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Abstract—A Ka-band two-dimensional synthetic aperture interfero-
metric radiometer called BHU-2D has been developed by Electromag-
netic Engineering Laboratory of Beihang University. The radiome-
ter obtains images in real-time benefiting from the adoption of a
1bit/2level FPGA-based correlator unit. The design and implementa-
tion of the correlator unit in BHU-2D are presented in this paper. The
calibration procedures of the correlation coefficients are also presented.
For the purpose of simplifying the calibration procedure, a closed form
approximation is introduced and applied to BHU-2D, which is used to
correct the errors caused by threshold offset of the quantizer. Error
analysis of this approximation shows that the method is applicable in
SAIRs. In order to verify the design and calibration method, a series
of validation experiments have been conducted. Measurement results
have proved that the performance of the correlation unit could meet
the requirements of BHU-2D.

1. INTRODUCTION

Synthetic aperture interferometric radiometer (SAIR) was introduced
in the late 1980s as an alternative to real aperture radiometers for
earth observation [1]. Through interferometry by an array of small
antennas, SAIR realizes large equivalent aperture, and in turn achieves
high resolution at low microwave frequencies with reduced mass and
mechanical requirements. A SAIR is a group of interferometers.
The interferometers measure the complex cross correlations between
signals received by each pair of antennas. Each complex correlation
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measured by the SAIR can be called a sample of the visibility function.
Based on Van-Cittert-Zernike Theorem [2], visibility function could
be approximated by the spatial Fourier transform of the brightness
temperature within the field of view (FOV).

A new SAIR called BHU-2D has been developed by Beihang
University since 2006 [3]. The instrument operates at 34.02 ∼
34.18GHz and consists of 24 receiving elements. Therefore, 276(=
24× 23/2) complex cross-correlations can be measured. To computes
the 276 complex cross-correlations, a digital correlator unit is designed.
The digital correlator unit includes a group of analogue-to-digital
converters (ADC) and a data processing component. Considering the
complex bandwidth of the baseband signal is 160 MHz, 200 MHz is
selected as the sampling rate of the correlator unit, which meets the
Nyquist Theorem in complex frequency domain and makes full use
of the receiving bandwidth. In order to compute all the 276 complex
cross-correlations simultaneously with a working frequency of 200MHz
and obtain brightness temperature images in real-time, a FPGA is
used to form the processing component. To reduce the complexity
and power consumption of the correlator unit, 1bit/2level (1B/2L)
correlator is employed in BHU-2D.

The design of the correlator unit in BHU-2D is presented in this
paper. Firstly, the principle of the 1B/2L correlator is reviewed and
the calibration methods of the correlation coefficients are introduced in
Section 2. In order to simplify the calibration procedure, a new closed
form approximation to correct threshold offset errors is employed. The
error caused by the approximation is also discussed in Section 2. And
then, the configuration of the correlator unit in BHU-2D is described in
Section 3. To verify the design of the correlator unit, experiments are
conducted and the results are shown in Section 4. The results proved
that the performance of the correlator unit could meet the requirements
of BHU-2D.

2. DESIGN

2.1. Principle

The main idea of 1B/2L correlator is to calculate the correlation
between signals which are digitized into just 1-bit rather than multi-
bit. Being digitized into 1-bit, the signal fed into the correlator can be
expressed as

xn = g[x(nT )] =
{

1 x(nT ) ≥ 0
−1 x(nT ) < 0 n = 0, 1, 2, . . . (1)
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where x(t) is the input signal, T the sampling period, and g[·] the
quantization function. The 1B/2L correlation between signals x(t)
and y(t) can be expressed as

µ2 = E [xnyn] = E {g [x(nT )] g [y(nT )]} (2)
where E [·] is mathematical expectation. Because the signals measured
by a radiometer are spontaneous electromagnetic radiation of the
object, the input signals of the correlator for a given target could
be formulated as two stationary, ergodic, zero mean Gaussian
random processes and the joint probability density function (PDF)
is formulated by

p(x, y) =
1

2πσ2
√

1− µ2
exp

{
−x2 + y2 − 2xyµ

2σ2 (1− µ2)

}
(3)

where σ are the standard deviations of the signals, and µ is the
correlation coefficient. Then the joint probability density of the
quantized signals is

p (xn, yn) =
1
4

+
1
2π

xnyn arcsinµ (4)

Therefore, the 1B/2L correlation can be expressed as

µ2 = 1 · Z + (−1) · (1− Z) = 2Z − 1 =
2
π

arcsinµ (5)

where Z = P{xnyn = 1} is the probability that xn = yn = ±1.
Equation (5), known as Van Vleck relationship [4], shows that 1B/2L
correlator only gives the correlation coefficient of the input signals.
This result could be expected because the power information is lost
during the 2-level quantization process. In order to calculate the
visibility function samples of the SAIR, correlation coefficient need
to be denormalized

V = Tsysµ (6)

where Tsys is the system noise temperature of the receiver. Tsys could
be obtained by measuring the output power of the receiver, since the
gain of the receiver could be calibrated in a radiometer. Thus a group
of power measuring units are required in SAIRs when 1B/2L correlator
is employed, such as MIRAS, HUT, etc. [5, 6].

