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Abstract—The dispersion equation governing the guided propagation
of TE and TM fast wave modes of a circular cylindrical waveguide
loaded by metal vanes positioned symmetrically around the wave-guide
axis is derived from the exact solution of a homogeneous boundary
value problem for Maxwell’s equations. The dispersion equation
takes the form of the solvability condition for an infinite system of
linear homogeneous algebraic equations. The approximate dispersion
equation corresponding to a truncation of the infinite-order coefficient
matrix of the infinite system of equations to the coefficient matrix of a
finite system of equations of sufficiently high order is solved numerically
to obtain the cut-off wave numbers of the various propagating modes.
Each cut-off wave number gives rise to a unique dispersion curve in the
shape of a hyperbola in the ω-β plane.

1. INTRODUCTION

The propagation characteristics of TE and TM modes of a vane-loaded
circular cylindrical waveguides have been attracting the attention
of researchers in microwave engineering in view of their potential
application in broadband gyro-TWT amplifiers. The earliest work
on the modal analysis of a vane-loaded circular cylindrical waveguide
appears to be by Singh et al. [1] in 1999. A method of controlling
the gain-frequency response by the beam and the magnetic-field
parameters was proposed in [2] by the same authors based on the
results of [1]. A two-stage vane-loading of gyro-TWT for high gains
and bandwidths was proposed by Agarwal et al. in [3] based again
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on the results of [1]. The dispersion relations ‘derived’ in [1] were
modified by the same authors for tapered vanes in [4]. In a paper [5]
published in 2002, Singh et al. have used the dispersion relations of [1]
for finding the dispersion characteristics of ‘TE01’ and ‘TE21’ modes for
a typical set of vane-parameter values. In the papers by Singh et al. [6–
10], various methods of analyzing/improving the frequency-response
characteristics of gyro-TWT amplifiers have been proposed based again
on the results from [1]. The papers [11] by Singh and Basu and [12] by
Singh were devoted to analytical studies of the interaction structure
of vane-loaded gyro-TWT amplifiers starting again from the cold-wave
dispersion relations appearing in [1].

Notwithstanding the impressive list of applications of the vane-
loaded structure cited in the previous paragraph, the ‘derivation’
of the dispersion equations for this structure attempted in [1] is
seriously flawed rendering the results and conclusions of [2–12] to
be of questionable validity for the following reason: The azimuthal
dependence of the assumed form of the solution for the field
components in the annular region containing the vanes does not
permit the boundary condition on the radial component of the electric
field, viz., the radial electric field component should vanish on the
lateral boundaries (located on the radial planes passing through the
waveguide axis) of the perfectly conducting vanes, to be satisfied; more
fundamentally the assumed form of solution is not capable of ensuring
a null electromagnetic field everywhere inside the vane region.

In this paper, the dispersion relation for the TE and TM modes
supported by a vane-loaded circular cylindrical waveguide are derived
from an exact solution of a homogeneous boundary value problem for
Maxwell’s equations, i.e., a solution of Maxwell’s equations satisfying
all the boundary conditions of the problem. Rigorous approaches to
solving the boundary value problem for coaxial waveguides and cavities
with azimuthally slotted inserts have also been presented(though
without full details of analysis) in [13, 14].

2. PROBLEM FORMULATION

We consider an infinitely long circular cylindrical hollow waveguide of
inner radius b with L wedge-shaped metal projections (vanes), which
are periodically disposed with an angular period 2π/L around the
waveguide axis, running along the entire length of the waveguide (see
Fig. 1 for a cross-sectional view). As seen from the cross-sectional view
in Fig. 1, the vanes extend from the waveguide wall up to radius a.

We take the axis of the vane-loaded waveguide along the z-
coordinate of a cylindrical coordinate system (r, θ, z). The slots
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Figure 1. Cross-sectional view of a vane-loaded circular cylindrical
waveguide with L = 4.

between adjacent vanes are numbered anticlockwise from 0 to L − 1
with the `th slot occupying the two-dimensional region {(r, θ) : a <
r < b, π(2`− α)/L < θ < π(2` + α)/L} in the cross-sectional plane of
the waveguide where 0 < α < 1. Thus the angular width of each slot
is 2πα/L and that of each vane is 2π(1− α)/L. The vanes occupy the

region
L−1⋃
`=0

{(r, θ) : a ≤ r ≤ b, π(2` + α)/L ≤ θ ≤ π(2(` + 1)−α)/L} in

the cross-sectional plane.
In order to identify the appropriate form of the solution of the

