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Abstract—A modified differential evolution algorithm (MDE) for
pattern synthesis of antenna arrays is proposed in this paper. By
employing the novel strategies of best of random mutation and
randomized local search, the convergence of standard differential
evolution algorithm (SDE) is significantly accelerated. Five standard
benchmark functions are optimized to testify the proposed algorithm
by comparison with several other optimization algorithms. The
numerical results verify the superior performance of the proposed
MDE. Furthermore, the MDE is applied to two pattern synthesis
examples, including a linear array and a cylindrical conformal array.
Experiment results demonstrate that the proposed MDE has better
performance than the other optimization methods in both of these
two examples, which indicate the proposed algorithm is a competitive
optimization algorithm in pattern synthesis.

1. INTRODUCTION

During the past decades, there has been growing interest in the
design and application of antenna arrays for remote sensing radar,
military and commercial communication systems. The main target of
antenna array synthesis is to find appropriate excitation vector and
layout of the elements to generate desired radiation pattern. It is
therefore a classic optimization problem in electromagnetics. However,
the optimization problems in the array synthesis are often highly
nonlinear, non-differential, and with multiple extrema. Therefore,
local optimization techniques like the conjugate gradient method [1]
and alternating projection method [2] which are sensitive to the initial
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variables are difficult or even impossible to meet these challenges. In
recent years, population based stochastic methods are proven to be
effective for solving these problems. Genetic algorithm (GA) [3, 4],
simulated annealing algorithm (SA) [5, 6], particle swarm optimization
algorithm (PSO) [7, 8], differential evolution algorithm (DE) [9, 10] and
artificial bee colony algorithm (ABC) [11, 12] which belong to these
kinds of methods have been widely applied to array synthesis problems.
However, these algorithms also present certain drawbacks like complex
operation, prematurity convergence or slow convergence speed in some
problems.

Proposed by Storn and Price [13], DE is a simple yet powerful
population-based stochastic search technique, which is particularly
effective at solving multi-variable function optimization problems. It
has been successfully applied to array synthesis problems, antenna and
filter design problems and some other engineering problems [14–17].
To accelerate the convergence speed of DE, many variants to SDE
have been proposed and these improvement measures mainly focus
on the parameter settings, evolution strategies (especially mutation
strategies), combinations with heuristic or other classic algorithms, etc.
Liu and Lampinen [18] devises a fuzzy adaptive DE (FADE) where the
control parameters are obtained adaptively according to the population
diversity. However, the fuzzy operation of the control parameters is
very complex. Qing [19] proposes the dynamic differential evolution
(DDE), in which the optimal individual is updated dynamically after
each fitness function evaluation and then used in the next mutation
equation. However, the risk of premature convergence increases
obviously especially in problems containing many local extrema.
In [10], an improved differential evolution algorithm (IDE) is proposed
by introducing a sub-optimal vector in the mutation operation. This
algorithm can accelerate the convergence speed as well as keep the
diversity. In [20], the simplified quadratic interpolation is employed to
improve the local search ability and reduce the computational overhead
of the algorithm. This so called DE-SQI has been proven better than
the FADE in several benchmark functions. Nevertheless, the IDE and
DE-SQI in complex pattern synthesis applications still suffer from the
problem of low convergence speed.

In this paper, a modified differential evolution algorithm (MDE)
which utilizes the strategies of best of random mutation and
randomized local search is proposed. The advantage of the best
of random mutation is that it can make a good balance between
convergence speed and population diversity. On the other hand, the
randomized local search greatly improves the local search ability, which
will be effectively used in the global search process of DE. In order
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to verify its effectiveness and versatility, the MDE is firstly tested
by several standard benchmark functions and then applied in the
optimizations of antenna array synthesis.

This paper is organized as follows. The principle of MDE and its
optimization results of benchmark functions are described in Section 2.
Array synthesis problems are addressed in Section 3 and then the
numerical results are compared with some other algorithms. Finally,
brief conclusions are discussed in Section 4.

2. MODIFIED DIFFERENTIAL EVOLUTION
ALGORITHM

2.1. Standard Differential Evolution Algorithm (SDE)

DE algorithm aims at evolving a population of NP D-dimensional
parameter vectors, so-called individuals, towards the global optimum.
The individual of population in generation G can be written as:

xi,G = {x1i,G, x2i,G, . . . , xDi,G} , i = 1, 2, . . . , NP (1)

The initial population should cover the entire search space by uniformly
randomizing individuals within the search space. The initial value of
the jth parameter at the generation G = 0 is generated by:

xji,o = rand(0, 1) ·
(
xup

j − xlow
j

)
+ xlow

j ,

i = 1, 2, . . . , NP, j = 1, 2, . . . , D (2)

where rand(0, 1) represents an uniformly distributed random variable
within the range [0, 1]; xlow

j and xup
j are the lower and upper bounds

of the jth parameter. After the initialization of the population, DE
algorithm will involve three stages including mutation, crossover and
selection in turn.

