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Abstract—In the applications of synthetic aperture radar (SAR)
data, a crucial problem is to develop precise models for the statistics
of the pixel amplitudes or intensities. In this paper, a new statistical
model, called simply here GΓΓ, is proposed based on the product
model by assuming the radar cross section (RCS) components (texture
components) of the return obey a recently empirical generalized
Gamma distribution. Meanwhile, we demonstrate theoretically that
the proposed GΓΓ model has the well-known K and G◦ distributions
as special cases. We also derived analytically the estimators of the
presented GΓΓ model by applying the “method-of-log-cumulants”
(MoLC). Finally, the performance of the proposed model is tested by
using some measured SAR images.

1. INTRODUCTION

There has been growing interest in synthetic aperture radar
(SAR) image interpretation for a variety of civilian and military
applications [1, 2], such as terrain classification [3–5], land or
sea monitoring [6–8], target detection and recognition [9–13], etc.
Presently, one of the major strategies of SAR image processing is
to use the classical methods of statistical pattern recognition, where
it is crucial to develop precise models for the statistics of the pixel
amplitudes or intensities [14–17].

Studies on statistical models of SAR images with different terrain
types have been carried out over the last couple of decades. In
summary, three main solutions, i.e., parametric models [17, 18], non-
parametric models [15, 19] and mixture models [20], can be employed
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for this purpose. Specifically, as a modeling way of the data-
driven, non-parametric approaches, e.g., probabilistic neural network
(PNN) [15, 21–23] and standard Parzen window estimator [19, 24], have
proved to be effective estimated tools and suitable for estimating the
complex or unknown probability density function (PDF). However, as
vast computational load and numerous data involved, non-parametric
approaches are limited in the various applications. Consequently,
parametric models turn out to be intensively investigated in many
literatures [14, 15, 17, 18]. The process of parametric modeling can
be described in brief as to choose the appropriate one from several
analytical statistical distributions for the given image. Practically, it
is not sufficient for fitting a large-scale scene by parametric models
due to the complex contexts and numerous terrain types included [15].
The mixture models, combining two or more parametric models,
provide a creative idea for this problem. Several alternatives, such
as Gamma mixture model [20], the finite mixture models [25], etc.,
are given. Unfortunately, the estimates of parameters are a hard
task for this kind of models. Similarly with the time-consuming of
non-parametric approaches, a common strategy, for instance, using
expectation-maximization (EM) algorithm [20, 25], often tends to be
tediously iterative.

Focusing on parametric models, the product model [15, 17],
expressed as the product of an underlying radar cross section
(RCS) [26–28] with an uncorrelated multiplicative speckle noise one,
has been widely and successfully used in conducting the analytical
mathematic formulas to describe the statistical properties of SAR
data. Some studies have been presented based on this model in
the past several decades, such as Γ [15], K [17] etc.. Among these
distributions, an important contribution is the derivation of the famous
G◦ distribution by Frery [14], under the consideration of discriminating
types of homogeneous, heterogeneous and extremely heterogeneous
terrains. This distribution encompasses most of the existing models,
mainly because the reciprocal of a Gamma (also called the inverse
Gamma) distribution [14, 15] can match the RCS components of
different terrain types. Recently, Li et al. [29] proposed an empirical
generalized Gamma distribution (GΓD) to estimate the PDFs of SAR
data. Although this distribution is a purely mathematical model
and has no relation to the physics of wave scattering [26–28], many
well-known distributions, such as Rayleigh, exponential, Nakagami,
Gamma, Weibull, log-normal and inverse Gamma distributions, are
particular cases of this GΓD [29].

Motivated by aforementioned characteristic, this paper is devoted
to develop a novel statistical model (denoted simply as GΓΓ) to model
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different types of clutter with respect to pixel amplitude or intensity
in high-resolution SAR images. The proposed model arises using GΓD
proposed to describe the RCS components of amplitude or intensity
return based on the product model. As discussed in Section 2, it could
be proven theoretically that the new model has the K distribution
for heterogeneous clutter as well as the G◦ distribution for extremely
heterogeneous clutter as special cases. Furthermore, using the second-
kind statistics theory developed by Nicolas [30], which relies on the
Mellin transform, i.e., “method-of-log-cumulants” (MoLC), we derive
the parameter estimators of the new distribution model.