Helmholtz equation for the axial electric field component Ez (r, θ, z)
(in the case of TM modes) and the axial magnetic field component
Hz (r, θ, z) (in the case of TE modes), it is expedient to divide the
domain {(r, θ) : 0 ≤ r < b, 0 ≤ θ < 2π} in the cross-sectional plane
into Region 1: {(r, θ) : 0 ≤ r ≤ a, 0 ≤ θ < 2π} and Region 2:
{(r, θ) : a < r < b, 0 ≤ θ < 2π}. Modeling the waveguide walls and
the vanes to be perfectly conducting, the z-dependence of the non-zero
field components may be assumed to be according to the propagation
factor e−jβz with β (propagation phase constant) corresponding to
single-frequency wave propagation in the positive z-direction. Thus
the field components (phasors) may be expressed as

Ei(r, θ, z) = ei(r, θ)e−jβz, i = r, θ, z

Hi(r, θ, z) = hi(r, θ)e−jβz, i = r, θ, z

In the following, we make use of the standard notation Z, N and
N0(∆N ∪ {0}) for the ring of integers, the set of natural numbers
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(positive integers) and the set of non-negative integers respectively.
Moreover, the indicator function IX of a set X is defined as

IX(x) = 1 if x ∈ X

0 if x /∈ X

and for a real number x, bxc and dxe denote respectively the largest
integer less than or equal to x and the smallest integer greater than or
equal to x.

3. DERIVATION OF DISPERSION EQUATIONS

The steps involved in the solution of the homogeneous boundary value
problem for Maxwell’s equations arising in the guided propagation of
TE and TM waves for the model of a vane-loaded circular cylindrical
waveguide introduced in the previous section are

(i) Identify the infinite-series expansion for the solution of the
Helmholtz equation for the axial field component appropriate to
regions 1 and 2.

(ii) Find the expansions for the transverse field components using that
for the axial field components in both regions.

(iii) Obtain the linear algebraic relations among the expansion
coefficients by enforcing the electromagnetic boundary conditions
across the interface separating region 1 and region 2.

(iv) Reduce the infinite set of linear algebraic relations to an infinite
system of homogeneous linear equations for the coefficients of the
field expansions in region 2.

(v) Deduce the sought after dispersion equation as the solvability
condition for a nontrivial solution of the above infinite system of
homogeneous linear equations.

We now carry out the above steps for the TE and TM modes of a vane
loaded circular cylindrical waveguide.

3.1. Case 1: TE Modes

The two tangential field components hmz(r, θ) and emθ(r, θ), m =
0, 1, 2, . . . , bL/2c involved in the boundary conditions at r = a for
region 1 (0 ≤ r < a) admit the infinite series representation

hmz(r, θ) =
∑

p∈Z

AmpJm+pL(kcr)e−j(m+pL)θ (1a)
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emθ(r, θ) =
(
jωµ0/k2

c

)
∂hmz/∂r

= (jωµ0/kc)
∑

p∈Z

AmpJ
′
m+pL(kcr)e−j(m+pL)θ (1b)

where k2
c = k2

0 − β2 > 0 since k0/|β| = ω/c|β| = vp/c > 1 for
fast waves and Amp, p ∈ Z, are the (complex) expansion coefficients
which are arbitrary at this stage and where ω is the operating angular
frequency, k0 = ω/c is the free-space wave number, c = (µ0ε0)−1/2

is the speed of light in vacuum and vp is the phase speed of the
TE waves. In (1) and in the following, Jυ and Yυ denote υth order
Bessel functions of first and the second kind respectively and a prime
superscript denotes differentiation with respect to the argument. A
vane-loaded circular cylindrical waveguide is seen to support at most
bL/2c sets of non-axisymmetric modes (m > 0) in addition to the
single set of axisymmetric modes (m = 0). This characteristic may
be contrasted with that of a circular cylindrical hollow waveguide for
which the azimuthal mode number m ∈ N0. The expressions for the
z-component of the magnetic field and θ-component of the electric field
(apart from the factor e−jβz) appropriate to region 2 (a < r < b) are

hmz(r, θ) =
L−1∑

`=0

e−j2πm`/LI(−πα/L,πα/L)(θ − 2π`/L)

∞∑

s=0

Bmsgs(kcr) cos (sL (θ − 2π`/L) /α) (2a)

emθ(r, θ) =
(

jωµ0

kc

) L−1∑

`=0

e−j2πm`/LI(−πα/L,πα/L)(θ − 2π`/L)

∞∑

s=0

Bmsg
′
s(kcr) cos (sL (θ − 2π`/L) /α) (2b)

where Bms, s ∈ N0, are arbitrary expansion coefficients and

gs(kcr)=JsL/α(kcr)Y ′
sL/α(kcb)− J ′sL/α(kcb)YsL/α(kcr), a<r<b (3)