Practically, the 1 bit digitizer is implemented by a comparator and
the quantization function could be expressed as

xraw
n = graw[x(nT )] =

{
1 x(nT ) ≥ 0
0 x(nT ) < 0 n = 0, 1, 2, . . . (7)

Then Equation (2) can be converted into
µraw

2 = 2Zraw − 1 (8)
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where Zraw = P{xraw
n = yraw

n } is the probability that xraw
n = yraw

n .
Zraw can be measured by a NOT-XOR gate and a counter for a
given total sample number. Since NOT-XOR gate is simpler than
multi-bit multiplier and could achieve higher processing speed, 1B/2L
correlator is widely used in two-dimensional SAIRs, although it
requires additional power measuring units and features lower signal-
to-noise ratio (SNR) [5–9].

2.2. Calibration

When 1B/2L correlator is adopted, errors will be introduced by the
imperfections of the digitizer. The imperfections come mainly from
two sources: timing errors of the sampling clock and threshold offset
of the comparator.

The timing errors of the sampling clock are discussed firstly.
Timing errors include clock skew and jitter. Ignoring the slight
influence on the fringe washing function, timing errors could be
equivalent to the phase errors of the receivers, including in-phase and
quadrature errors [10]. Actually, sampling devices can be thought as a
multiplier, and the timing errors can be seemed as phase errors of the
sampling clock. Therefore, timing errors could be seemed as part of the
phase errors in the receivers or local oscillators. In a SAIR, in-phase
errors could be calibrated by noise injection method, while quadrature
errors could be calibrated by computing the cross-correlations between
the in-phase and quadrature signals of the receiver [11, 12].

Another error is threshold offset, which comes from the
imperfection of the comparator. Assume ∆x to be the threshold offset
of the comparator, the quantization function could be expressed as

xne = ge[x(nT ), ∆x] =
{

1 x (nT ) ≥ ∆x
−1 x (nT ) < ∆x

n = 0, 1, 2, . . . (9)

According to Price Theorem [13], µraw
2 suffered from the offset error

could be calculated through the integration of

∂µraw
2

∂µ
= σ2E

[
∂ge (x,∆x)

∂x
· ∂ge (y, ∆y)

∂y

]

= 4σ2E [δ (x−∆x) δ (y −∆y)]

=
2

π
√

1− µ2
exp

[
−∆x2 + ∆y2 − 2∆x∆yµ

2σ2 (1− µ2)

]
(10)

where ∆x and ∆y are the offset errors of the comparators, and nT
is omitted. Integration of Equation (10) does not have a closed form.
However, when |∆x| ¿ σ and |∆y| ¿ σ, the exponential function
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could be developed into Taylor series and then

µraw
2 =

∫ µ

0

∂µraw
2

∂µ
dµ + µraw

20

≈ 2
π

[
arcsinµ+

2∆x∆y−(
∆x2+∆y2

)
µ

2σ2
√

1−µ2
−∆x∆y

σ2

]
+xeye (11)

where µraw
20 is µraw

2 when µ = 0 and

xe = erf
(

∆x√
2σ

)
= 1− 2E [ge (x,∆x)] (12a)

ye = erf
(

∆y√
2σ

)
= 1− 2E[ge(y, ∆y)] (12b)

where erf(x) = 2√
π

∫ x
0 exp

{−t2
}

dt is error function. For |∆x| ¿ σ

and |∆y| ¿ σ, xe and ye could be approximated by

xe ≈
√

2∆x√
πσ

(13a)

ye ≈
√

2∆y√
πσ

(13b)

Substituting Equation (8) into Equation (11),

Zraw =
1
π

arcsinµ +
1
2
− 1

4
√

1− µ2

(
µx2

e + µy2
e − 2xeye

)
(14)