The present paper has been divided as follows. In Section 2,
a derivation of the proposed GΓΓ model is given. In Section 3,
the parametric estimator of the presented statistical model is also
derived analytically based on the Mellin transform. We provide the
experimental results of the GΓΓ model using typical measured SAR
data in Section 4. The last section concludes this paper.

2. THE PROPOSED GΓΓ MODEL

2.1. The GΓD and the Product Models

The generalized gamma distribution is recently defined as [29]

pX (x) =
|v|κκ

σΓ (κ)

(x

σ

)κv−1
exp

{
−κ

(x

σ

)v}
, σ, |v| , κ, x > 0 (1)

where v, κ and σ are the power, shape and scale parameters,
respectively. Γ (·) represents the Gamma function. The PDF
characterized by (1) is shown as an empirical model. It is an
ideal alternative for modeling the RCS components of SAR intensity
or amplitude return, owing to that both the Gamma distribution
(describing the heterogeneous clutter) and the inverse Gamma one
(describing the extremely heterogeneous terrains) can be viewed as
particular cases of this general model [29], and correspond to v = 1
and v = −1, respectively.

The product model [15, 17] has been testified that it is valid for
conducting statistical models of amplitude or intensity statistics of
SAR data. Its expression is given by

Z = X · Y (2)

where X and Y indicate the backscattering RCS component and
speckle noise one, respectively, Z denotes the observed intensity or
amplitude of SAR data. To make a clear distinction, a similar strategy
with literature [14], i.e., the subscripts “I” and “A”, will be used
separately hereafter for the intensity and amplitude cases. Considering
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the case of the intensity, it is widely accepted that multilook intensity
speckle noise component obeys the Gamma distribution [15, 17] with
unitary mean, whose PDF is expressed by

pYI
(y) =

nn

Γ (n)
yn−1 exp (−ny) , y, n > 0 (3)

where n is the number of looks.

2.2. The GΓΓ Model

Herein, within the structure of the product model shown in (2),
combining (3) and (1), the PDF of ZI can be derived as

pZI
(z) =

∫ ∞

0

1
x
· pXI

(x)·pYI

( z

x

)
dx=

|v|κκnn

σκvΓ (κ) Γ (n)
zn−1

∫ ∞

0
xκv−n−1

exp
{
−κ

(x

σ

)v
− n

( z

x

)}
dx, σ, κ, n, z > 0, v 6= 0 (4)

Its moments [31–33] of m order turn out to be (see Appendix A):

E (zm
I ) =

Γ (m + n)
Γ (κ) Γ (n)

Γ
(
κ +

m

v

)(
σκ−1/v

n

)m

(5)

In order to facilitate the numerical integral in (4), a transform,
x = tan (θ), leads to that (4) could be rewritten as

pZI
(z) =

|v|κκnn

σκvΓ(κ)Γ(n)
zn−1 ·

∫ π
2

0
sec2(θ) tanκv−n−1(θ)

exp
{
−κ

(
tan(θ)

σ

)v

−n

(
z

tan (θ)

)}
dθ, σ, κ, n, z>0, v 6=0 (6)

Letting ZA denote the amplitude return, via the relationship of
pZA

(z) = 2zpZI
(z2), and thus the PDF of ZA is characterized by

pZA
(z) =

2 |v|κκnn

σκvΓ (κ) Γ (n)
z2n−1 ·

∫ π
2

0
sec2 (θ) tanκv−n−1 (θ)

exp
{
−κ

(
tan (θ)

σ

)v

−n

(
z2

tan (θ)

)}
dθ, σ, κ, n, z>0, v 6=0(7)

We refer to this distribution characterized by (6) or (7) as
the generalized Gamma Gamma distribution, abbreviated as GΓΓ
distribution. Specifically, we call the GΓΓI distribution and the GΓΓA

distribution, correspond to (6) and (7), respectively, to distinct the
intensity statistic as well as the amplitude statistic. Figure 1 gives the
plots of the GΓΓA distribution with respect to the various parameters.
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Figure 1. Plots of GΓΓA vs. different parameters.