The summation over the indicator functions in (2) ensures that there
is no electromagnetic field inside the region of the vanes viz., for
−πα/L < θ − 2π`/L < πα/L, ` = 0, 1, 2, . . . , L − 1, a < r < b.
It may be observed from (2) and (3) that the boundary conditions on
the bottom and the side walls of slots are automatically satisfied by
the form of solution assumed for the field components in region 2, viz.
(i) emθ(r, θ) vanishes at r = b for −πα/L < θ − 2π`/L < πα/L,

` = 0, 1, . . . , L− 1
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and
(ii) emr(r, θ) = −(jωµ0/k2

cr)∂hmz/∂θ vanishes at θ = π(2` ± α)/L,
` = 0, 1, . . . , L− 1 for a < r < b.

Now it remains only to enforce the continuity of emθ(r, θ) across the
interface r = a between regions 1 and 2, and the continuity of hmz(r, θ)
across the slot openings located at r = a, for −πα/L < θ − 2π`/L <
πα/L, ` = 0, 1, . . . , L − 1. The continuity of emθ(r, θ) across r = a
requires

∑

q∈Z

AmqJ
′
m+qL(kca)e−jqLθ =

L−1∑

`=0

ejm(θ−2π`/L)I(−πα/L,πα/L)(θ−2π`/L)

∞∑

s=0

Bmsg
′
s(kca) cos (sL (θ−2π`/L) /α)(4)

Since both sides of (4) are periodic in the variable θ with period 2π/L,
it is sufficient to satisfy the above continuity condition over the span of
one period, say over the interval (−π/L, π/L). Thus (4) is equivalent
to ∑

q∈Z

AmqJ
′
m+qL(kca)e−jqLθ = ejmθI(−πα/L,πα/L)(θ)

∞∑

s=0

Bmsg
′
s(kca) cos(sLθ/α) for − π/L ≤ θ < π/L (5)

The infinite series on the left side of (5) may be considered to be
the complex- exponential Fourier series representation of the function
defined by the right side over the interval (−π/L, π/L). Multiplying
both sides of (5) by ejpLθ and integrating with respect to θ from −π/L
to π/L, we have

A00 = αg′0(kca)B00/J ′0(kca) (6a)
and for m + |p| 6= 0

Amp =
(
(p + m/L) sin((p + m/L)πα)/πJ ′m+pL(kca)

)
∞∑

s=0

(−1)sg′s(kca)
Bms

((p + m/L)2 − s2/α2)
if α |p + m/L| /∈ N

(
(p + m/L) sin((p + m/L)πα)/πJ ′m+pL(kca)

)
∞∑

s=0
s6=α|m+p/L|

(−1)sg′s(kca)
Bms

((p + m/L)− s2/α2)

+αg′α|p+m/L|(kca)Bm(α|p+m/L|)/2J ′m+p/L(kca) if α |p + m/L| ∈ N(6b)
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The continuity of hmz(r, θ) across the slot openings on the interface
r = a may be expressed as

e−jm(θ−2πl/L)
∑

p∈Z

AmpJm+pL(kca)e−jpLθ = I(−πα/L,πα/L)(θ − 2π`/L)

∞∑

k=0

Bmkgk(kca) cos (kL(θ − 2π`/L)/α) for ` = 0, 1, . . . , L− 1 (7)

Since both sides of (7) are periodic in θ with period 2π/L, it is
sufficient to enforce the continuity of hmz(r, θ) across r = a only for
θ ∈ (−πα/L, πα/L). Thus we need to ensure

∑

p∈Z

AmpJm+pL(kca)e−j(m+pL)θ =
∞∑

k=0

Bmkgk(kca) cos (kLθ/α) (8)

only for −πα/L ≤ θ < πα/L. The right side of (8) may be considered
to be the Fourier cosine-series representation of the function on the
left side of (8) restricted to the interval (−πα/L, πα/L). Multiplying
both sides of (8) by cos(sLθ/α) and integrating with respect to θ from
−πα/L to πα/L, we have

Bm0g0(kca) =
∑

p∈Z

AmpJm+pL(kca)sinc((p + m/L)θ) (9a)

and for s ≥ 1

Bmsgs(kca) = (2(−1)s/πα)
∑

p∈Z

Amp(p + m/L)Jm+pL(kca)

sin(p + m/L)πα

((p + m/L)2 − s2/α2)
if Z ∩ {−m/L + s/α,−m/L− s/α} is empty

(2(−1)s/πα)
∑

p∈Z
p6=−m/L±s/α

Amp(p+m/L)Jm+pL(kca)
sin(p+m/L)πα

((p+m/L)2−s2/α2)

