− Z21Z12
= − iω

2k
J̃0

1 ,

J0
2 = − iω

2k

E2(Z11 + F z
1 )− E1Z21

(Z11 + F z
1 )(Z22 + F z

2 )− Z21Z12
= − iω

2k
J̃0

2 ,

J0
3 = − iω

2k

H3(kL3)

ZWg
33 + ZHs

33

= − iω

2k
J̃0

3 .

(16)

Final expressions for the currents can be readily derived using (12)
and (16) as

J1(2)(s1(2)) = − iω

2k
J̃0

1(2)(cos k̃1(2)s1(2) − cos k̃1(2)L1(2)),

J3(s3) = − iω

2k
J̃0

3 (cos ks3 − cos kL3).
(17)

Energy characteristics of the vibrator-slot structure: reflection
coefficient S11, transmission coefficient S12, and power radiation
coefficient |SΣ|2 are defined by the following expressions

S11=
4πi

abkkg

{
2k2

g

k2

f2(kL3)

ZWg
33 + ZHs

33

− k2

k̃1

J̃0
1 sin

(πx01

a

)
f(k̃1L1)
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−k2

k̃2

J̃0
2 sin

(πx02

a

)
f(k̃2L2)

}
e2ikgz, (18)

S12 = 1 +
4πi

abkkg

{
2k2

g

k2

f2(kL3)

ZWg
33 + ZHs

33

+
k2

k̃1

J̃0
1 sin

(πx01

a

)
f(k̃1L1)

+
k2

k̃2

J̃0
2 sin

(πx02

a

)
f(k̃2L2)

}
, (19)

|SΣ|2 = 1− |S11|2 − |S12|2. (20)

5. NUMERICAL RESULTS

We perform a numerical analysis for a three-element vibrator-slot
structure and compared its energy characteristics with that of a single
radiating slot (without vibrators) and a structure consisting of a slot
and a one vibrator. We have used three different distribution functions
defining the imaginary part of vibrator impedance [4, 13]: φ0(s1(2)) =
1, φ1(s1(2)) = 2[1 − (s1(2)/L1(2))] and φ2(s1(2)) = 2(s1(2)/L1(2)).
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Figure 2. Energy characteristics of vibrators-slot system versus
wavelength at x01 = a/8, Z̄S1 = 0, Z̄S2 = ikr2 ln(4.0).
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Analytical expressions for the functions F z
1(2), obtained by (??) for

each distribution functions, are presented in [13].
Figures 2–5 show the wavelength dependences of the radiation

coefficient, moduli of the reflection and transmission coefficients in
the wavelength range of the waveguide single-mode regime, obtained
using the following common parameters: a = 58.0mm, b = 25.0mm,
h = 0.5mm, r1,2 = 2.0mm, L1,2 = 15.0mm, R̄S1(2) = 0, d = 4.0mm
and 2L3 = 40.0mm. The choice of slot dimensions was stipulated
by its natural resonance at the average wavelength of the waveguide
frequency range λres

3 = 86.0mm. The dimensions of the vibrators
have been selected so that their resonant wavelength was within the
waveguide operating range. Here we present the results only for
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Figure 3. Energy characteristics of vibrators-slot system versus
wavelength at x01 = a/8, x02 = 7a/8, Z̄S1(s1) = ikr1 ln(4.0)φ1(s1):
1 — Z̄S2 = ikr2 ln(4.0); 2 — Z̄S2(s2) = ikr2 ln(4.0)φ2(s2); 3 —
Z̄S2 = 0; 4 — slot and one vibrator; 5 — single slot.
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Figure 4. Energy characteristics of vibrators-slot system versus
wavelength at x01 = a/8, x02 = 15a/16 (asymmetrical positions of
vibrators), Z̄S1(s1) = ikr1 ln(4.0)φ1(s1): 1 — Z̄S2 = ikr2 ln(4.0);
2 — Z̄S2(s2) = ikr2 ln(4.0)φ2(s2); 3 — Z̄S2 = 0; 4 — Z̄S2(s2) =
ikr2 ln(8.0)φ1(s2); 5— slot and one vibrator; 6 — single slot.
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vibrators with inductive impedances (X̄S1(2) > 0), known to increase
the vibrator electrical length, i.e., to increase λres

1,2 as compared to case
Z̄S1(2) = 0, without decreasing a distance between the vibrators ends
and the upper broad wall of the waveguide. This is very important for
increasing the breakdown power for waveguide device as a whole.

As might be expected, the curves |SΣ|2(λ) for different distances
between the two vibrators and for single slot are practically coincide
(Figure 2). That is, if the interaction between the slot and the
vibrators is absent, the radiation coefficient of the slot-vibrator system
is determined by the slot dimensions. Obviously, the polarization
isolation between the slot and vibrators is realized and for other
impedance distribution functions. Therefore, in Figures 3, 4 we present
the curves |S11|(λ) and |S12|(λ) only inside the waveguide. As follows
from the plots in Figures 2–4, the passive vibrators with variable
surface impedance can significantly change |S11|(λ) and |S12|(λ) as
compared to that for single slot and a slot with one passive vibrator.
Therefore, there arises a possibility to optimize the waveguide-slot
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Figure 5. Energy characteristics of vibrators-slot system versus
wavelength at x01 = a/8, Z̄S1 = 0, x02 = 7a/8: 1 — Z̄S2 =
ikr2 ln(4.0); 2 — Z̄S2(s2) = ikr2 ln(4.0)φ1(s2); 3, 4 — experimental
data (corrugated metallic conductors [12, 13]); 5 — single slot.
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radiator matching at a given wavelength and to implement a one-
way (input or output) signal filtering required for electromagnetic
compatibility.

Comparison of the theoretical and experimental results shown
in Figure 5 confirms reliability of the proposed method for analysis
of multielement vibrator-slot structures and applicability of the
generalized method of induced EMMF using approximation functions
for the currents in a single impedance vibrator and a single slot
obtained by averaging method.

6. CONCLUSION

The approach to the electrodynamic problem solution for the vibrator
slot system which has been proven in [12, 13], was extended to
multielement vibrator-slot structure. The problem of electromagnetic
fields excitation in the two electrodynamic volumes by finite-
dimensional material bodies was formulated in the most general form.
For the three-element structure, consisting of the two material bodies
and the hole, the general problem was reduced to the system of
two-dimensional integral equations for the electric current on the
material bodies and the equivalent magnetic current in the hole. In
the assumption of the electrically thin structural elements, physically
correct transition from two-dimensional integral equations to the
system of one-dimensional equations for the currents in the narrow
slot and on the impedance vibrators with irregular electrophysical and
geometrical parameters was made. The system of one-dimensional
equations was solved by a generalized method of induced EMMF.
However, this method allows to find approximate analytical expressions
for currents in a vibrator-slot structure with a small number of
elements. The analytical solution of the equations system was
obtained for the structure, consisting of vibrators with variable surface
impedance and transverse slot, cut in the broad wall of the rectangular
waveguide. Next, we examined the system where the vibrators are
located in the waveguide cross section perpendicular to the slot axis.
For this configuration, the equations system can be simplified since the
interaction between the vibrators and the slot is absent and they are
decoupled by polarization. The accuracy of the solution was confirmed
by a good agreement between the calculated and experimental results
for energy characteristics of the structure. Therefore, this numerical-
analytical method may appear to be useful to study the properties of
more complex multielement vibrator-slot structures. The possibility
to control the reflection and transmission coefficients of vibrator-
slot structure by the use of passive vibrators with variable surface
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impedance has been shown. This structure can be also used as a
separate waveguide device.
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