Additionally, it can be proven (see Appendix B) theoretically that
the GΓΓ is degenerating to the well-known G◦ and K on the conditions
of v = −1 and v = 1, respectively. This property stated means that
the proposed GΓΓ distribution encompasses the modeling abilities of
G◦ and K whilst extending them to enable the modeling of the clutter
areas with more widely varying degrees of homogeneity.

3. PARAMETER ESTIMATOR OF THE GΓΓ MODEL
BASED ON MOLC

3.1. The Log-Cumulants of GΓΓ

The MoLC [18, 30] has been proposed by Nicolas et al. as a parametric
PDF estimation technique for a function defined over R+. MoLC is
based on a second kind statistics by applying the Mellin transform,
instead of the Fourier and Laplace transforms. Given a positive-
valued random variable X with the PDF pX(x), the second-kind first
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characteristic function is defined as the Mellin transform of pX(x):

φX (s) = M [pX (x)] (s) =
∫ ∞

0
xs−1pX (x)dx (8)

where M is the Mellin transform operator. Subsequently, the second
characteristic function of the second kind is computed as the natural
logarithm of φX (s):

ϕX (s) = log (φX (s)) (9)

The r-th order derivative of ϕX (s) at s = 1 is the second kind
cumulants (also named log-cumulants) of order r, i.e.,

c̃r =
drϕX (s)

dsr

∣∣∣∣
s=1

(10)

Thanks to the relation between the Mellin transform and the
moments of random variable, i.e., φX (s) = E

(
Xs−1

)
. Hence, via (5),

the second-kind first and second characteristic functions of the GΓΓ
distribution are given, respectively, by the following equations:





φGΓΓ (s) = Γ(s−1+n)
Γ(κ)Γ(n) Γ

(
κ+ s−1

v

) (
σ

nκ
1
v

)s−1

ϕGΓΓ (s) = log (Γ (s−1+n)) + log
(
Γ

(
κ + s−1

v

))
−log(Γ(κ))−log(Γ(n)) + (s−1)(log(σ)− log(n)− 1

v log(κ))

(11)

From (10) and (11), one can obtain the log-cumulants of the GΓΓ
distribution expressed by

{
c̃1 = Ψ (n) + log (σ/n) + (Ψ (κ)− log (κ))/v
c̃r = Ψ (r − 1, n) + Ψ (r − 1, κ)/vr, r ≥ 2 (12)

where Ψ (·) represents the digamma function (i.e., the logarithmic
derivative of the Gamma function), and Ψ (r, ·) is the r-th order
Polygamma function (i.e., the rth order derivative of the digamma
function).

Given a sample set {zi} , i ∈ [1, N ], the estimates of the first three
log-cumulants can be acquired directly by





ˆ̃c1 = 1
N

N∑
i=1

[ln (zi)]

ˆ̃cr = 1
N

N∑
i=1

[(
ln (zi)− ˆ̃c1

)r]
, r = 2, 3

(13)
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3.2. The Estimates of Parameters in GΓΓ

Paying attention to (12), we stress that c̃r, r ≥ 2 do not contain σ, thus
allowing us to divide the parameter estimates of the GΓΓ distribution
into three distinct stages.