+J(sL/α)(kca)Am(−m/L+s/α)IZ(−m/L + s/α) + J(−sL/α)(kca)
Am(−m/L−s/α)IZ(−m/L− s/α)
if Z ∩ {−m/L± s/α} is nonempty (9b)

In (9a)

sincX ∆ sinπX/πX if X 6= 0

1 if X = 0

where the symbol ‘∆’ denotes equality by definition. Substituting for
Amp, p ∈ Z, from (6) in terms of Bms, s ∈ N0, into (9), we end up
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with the infinite system of homogeneous linear algebraic equations for
Bms, s ∈ N0:

g0(kca)−αg′0(kca)

∑

p∈Z

(Jm+pL(kca)/J ′m+pL(kca))sinc2(p+m/L)α


Bm0 =

∞∑

k=1

(
(−1)kg′k(kca)/π

)



∑

p∈Z
p6=−m/L±k/α

Jm+pL(kca)
J ′m+pL(kca)

sin2(p+m/L)πα

((p+m/L)2−k2/α2)πα




Bmk (10a)

and for s ≥ 1

Bmsgs(kca) =
2

π2α

∞∑

k=0

(−1)s+kg′k(kca)




∑

p∈Z
p6=−m/L±k/α

Jm+pL(kca)
J ′m+pL(kca)

(p + m/L)2 sin2(p + m/L)πα((
p+ m

L

)2− s2

α2

)((
p+ m

L

)2− k2

α2

)


Bmk if Z ∩ {−m/L± s/α} is empty

2
π2α

∞∑

k=0

(−1)s+k g′k(kca)




∑

p∈Z
p6=−m/L±s/α
p6=−m/L±k/α

Jm+pL(kca)
J ′m+pL(kca)

(p + m/L)2 sin2(p + m/L)πα((
p + m

L

)2 − s2

α2

)((
p + m

L

)2 − k2

α2

)




Bmk +
α

2
JsL/α(kca)
J ′SL/α(kca)

(IZ(−m/L+s/α)+IZ(−m/L− s/α)) g′s(kca)Bms

if Z ∩ {−m/L± s/α} is nonempty (10b)

Defining

bTE
m0k ∆ δ0k


1−α

g′0(kca)
g0(kca)

∑

p∈Z

Jm+pL(kca)
J ′m+pL(kca)

sinc2((p+m/L)α)
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−(1−δ0k)
(−1)k

π

g′k(kca)
g0(kca)

∑

p∈Z

p6=−m
L
± k

α

Jm+pL(kca)
J ′m+pL(kca)

sin2(p+m/L)πα

((p+m/L)2−k2/α2)πα
(11a)

and for s ≥ 1

bTE
msk ∆ δsk− 2(−1)s+k

π2α

g′k(kca)
gs(kca)

∑

p∈Z
p6=−m/L±k/α

Jm+pL(kca)
J ′m+pL(kca)

(p+m/L)2 sin2(p+m/L)πα(
(p+m/L)2− s2

α2

)(
(p+m/L)2− k2

α2

) if Z ∩ {−m/L± s/α} is empty

δsk

(
1−α

2
g′s(kca)
gs(kca)

JsL/α(kca)
J ′sL/α(kca)

(IZ(−m/L+s/α)+IZ(−m/L−s/α))

)

−2(−1)s+k

π2α

g′k(kca)
gs(kca)

∑

p∈Z
p6=−m/L±s/α
p6=−m/L±k/α

Jm+pL(kca)(p+m/L) sin2(p+m/L)πα

J ′m+pL(kca)
(
(p+m/L)2− s2

α2

)(
(p+m/L)2− k2

α2

)

if Z ∩ {−m/L± s/α} is nonempty (11b)

we may rewrite (10) as
∞∑

k=0

bTE
mskBmk = 0 for s ∈ N0 (12)

which is an infinite system of linear homogeneous algebraic equations
for determining the expansion coefficients Bms, s ∈ N0. In (11) and in
the following, the symbol δpq, p, q ∈ Z, stands for the Kronecker delta
defined by

δpq = 1 if p = q

0 if p 6= q

Rewriting the two-sided series appearing in the expressions (11) for
bTE
msk s, k ∈ N0, as a one-sided series, it may be observed that the pth

term of the resulting one-sided series is of order p−3 as p → ∞. This
asymptotic decay rate is sufficient to guarantee the rapid convergence
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of the series representing bTE
msk, ∀s, k ∈ N0. For a nontrivial solution of