Considering E[ge(x,∆x)] can be measured by a statistic way,
Equation (14) uses an iteration method for calibrating the offset error
[11]. However, solving Equation (14) is of low efficiency and takes more
than 80% of the processing time in digital signal processor of BHU-
2D. In order to obtain a closed form approximation of µ, Equation (14)
could be converted into

sin
[
π

(
Zraw−1

2

)]
=sin

[
arcsinµ− π

4
√

1− µ2

(
µx2

e+µy2
e−2xeye

)
]

= µ cos

[
π

4
√

1− µ2

(
µx2

e + µy2
e − 2xeye

)
]

−
√

1− µ2 sin

[
π

4
√

1− µ2

(
µx2

e + µy2
e − 2xeye

)
]

(15)

Noting that xe ¿ 1, ye ¿ 1 and µ < 1, Equation (15) could
be developed into Taylor series, and the estimation of µ could be
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approximated by

µe =
4 cos (πZraw) + 2πxeye

πx2
e + πy2

e − 4
(16)

Equation (16) gives a closed form approximation for calibrating errors
caused by threshold offsets. The error of the method is

∆µ(∆x,∆y, µ) = µe − µ (17)
Substituting Equations (2), (8), (9), (12) into Equation (17), the
symmetry relation of ∆µ is as follows

∆µ(∆x,∆y, µ) = ∆µ(∆y, ∆x, µ) (18a)
∆µ(∆x,∆y, µ) = ∆µ(−∆x,−∆y, µ) (18b)
∆µ(∆x,∆y, µ) = −∆µ(∆x,−∆y,−µ) (18c)

According to Equation (18), evaluation of ∆µ could be performed
within µ ≥ 0 and y ≥ 0. In order to evaluate Equation (16), a
logarithmic form of ∆µ is defined as

ε = 10 log10 |∆µ (∆x,∆y, µ)| (19)
Fig. 1 shows the relationship between ε and threshold offsets for
µ = 0.5, 0.05, 0.005 and 0.0005, respectively. As could be seen,
the maxim error appears on the condition of ∆y = ∆x = b or
∆y = −∆x = b when b is given as the boundary of the threshold
offset, i.e., |∆x| ≤ b and |∆y| ≤ b. Thus, discussion below will focus
on the condition of ∆y = |∆x| = b, which is the worst case. Fig. 2
shows the errors of the correlation coefficient caused by the threshold
offsets when ∆y = |∆x|. As could be seen in Fig. 2(a), the error of
the correlation coefficient without calibration is much larger than the
one in Fig. 2(b), which is calibrated by the closed form approximation.
Compared with the iteration method, closed form method is of higher
efficiency but lower accuracy, which could be seen in Figs. 2(b) and (c).

Actually, there are usually tens of receiving channels in a SAIR
system. The threshold offsets corresponding to the channels are
different from each other and drifting slowly. Then the synthesized
errors caused by the threshold offsets are random errors and therefore
part of the radiometric uncertainty. By analyzing the required
radiometric sensitivity, b could be determined. In order to simplify
the analyzing, the following criterion is applied to BHU-2D:

|∆µ| ¿ σµ (20)
where σµ is the measuring uncertainty of the correlation coefficient.
The criterion makes ∆µ negligible. The measuring uncertainty could
be calculated by [14]

σµ =
1

ηQ

√
2Bτ

(21)
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Figure 1. The relationship between correlation error and threshold
offset (dash line: ∆µ < 0, solid line: ∆µ > 0). (a) µ = 0.5.
(b) µ = 0.05. (c) µ = 0.005. (d) µ = 0.0005

where B and τ are the bandwidth and integration time of the
radiometer, respectively. ηQ is the efficiency of the 1B/2L correlator
and could be calculated by [15]

ηQ =
2
√

β

π

√
1 + 2

∞∑
q=1

R2
2(qτs)

(22)

where β = Fs/2B, Fs is the sampling frequency, τs = 1/Fs, R2(τ)
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Figure 2. Comparison between calibration methods. (a) Correlation
error without calibration. (b) Correlation error calibrated by closed
form approximation. (c) Correlation error calibrated by iteration
method.

is the autocorrelation coefficient of the 2-level signal. For BHU-2D,
B = 160 MHz, τ = 0.5 s and Fs = 200MHz, therefore ηQ = 0.470 and
σµ = 1.68× 10−4.

By calculating the boundary b of the threshold offset in BHU-2D,
|∆µ| could be estimated and then the criterion could be employed to
verify whether the closed form approximation is applicable.