First, based on (12), the 2-th and 3-th order log-cumulants of the
GΓΓ distribution yield

c̃2 = Ψ (1, n) + Ψ (1, κ)
/
v2 (14)

c̃3 = Ψ (2, n) + Ψ (2, κ)
/
v3 (15)

To isolate v in previous two equations, we take the ratio of
Ψ3 (1, κ)/Ψ2 (2, κ), and thus via (14) and (15), one arrive at that the
estimate κ̂ of the parameter κ is given by

Ψ3 (1, κ̂)
Ψ2 (2, κ̂)

=

(
ˆ̃c2 −Ψ(1, n)

)3

(
ˆ̃c3 −Ψ(2, n)

)2 (16)

As shown in Figure 2, the function on the left-hand-side of (16),
g (κ̂) = Ψ3 (1, κ̂)/Ψ2 (2, κ̂), is strictly monotonically increasing based
on the following proof, i.e., the derivation of the function g (κ̂) vs. the
parameter κ̂ is

g′ (κ̂)=
d

dκ̂

[
Ψ3 (1, κ̂)
Ψ2 (2, κ̂)

]
=

Ψ2 (1, κ̂)
Ψ3 (2, κ̂)

[
3Ψ2 (2, κ̂)−2Ψ (3, κ̂)Ψ (1, κ̂)

]
(17)
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Figure 2. Plot of the function g(κ̂).

Via [34], the Polygamma function is with the following
characteristic:
m−1

m
<

Ψ2 (m, κ̂)
Ψ (m+1, κ̂)Ψ (m−1, κ̂)

<
m

m+1
, ∀κ̂ > 0, m = 2, 3, . . . (18)
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(18) leads to

1
2

<
Ψ2 (2, κ̂)

Ψ (3, κ̂)Ψ (1, κ̂)
<

2
3
⇒ 3Ψ2 (2, κ̂)− 2Ψ (3, κ̂)Ψ (1, κ̂) < 0 (19)

Because Ψ (2, κ̂) < 0 for all κ̂ > 0, it can be observed to conclude
that g′ (κ̂) > 0 by taking (19) into (17). A simple numerical solution,
for instance, the fsolve function in Matlab or the bisection method [20],
can be adopted to obtain the value of κ̂.

Next, taking κ̂ into (15) leads to that the estimate v̂ of the
parameter v is

v̂ = 3

√
Ψ(2, κ̂)

ˆ̃c3 −Ψ(2, n)
(20)

Finally, plugging v̂ and κ̂ into the first equation of (12), the
estimate σ̂ turns out to be solved.

4. EXPERIMENTAL RESULTS

The aim of this section is to verify the modeling capability of
the proposed GΓΓ distribution based on the measured SAR data.
As discussed in earlier works [14, 15, 18], we note that G◦ is an
accurate model for SAR images over homogeneous, heterogeneous
and extremely heterogeneous terrains (like urban areas), and some
conclusions [14, 15, 18] have been made that the G◦ distribution
outperforms other conventional distributions, such as K, Weibull,
Nakagami, etc., in estimating PDFs of given SAR images. On the
other hand, by previous analysis, the proposed GΓΓ distribution
encompasses theoretically the modeling abilities of G◦ as proven in
Appendix B. Hence, we only compare the proposed GΓΓ distribution
with the G◦† one in this section.

It should be emphasized that we have tested the GΓΓ and G◦
models on various SAR images (e.g., L-band airborne SAR data
acquired by the NASA/JPL AIRSAR sensor, SAR data provided
by RADARSAT-2 space-borne SAR system operated in C band,
TerraSAR-X SAR data of X band and other data provided by
Chinese airborne sensors), which involve different bands, platforms,
polarimetric modes and spatial resolutions. Consequently, we found
that the performances of GΓΓ are almost in agreement with that
of G◦ when fitting the observed histograms of given SAR images in
† Throughout this paper, the estimates of parameters of the G◦ distribution adopt the
MoLC, the detailed description is given by Tison, et al. [18].
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low-resolution and the homogeneous, heterogeneous regions in high-
resolution. In other words, these tested results show that the GΓΓ
distribution can model all cases the G◦ distribution can, as expected.