(12) for the expansion coefficients Bms, s ∈ N0, it is necessary that the
determinant of the infinite order coefficient matrix ATE

m ∆
[
bTE
msk

]
s,k∈N0

is zero, that is
∣∣ATE

m

∣∣ = 0 (13)

The solvability condition (13) gives, in principle, the eigenvalue
equation for determining the normalized cut-off wave numbers
k

(h)
ca,mn, n ∈ N, of the mth (m = 0, 1, 2, . . . , bL/2c) TE mode

supported by the vane-loaded circular cylindrical waveguide where
kca ∆ kca. The dispersion curves of the TE mode with azimuthal
mode number m are then given by the family of rectangular hyperbolas
k2

oa−β2
a = (k(h)

ca,mn)2, n ∈ N, in the βa− koa plane where k0a ∆ k0a and

βa ∆βa. For a specified root k
(h)
ca,mn0 of the eigenvalue Equation (13),

the expansion coefficients B
(n0)
ms , s ∈ N0, can be determined in terms

of any one of them, say B
(n0)
mo from (12), and the expansion coefficients

A
(n0)
mp , p ∈ Z, are then given in terms of B

(n0)
ms , s ∈ N0, by the

relations (6).

3.2. Case 2: TM Modes

The two tangential field components emz(r, θ) and hmθ(r, θ), m =
0, 1, 2, . . . , bL/2c for region 1 appearing in the boundary conditions
at r = a(0 ≤ r < a) admit the infinite series representation

emz(r, θ)=
∑

p∈Z

AmpJm+pL(kcr)e−j(m+pL)θ (14a)

hmθ(r, θ)=−
(
jωε/k2

c

)
∂emz/∂r

= −(jωε/kc)
∑

p∈Z

AmpJ
′
m+pL(kcr)e−j(m+pL)θ (14b)

where k2
c = k2

0 −β2 > 0 and the (complex) expansion coefficients Amp,
p ∈ Z, are arbitrary at this stage. The expressions for emz(r, θ) and
hmθ(r, θ) appropriate to region 2 (a < r < b) are

emz(r, θ) =
L−1∑

`=0

e−j2πm`/LI(−πα/L,πα/L)(θ − 2π`/L)

∞∑

s=1

Bmshs(kcr) sin (sL(θ − 2π`/L)/α) (15a)
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hmθ(r, θ) = (−jωε/kc)
L−1∑

`=0

e−j2πm`/LI(−πα/L,πα/L)(θ − 2π`/L)

∞∑

s=1

Bmsh
′
s(kcr) sin (sL(θ − 2π`/L)/α) (15b)

where Bms, s ∈ N, are arbitrary expansion coefficients and

hs(kcr)=Y(sL/α)(kcb)J(sL/α)(kcr)−J(sL/α)(kcb)Y(sL/α)(kcr), a<r<b

It may be observed from (14) and (15) that the boundary conditions
on the bottom and the side walls of the slots are automatically satisfied
by the form of solution assumed for the field components in region 2,
viz., (i) emz(r, θ) vanishes at r = b for −πα/L < θ − 2π`/L < πα/L,
` = 0, 1, . . . , L− 1 and (ii) emr(r, θ) = −(jβ/k2

c )∂emz/∂r vanishes at
θ = π(2`±α)/L, ` = 0, 1, . . . , L− 1 for a < r < b. Thus we need only
to ensure the continuity of emz(r, θ) across the interface r = a between
regions 1 and 2, and the continuity of hmθ(r, θ) across the slot openings
located at r = a, for −πα/L < θ−2π`/L < πα/L, ` = 0, 1, . . . , L−1.
The continuity of emz(r, θ) across r = a requires

∑

q∈Z

AmqJqL(kca)e−jqLθ =
L−1∑

`=0

ejm(θ−2π`/L)I(−πα/L,πα/L)(θ − 2π`/L)

∞∑

s=1

Bmshs(kca) sin (sL(θ − 2π`/L)/α) (16)

As for the TE modes, it is sufficient to enforce the continuity of
emz(r, θ) over the interval (−π/L, π/L) in view of the 2π/L periodicity
of both sides of (16). Thus (16) is equivalent to

∑

q∈Z

AmqJm+qL(kca)e−jqLθ = ejmθI(−πα/L,πα/L)(θ)

∞∑

s=1

Bmshs(kca) sin(sLθ/α) for − π/L ≤ θ < π/L (17)

The infinite series on the left side of (17) is nothing but the complex
exponential Fourier series of the function defined by the right side over
the interval (−π/L, π/L). Multiplying both sides of (17) by ejpLθ

and integrating with respect to θ from −π/L to π/L, we have for the
Fourier coefficients