The 1-bit quantizer in BHU-2D consists of an 8-bit ADC and a
digital comparator. The threshold of the comparator, which is selected
from one of the ADC output code, is always refreshed with the average
of the signal. Thus, the threshold offset of the quantizer is no more
than ±0.5LSB (least significant bit), i.e., b ≤ 0.5LSB. The maximum
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input root-mean-square value of the ADC is about 255/6 = 42.5LSB
since the signal follows Gaussian distribution. Considering that the
dynamic range of the radiometer is lower than 6 dB, the minimum
input root-mean-square value of the ADC is about 21.3 LSB. Therefore
b/σ is lower than 0.024. From Fig. 2(b), |∆µ| < 2 × 10−7 could be
concluded and Equation (20) could be met well. Therefore, the closed
form calibration method is sufficient for BHU-2D.

3. DESCRIPTION OF THE CORRELATOR UNIT IN
BHU-2D

Based on the principle and calibration method, the correlator unit of
BHU-2D is designed and implemented. A simplified block diagram of
the correlator unit is illustrated in Fig. 3. The input IF signals are
digitized into 8-bit by 48 ADCs. With the 8-bit data, the power and
averages of the signals are estimated. Then the averages are set as
the threshold of the 1-bit quantizer. After quantizing into 1-bit, the
signals are feed into 1B/2L correlator array to calculate Zraw. Also
a group of probability estimation elements are employed to computes
E[ge(x,∆x)], which is used in the offset calibration procedure. In
order to calibrate the quadrature error of the I/Q demodulator, the
cross-correlations between the in-phase and quadrature channel of the
receiver is also calculated in the correlator array except correlations
corresponding to the baselines.

8-bit

ADC

1-bit

Quantizer

Average

Estimation

Inputs

Power

Measuring

1B/2L

Correlator

Array

Probability

Estimation

DSP

&

Computer

Data

Acquisition
Element

Figure 3. Block diagram of the correlator unit.
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Figure 4. Diagram of the experiment setup for the correlation
measurement.
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Figure 5. Comparison between iteration calibration and closed form
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4. EXPERIMENT RESULT

Validation experiments for the correlator unit have been carried out,
and results will be shown in this section. Fig. 4 illustrates the
experiment setup. The noise source generates a noise signal and the
excess noise ratio (ENR) is about 3 dB. The signal is fed into two Ka-
band radiometers through a power splitter. In order to obtain different
correlation coefficients, a phase-shifter is adopted to adjust the input
phase of the second radiometer. Four 1B/2L correlators are used to
calculate the complex cross-correlation coefficient between the output
signals of the radiometers.
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Figure 6. Comparison between nominal correlation coefficients (II +
jQI) and redundant correlation coefficients (QQ − jIQ).

Considering the difficulty of obtaining the true value of the
correlation coefficient within the required accuracy (∆µ ¿ 1.68 ×
10−4), the results of iteration calibration method are employed
to make a comparison with the results calculated by closed form
approximation. The measured and calibrated complex correlation
coefficients are shown in Fig. 5. The maximum deviation between
raw data and calibrated data is 7.0 × 10−4, while the maximum
deviation between the two calibration methods is 4.8 × 10−8. The
result shows that closed form approximation is applicable in BHU-2D.
After threshold offset calibration, the quadrature error and residual
offset error are corrected. To validate the calibration methods, the
comparison between the nominal correlation coefficients (II + jQI) and
the redundant correlation coefficients (QQ − jIQ) are shown in Fig. 6.
As is shown, the amplitude deviations between nominal and redundant
correlation coefficients are reduced to ±1.1% and the phase-differences
are reduced to ±0.6 degree after calibration procedures.
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5. CONCLUSION

The design of the correlator unit for a two-dimensional synthetic
aperture interferometric radiometer BHU-2D is presented in this paper.
To deal with the throughput of ∼ 1000 correlators operating at
200MHz, a FPGA based 1B/2L correlator array is employed. To
calibrate the errors caused by the imperfection of the 1B/2L digitizer,
the calibration methods are also presented. In order to reduce
the processing time of the calibration procedure of the correlation
coefficient, a closed form approximation used for correcting the
threshold offset error of 1B/2L correlator is introduced and applied in
BHU-2D. The approximation is of higher efficiency than the iteration
calibration method adopted by MIRAS and HUT. Experiment results
demonstrate that the performance of the approximation is sufficient for
BHU-2D and other systems adopting 1B/2L correlators, although the
accuracy of the method is lower than the iteration method. Our further
effort will be focused on increasing the bandwidth of the correlator
unit in low level quantization systems without high resolution ADCs
in order to improve the radiometric sensitivity with reasonable volume,
weight and power consumption.
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