Therefore, to better compare the aforementioned two statistical
models, we further check them on extremely heterogeneous terrains of
high-resolution images. As an example, a large TerraSAR-X spotlight-
mode 300 MHz geocoded scene over Beijing of China, acquired on
January 31, 2008 at 10:03 UTC, with high-resolution 2m × 2.3 m
(azimuth × range) and HH-polarization is used in this paper as shown
in Figure 3. Like other cities in the world, Beijing is known for its well-
planned urban expansion. Thus, it remains valid for other cities with
similar appearance, although hereafter the tested results on Beijing
only are given.

Figure 3. The SAR image of Beijing from the TerraSAR-X.

Three representative patches of extremely heterogeneous areas
dominated by urban of buildings and indicated by boxes in Figure 3,
numbered A-C (with the sizes of 1476 × 1342, 1868 × 1848, and
2361×1720 pixels, respectively), are selected as the main regions of this
study. Figures 4–6 show the comparison of the amplitude histograms
of the three selected areas indicated in Figure 3 with the proposed GΓΓ
and classical G◦ model fits. The estimating results on the linear and
logarithmic scales are all provided so that the performance difference
in fitting the whole and the tails can be seen clearly.

Before the estimates of other parameters in the proposed GΓΓ
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Figure 4. Plots of amplitude histogram for Patch A and of the
estimated GΓΓ and G◦ PDFs ((a) in linear scale, (b) in logarithmic
scale).
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Figure 5. Plots of amplitude histogram for Patch B and of the
estimated GΓΓ and G◦ PDFs ((a) in linear scale, (b) in logarithmic
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distribution characterized by (6) or (7), the number of looks n is
replaced by the ENL. Thus, the estimate n̂ of n is equal to 2.22 about
the scene as shown in Figure 3 by using homogeneous areas. Next,
the parameter estimations of each distribution in Figures 4–6 are all
accomplished by the estimators based on the MoLC, which are shown
at Table 1, where the analytical expression of the G◦ distribution is
given in (B1).
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Table 1. Parameter estimations of noted areas in Figure 3.

Patches GΓΓ (σ̂, κ̂, v̂) G◦ (α̂, γ̂, n̂)
A (0.3781, 4.0953, −0.3360) (−0.9260, 0.3332, 1.2713)
B (0.3229, 4.3008, −0.2990) (−0.8379, 0.2584, 1.1484)
C (0.3239, 3.1509, −0.3744) (−0.8630, 0.2708, 1.2668)

In order to quantitatively assess the fitting result, we adopt
the Kolmogorov-Smirnov (KS) test [15] as a similarity measurement.
The smaller the value of KS measurement obtains, the higher fitting
accuracy they have. The KS values of the fitting results shown in
Figures 4–6 are compared in Table 2. From this table, it can be
conclude that the proposed GΓΓ distribution well agrees with the given
SAR images, which implies the higher precision of fitting using GΓΓ
distribution than using G◦ distribution.

Table 2. The comparison of fitting histogram.

Patches KS values of GΓΓ KS values of G◦
A 0.0053 0.0131
B 0.0101 0.0206
C 0.0082 0.0153
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5. CONCLUSION

In this paper, we have developed a new statistical model, namely GΓΓ,
for SAR image modeling and analysis within the product model by
assuming the radar cross section (RCS) components of the return obey
an empirical generalized Gamma distribution. We also demonstrate
theoretically that the proposed model has the well-known K and G◦
distributions as special cases. Additionally, the parameter estimators
of the presented model are obtained by applying the MoLC. The
experimental results show that this model provides better performance
compared to G◦ distribution, especially in the extremely heterogeneous
high-resolution urban areas.