AmpJm+pL(kca)=(j/πα) sin(p + m/L)πα

∞∑

s=1

(−1)sshs(kca)
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Bms/
(
(p + m/L)2 − s2/α2

)
if α |p + m/L| /∈ N

(j/πα) sin(p+m/L)πα

∞∑

s=1
s6=α|p+m/L|

(−1)sshs(kca)Bms/
(
(p+m/L)2−s2/α2

)

+j(α/2)hα|p+m/L|(kca)(δp(−m/L+s/α) − δp(−m/L−s/α))Bm(α|p+m/L|)
if α|p + m/L| ∈ N (18)

The continuity of hmθ (r, θ) across the slot openings on the interface
r = a may be expressed as

e−jm(θ−2π`/L)
∑

p∈Z

AmpJ
′
m+pL(kca)e−jpLθ

= I(−πα/L,πα/L)(θ − 2π`/L)
∞∑

k=1

Bmkh
′
k(kca) sin(k`(θ − 2π`/L)/α)(19)

Once again the continuity of hmθ (r, θ) over the first slot opening
located at r = a for −πα/L < θ < πα/L need only be enforced in view
of the 2π/L periodicity of both sides of (19). Thus (19) is equivalent
to

∑

p∈Z

AmpJ
′
m+pL(kca)e−j(m+pL)θ =

∞∑

k=1

Bmkh
′
k(kca) sin (qLθ/α)

for − πα/L ≤ θ < πα/L (20)

The right side of (20) may be considered to be the Fourier sine-series
representation of the function on the left side restricted to the interval
(−πα/L, πα/L). Multiplying both sides of (20) by sin(sLθ/α) and
integrating with respect to θ from −πα/L to πα/L, we have

h′s(kca)Bms =
(
2j(−1)ss/πα2

)∑

p∈Z

AmpJ
′
m+pL(kca)

sin((p+m/L)πα)
(s2/α2−(p+m/L)2)

if Z ∩ {−m/L± s/α} is empty
(
2j(−1)ss/πα2

) ∑

p∈Z
p6=−m/L±s/α

AmpJ
′
m+pL(kca)

sin((p + m/L)πα)
(s2/α2 − (p + m/L)2)

−jIZ(−m/L + s/α)J ′sL/α(kca)Am(−m/L+s/α)

+jIZ(−m/L− s/α)J ′−sL/α(kca)Am(−m/L−s/α)

if Z ∩ {−m/L± s/α} is nonempty (21)
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Substituting for Amp, p ∈ Z, from (18) in to (21) we have

Bms =
2(−1)ss

π2α3

∞∑

k=1

(−1)k khk(kca)
h′s(kca)




∑

p∈Z

p6=−m
L
± k

α

J ′m+pL(kca)
Jm+pL(kca)

sin2(p + m/L)πα(
(p + m/L)2 − s2

α2

)(
(p + m/L)2 − k2

α2

)


Bmk

if Z ∩ {−m/L± s/α} is empty

2(−1)ss

π2α3

∞∑

k=1

(−1)k khk(kca)
h′s(kca)




∑

p∈Z
p6=−m

L
± s

α

p6=−m
L
± k

α

J ′m+pL(kca)
Jm+pL(kca)

sin2(p + m/L)πα(
(p + m/L)2 − s2

α2

)(
(p + m/L)2 − k2

α2

)




Bmk

+
α

2

(
hs(kca)J ′sL/α(kca)

h′s(kca)JsL/α(kca)
(IZ(−m/L+s/α)+IZ(−m/L−s/α))

)
Bms

if Z ∩ {−m/L± s/α} is nonempty (22)

Defining for s, k ∈ N

bTM
msk ∆ δsk− 2(−1)ssk

π2α3

hk(kca)
h′s(kca)




∑

p∈Z

p6=−m
L
± k

α

J ′m+pL(kca)
Jm+pL(kca)

sin2(p + m/L)πα

((p + m/L)2 − s2/α2) ((p + m/L)2 − k2/α2)




if Z ∩{−m/L±s/α} is empty
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δsk

(
1−α

2
hs(kca)
h′s(kca)

J ′sL/α(kca)

JsL/α(kca)
(IZ(−m/L+s/α)+IZ(−m/L−s/α))

)

−2(−1)ssk

π2α3

hk(kca)
h′s(kca)




∑

p∈Z
p 6=−m/L±s/α
p6=−m/L±k/α

J ′m+pL(kca)
Jm+pL(kca)

sin2(p + m/L)πα

((p + m/L)2 − s2/α2) ((p + m/L)2 − k2/α2)




if Z ∩ {−m/L± s/α} is nonempty (23)

we may recast (22) as an infinite system of homogeneous linear
algebraic equations for Bms, s ∈ N:

∞∑

k=1

bTM
mskBmk = 0 for s ∈ N (24)

In order that a nontrivial solution for Bms, s ∈ N, exists, the
determinant of the infinite order coefficient matrix ATM

m ∆ [bTM
msk]s,k∈N

must be zero, that is ∣∣ATM
m

∣∣ = 0 (25)

The solvability condition (25) delivers, in principle, the eigenvalue
equation for determining the normalized cut-off wave numbers k

(e)
ca,mn,

n ∈ N, of the mth (m = 0, 1, . . . , bL/2c) TM mode supported by the
vane-loaded circular cylindrical waveguide. The dispersion curves of
the TM mode with azimuthal mode number m are then given by the
family of rectangular hyperbolas

k2
0a − β2

a = (k(e)
ca,mn)2, n ∈ N

in the βa − koa plane. For a specified root k
(e)
ca,mn0 of the eigenvalue

Equation (25), the TM mode expansion coefficients B
(n0)
ms , s ∈ N, can

be determined in terms of any one of them, say B
(n0)
m1 from (24), and

the expansion coefficients A
(n0)
mp , p ∈ Z, are then given in terms of

B
(n0)
ms , s ∈ N, by the relations (18).
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4. NUMERICAL SOLUTION OF DISPERSION
EQUATIONS

Before attempting to solve the dispersion Equations (13) and (25)
numerically to obtain the cut-off wave numbers of the TEm- and TMm-
modes for specified values of waveguide parameters, α, L and b/a, it
is of course necessary to truncate the infinite-order coefficient matrices
ATE

m and ATM
m to finite-order matrices ÂTE

m and, ÂTM
m , say of orders

(N+1)×(N+1) and N×N respectively, and estimate the entries of the
truncated matrices by symmetrically truncating the rapidly converging
infinite series for them from the −Mth term to the Mth term for a
sufficiently large value of M .

In this paper, numerical computation of the cut-off wave numbers
is carried out only for the axisymmetric TE0- and TM0-modes (i.e.,
corresponding m = 0) as only these modes appear to be ideally suited
for interaction with an axisymmetric electron beam employed in gyro-
TWT amplifiers. The following values of the waveguide parameters
are chosen for the numerical computation: α = 1/2, b/a = 6/5, 8/5,
L = 3, 4. The entries of the truncated coefficient matrices ÂTE

0 and
ÂTM

0 may now be read directly from (11) and (23) by setting m = 0
and α = 1/2:

bTE
0k = δ0k


1− g′0(kca)

2g0(kca)

M∑

p=−M

(JpL(kca)/J ′pL(kca))sinc2(p/2)




−(1− δ0k)(−1)k g′k(kca)
πg0(kca)

M∑

p=−M
p6=±2k

(
p2JpL(kca) sin

(
pπ/2

)

sinc2(p/2)/
(
p2 − 4k2

)
J ′pL(kca)

)
(26a)

and for s ≥ 1
bTE
sk = δsk(1− g′s(kca)J2sL(kca)/2gs(kca)J ′2sL(kca))

−4(−1)s+k
(
g′k(kca)/π2gs(kca)

)
M∑

p=−M
p6=±2s,±2k

p2 JpL(kca)
J ′pL(kca)

sin2(pπ/2)(
p2 − 4s2

)(
p2 − 4k2

)

for k = 0, 1, . . . , N (26b)

bTM
sk = δsk(1− hs(kca)J ′2sL(kca)/2h′s(kca)J2sL(kca))
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−16(−1)ssk(hk(kca)/π2h′s(kca))
M∑

p=−M
p6=±2s,±2k

J ′pL(kca)
JpL(kca)

sin2(pπ/2)(
p2 − 4s2

)(
p2 − 4k2

)

for k =, 1, . . . , N (27)

In (26) and (27) we have omitted the first ‘0’ subscript on the matrix
entries for simplicity. All the non-zero entries of the matrices ÂTE

0

and ÂTM
0 are estimated by partially summing the rapidly converging

infinite series for them from the −30th term to the 30th term; in other
words we are taking M to be 30. A matrix truncation order N as low
as 2 for L = 4 in the case of TE0 modes and for L = 3 and 4 in the

Table 1. Normalized cut-off wave numbers of axisymmetric TE 0n and
TM0n modes for α = 1/2.