Unfortunately, the proposed model as shown in (6) or (7) is an
integral representation, which may bring some limits in practice. Our
future works will focus on validating this proposed model in an image
processing application such as classification, filtering, detection, etc..
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APPENDIX A. THE DERIVATION OF m-th ORDER
MOMENTS OF THE GΓΓ DISTRIBUTION

Via (4), The m-th order moment estimation of GΓΓ is

E (zm
I ) =

∫ ∞

0
zmfZI

(z)dz =
∫ ∞

0
zm |v|κκnn

σκvΓ (κ) Γ (n)
zn−1

∫ ∞

0
xκv−n−1 exp

{
−κ

(x

σ

)v
− n

( z

x

)}
dxdz

=
|v|κκnn

σκvΓ (κ) Γ (n)

∫ ∞

0
xκv−n−1 exp

{
−κ

(x

σ

)v}

∫ ∞

0
zm+n−1 exp

{
−n

( z

x

)}
dzdx (A1)

Letting t = nz/x, then z = tz/x and dz = x
ndt. Due to z : 0 →∞,
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t : 0 →∞. Thus, the integral of right-hand side in (A1) is given by
∫ ∞

0
zm+n−1 exp

{
−n

( z

x

)}
dz =

∫ ∞

0

(
tx

n

)m+n−1

exp {−t} x
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dt
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∫ ∞

0
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(x

n

)m+n
Γ (m + n) (A2)

Taking (A2) into (A1), (A1) can be simplified as
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A change of t = κ
(
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)1/v and dx =
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dt, where x : 0 → ∞, then t :

{
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∞→ 0, v < 0 . Thus,

two cases are divided. When v > 0, we obtain
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Oppositely, if v < 0, (A3) is expressed by

E (zm
I )

=
|v|κκΓ (m + n)

σκvΓ(κ) Γ (n) nm

∫ ◦

∞
σκv+m−1

(
t

κ

)κv+m−1
v

exp{−t} σ

κv

(
t

κ

)1/v−1

dt

=
−vΓ (m + n)σm

vΓ (κ) Γ (n)nmκ
m
v

∫ ◦

∞
tκ+m

v
−1 exp {−t} dt

=
vΓ (m + n) σm

vΓ (κ) Γ (n)nmκ
m
v

∫ ∞

0
tκ+m

v
−1 exp {−t} dt

=
Γ (m + n)
Γ (κ) Γ (n)

Γ
(
κ +

m

v

)(
σκ−1/v

n

)m

(A5)

(A4) or (A5) are completely identical to the expression shown in (5).
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APPENDIX B. PROOF OF THE RELATIONSHIP
BETWEEN DISTRIBUTIONS

B.1. Proof of GΓΓ
v=−1→ G◦

On the condition of v = −1, (4) turns out to be

fZI
(z)=

κκnn

σ−κΓ (κ) Γ (n)
zn−1

∫ ∞

0
x−κ−n−1 exp

{
−κ

σ

x
−n

( z

x

)}
dx (B1)

According to the integral formula
∫∞
0 xa−1 exp {−bx} dx = 1

ba Γ (a),
Re a > 0, Re b > 0 [34] and making a variable change of t = 1/x, we
yield

fZI
(z)=

κκnn

σ−κΓ (κ) Γ (n)
zn−1

∫ ◦

∞
−t−2 · tκ+n+1 exp {− (κσ + nz) t} dt

=
κκnn

σ−κΓ (κ) Γ (n)
zn−1

∫ ∞

0
tκ+n−1 exp {− (κσ + nz) t} dt

=
κκnn

σ−κΓ (κ) Γ (n)
zn−1 1

(κσ + nz)κ+n Γ (κ + n) (B2)

Letting κ = −α and γ = κσ, the well-known intensity G◦
distribution [14] is obtained, i.e.,

fZI
(z) =

nnΓ (n− α) zn−1

γαΓ (n) Γ (−α) (γ + nz)n−α , −α, γ, n, z > 0 (B3)

B.2. Proof of GΓΓ
v=1→ K

Similarly, when v = 1, (4) can be rewritten as

fZI
(z)=

κκnn

σκΓ (κ) Γ (n)
zn−1

∫ ∞

0
xκ−n−1 exp

{
−κ

x

σ
− n

( z

x

)}
dx (B4)

Utilizing the integral formula
∫∞
0 xa−1 exp

(− c
x − bx

)
dx =

2
(

c
b

)a/2
Ka

(
2
√

cb
)

, Re b > 0, Re c > 0 [34], we further obtain

fZI
(z) =

κκnn

σκΓ (κ) Γ (n)
zn−12

(nzσ

κ

)κ−n
2

Kκ−n

(
2
√

nzκ/σ

)
(B5)

By the replacement of variable, i.e., λ = κ/σ and α = κ, we arrive
at the K distribution [14]:

fZI
(z)=

2λn

Γ (α) Γ (n)
(λnz)

α+n
2
−1 Kα−n

(
2
√

nλz
)

α, λ, n, z>0 (B6)

where Kα−n (·) is the second type modified Bessel function with order
α− n.
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3. Dusséaux, R., E. Vannier, O. Taconet, and G. Granet, “Study
of backscatter signature for seedbed surface evolution under
rainfall-influence of radar precision,” Progress In Electromagnetics
Research, Vol. 125, 415–437, 2012.

4. Koo, V. C., Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim,
C. S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood,
M. H. Bin Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee,
W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew,
“A new unmanned aerial vehicle synthetic aperture radar
for environmental monitoring,” Progress In Electromagnetics
Research, Vol. 122, 245–268, 2012.

5. Du, Y., Y. L. Luo, W. Z. Yan, and J. A. Kong, “An
electromagnetic scattering model for soybean canopy,” Progress
In Electromagnetics Research, Vol. 79, 209–223, 2008.

6. Zhao, Y. W., M. Zhang, X. P. Geng, and P. Zhou, “A
comprehensive facet model for bistatic SAR imagery of dynamic
ocean scene,” Progress In Electromagnetics Research, Vol. 123,
427–445, 2012.

7. Albert, M. D., Y. J. Lee, H. T. Ewe, and H. T. Chuah, “Multilayer
model formulation and analysis of radar backscattering from sea
ice,” Progress In Electromagnetics Research, Vol. 128, 267–290,
2012.

8. Bausssard, A., M. Rochdi, and A. Khenchaf, “Po/mec-based
scattering model for complex objects on a sea surface,” Progress
In Electromagnetics Research, Vol. 111, 229–251, 2011.

9. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and
A. F. Abas, “A circular synthetic aperture radar for on-the-
ground object detection,” Progress In Electromagnetics Research,
Vol. 122, 269–292, 2012.

10. Tian, B., D. Y. Zhu, and Z. D. Zhu, “A novel moving target
detection approach for dual-channel SAR system,” Progress In
Electromagnetics Research, Vol. 115, 191–206, 2011.

11. Park, S. H., J. H. Lee, and K. T. Kim, “Performance analysis



684 Gao, Qin, and Zhou

of the scenario-based construction method for real target ISAR
recognition progress,” Progress In Electromagnetics Research,
Vol. 128, 137–151, 2012.

12. Chang, Y. L., C. Y. Chiang, and K.-S. Chen, “SAR image
simulation with application to target recognition,” Progress In
Electromagnetics Research, Vol. 119, 35–57, 2011.

13. Park, J. I. and K. T. Kim, “A comparative study on ISAR
imaging algorithms for radar target identification,” Progress In
Electromagnetics Research, Vol. 108, 155–175, 2010.

14. Frery, A. C., H. J. Muller, C. D. Costa, C. D. C. F. Yanasse,
and S. J. S. Sant’ Anna, “A model for extremely heterogeneous
clutter,” IEEE Transactions on Geoscience and Remote Sensing,
Vol. 35, No. 3, 648–659, 1997.

15. Gao, G., “Statistical modeling of SAR images: A survey,” Sensors,
Vol. 10, 775–795 2010.

16. Zhang, Y. D., L. N. Wu, and G. Wei, “A new classifier
for polarimetric SAR images,” Progress In Electromagnetics
Research, Vol. 94, 83–104, 2009.

17. Oliver, C. J., Understanding Synthetic Aperture Radar Images,
Artech House Boston, London, USA, UK, 1998.

18. Tison, C., J. M. Nicolas, F. Tupin, and H. Mâıtre, “A new
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