k
(h)
ca,0n

HHHHHn
b/a 1

6/5 8/5
L = 3 L = 4 L = 3 L = 4

1 3.831 1.99 1.997 1.502 1.503
2 7.015 2.399 3.425 2.359 2.377
3 10.173 3.392 3.831 2.377 2.39
4 13.323 3.831 4.522 2.399 3.45
5 16.47 6.284 6.046 3.447 3.831
6 19.615 6.312 7.015 3.831 4.193
7 22.76 6.889 7.199 4.141 5.409
8 25.903 7.015 7.566 5.359 6.549

k
(e)
ca,0n

HHHHHn
b/a 1

6/5 8/5
L = 3 L = 4 L = 3 L = 4

1 2.404 8.144 10.193 6.198 10.026
2 5.52 8.265 10.199 6.209 10.03
3 8.653 9.762 13.25 6.379 12.206
4 11.791 9.795 13.272 6.381 12.208
5 14.93 9.937 16.037 8.4 14.249
6 18.071 10.033 16.128 8.49 14.319
7 21.211 11.65 17.432 9.762 15.885
8 24.352 11.832 17.441 9.793 15.887
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case of the TM0 modes is found to be adequate to stabilize the first 8
roots of the dispersion equations. However, the truncation order has
to be increased to 10 in order to stabilize the 8th root for L = 3 in the
case of TE0 modes. The estimated values of the TE0 and TM0-mode
cut-off wave numbers k

(e)
ca,0n and k

(h)
ca,0n for n = 1, 2, . . . , 8, are listed in

Table 1. The TE0- and TM0-mode cut-off wave numbers of a circular
cylindrical waveguide of radius a(b/a = 1) are also displayed in Table 1
for comparison.

5. DISCUSSION AND CONCLUSIONS

It may be seen from the form of the field expansions (1) and (2) for
the TE modes and (14) and (15) for the TM modes that replacing the
azimuthal mode number m by L−m (m = 0, 1, 2, . . . , dL/2− 1e) has
the effect of only switching from an azimuthal variation of the field
components according to the factor e−jmθ to an azimuthal variation
according to the factor ejmθ. However, the matrix entries bTE

msk,
s, k ∈ N0, and bTM

msk, s, k ∈ N, are seen to remain invariant
under such a change of sign in the azimuthal mode number m.
Thus each of the dL/2e − 1 non-axisymmetric TEmn and TMmn

modes for (m = 1, 2, . . . , dL/2− 1e) may be considered to be two-
fold degenerate. Identifying two TEmn or TMmn with the azimuthal
mode number m for (|m| = 1, . . . , dL/2− 1e)) differing by a sign, the
variation of the TE- and TM-mode field components with respect to the
angle variable θ can occur only in bL/2c+ 1 essentially distinct ways.
This behavior is in marked contrast to the behaviour of the TE and the
TM modes of a circular cylindrical waveguide for which the azimuthal
mode number magnitude |m| can assume any value in N0. It may also
be inferred from the form of the dispersion equations for the TE-and
TM-modes of a vane-loaded circular cylindrical waveguide (b/a > 1)
that none of the TEmn mode is degenerate with any of the TMmn

mode for m = 0, 1, . . . , bL/2c, n ∈ N unlike the TE0n and TM1n

modes (n ∈ N) of a circular cylindrical waveguide (b/a = 1). Thus the
TEmn and the TMmn modes, m = 0, 1, . . . , bL/2c, n ∈ N, of a vane-
loaded circular cylindrical waveguide (b/a > 1) taken together form a
complete system of orthogonal modes in terms of which any ‘arbitrary’
propagating wave supported by the vane-loaded structure may be
expanded [15]. The orthogonality and the completeness properties of
these waveguide modes make an analysis of small-signal or large-signal
amplification in a gyro-TWT using a modal expansion very attractive.
An orthogonal expansion using the TE0n and TM0n modes alone will
of course suffice for analyzing the amplification characteristics of an
axisymmetric electromagnetic field configuration.
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The effect of varying the values of the parameters b/a and L
on the TE0n and the TM0n cut-off wave numbers may be seen from
Table 1. The cut-off frequency of the TE0n mode is seen to be always
smaller than that of TM0n mode, that is, irrespective of the values
of parameters b/a and L. No attempt is made here to compare the
numerical results for the TE0n modes with those of [1] since the
‘method’ used in [1] arrive at the kca values is seriously flawed as
explained in the introductory section of this paper. As a matter of
fact, estimates of the cut-off wave numbers of the TE0n modes have to
be extracted from the ‘dispersion curves’ as no table of cut-off wave
numbers is provided in [1].

We conclude with the remark that the analysis of the TE- and the
TM-modes of a vane-loaded circular cylindrical waveguide presented in
this paper parallels the analysis of the solenoidal and the irrotational
modes of a cylindrical magnetron cavity presented in [16].
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