Mutation operation: DE employs the mutation operation to
produce a mutant vector vi,G with respect to each individual xi,G, so
called target vector. The mutant vector can be generated via certain
mutation strategy. The two most frequently used mutation strategies
in DE are listed as follows:

(1) “DE/rand/1/bin” vi,G = xr1,G + F · (xr2,G − xr3,G) (3)
(2) “DE/best/1/bin” vi,G = xbest,G + F · (xr1,G − xr2,G) (4)

r1, r2, r3 ∈ [1, NP ] and r1 6= r2 6= r3 6= i; xbest,G is the vector with
the best fitness value in the population at generation G. The scaling
factor F is a real and constant factor,and satisfies F ∈ [0, 2].
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Crossover operation: After the mutation operation, a trial vector
ui,G is generated by the target vector xi,G and its corresponding
mutant vector vi,G. The basic crossover strategy is defined as follows:

uji,G =
{

vji,G if rand(0, 1) ≤ CR or j = jrand

xji,G otherwise (5)

The crossover factor CR is a user-specified constant within the
range [0, 1], which controls the fraction of parameter values copied
from the mutant vector.

Selection: The objective function value of each trial vector f(ui,G)
is compared to that of its corresponding target vector f(xi,G), the
vector which has smaller fitness function value will remain in the next
generation. The selection operation can be expressed as follows:

xi,G+1 =
{

ui,G, if f(ui,G) < f(xi,G)
xi,G, otherwise (6)

The above-mentioned three steps are repeated generation by
generation until the specific termination criteria are satisfied.

2.2. Modified Differential Evolution Algorithm (MDE)

To strike a balance between exploration and exploitation and enhance
the local search ability of DE, the following modifications are proposed.

2.2.1. Best of Random Mutation

Most evolutionary algorithms including DE try to balance two
contradictory aspects: exploration and exploitation. This problem can
also be understood by another point of view: the balance between
diversity and guidance. The mutation operation in DE could be
considered as a kind of local search. The base vectors like xr1,G in (3)
and xbest,G in (4) act as the center of local search and the scaled
vector differences determine the search direction and range around
the center. Thus the population diversity and guidance are heavily
depended on the selection of base vectors. In SDE, the DE/rand/1/bin
is completely random in nature, which helps in preserving the diversity
but may lead to a slower convergence. To accelerate the convergence
progress, the DE/best/1/bin is introduced. This strategy can provide
a faster convergence speed but may lead to loss of diversity, which will
result in premature convergence as the search procedure progresses.
To strike a relative balance between the convergence and diversity, a
novel mutation strategy named best of random mutation [21] is applied
here. The mutation equation is as follows:

vi,G = xb,G + F · (xR1,G − xR2,G) (7)
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where xb,G, xR1,G and xR2,G are the individuals which are randomly
chosen from the population at generation G, 1 ≤ i 6= b 6= R1 6= R2 ≤
NP. The base vector xb,G is the best one among the three individuals,
which satisfies the condition: f(xb,G) ≤ min[f(xR1,G), f(xR2,G)].
Being the local elite, the base vector produced by the best of the
random mutation provides limited constructive guidance. On the
other hand, the randomness of the mutation base vector guarantees
its diversity. Therefore, a good balance between exploration and
exploitation is achieved, which expedites the convergence and at the
same time maintains the population diversity.

2.2.2. Randomized Local Search

Several studies have shown that incorporating some forms of domain
knowledge can greatly improve the search capability of evolutionary
algorithms [4, 22, 23]. The local search methods like the crossover-
based local search and the simplified quartic interpolation are used
to explore near the best individual of the population, then the whole
fitness function information of the population can be enriched. A novel
strategy named randomized local search is proposed in this paper. The
randomized local search is a simple and efficient direct search method
that does not use numerical or analytic gradients of the objective
functions. The proposed randomized local search is defined as follows:

x∗j,best,G = xj,best,G + 0.1
(
xmax

j,G−1 − xmin
j,G−1

)
Gauss(0, 1) j ∈ [1, D] (8)

where xbest,G is the best individual in generation G; xj,best,G is the
jth variables of xbest,G; x∗j,best,G is the new trial point; xmin

j,G−1 and
xmax

j,G−1 are the minimum and maximum value of the jth variables in
generation G − 1, respectively. Gauss (0, 1) is a random Gaussian
variable with zero mean and unitary standard deviation. The random
local search is described as follows: LocalK ≤ ceil(β · NP ) is set to
avoid the subprogram getting in deadlock, where ceil(·) is the operator
that rounds its argument to the nearest integers greater than or equal
to it; β is a factor of multiplying factor.

Pseudocode for randomized local search:
Step 0: Find the best and worst individuals in population and

their function values: xbest,G, ,xworst,G, fb, fw and set local iteration
counter LocalK = 1.

Step 1: do

Compute x∗best,G as stated at formula (8).

Evaluate f∗b = f(x∗best,G) and set LocalK = LocalK + 1.

While (f∗b > fw and LocalK ≤ ceil(β ·NP )).
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Figure 1. Flowchart of the proposed MDE.
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Step 2: If f∗b < fw, replace xworst,G by x∗best,G in the population.
After introducing the two modifications, the flowchart of MDE is

presented in Fig. 1.

2.3. Numerical Results of Benchmark Functions

In this section, five benchmark functions [12] including unimodal
and multimodal functions are employed to verify the effectiveness
of the proposed MDE. These functions, with dimensions of D =
30, are executed 50 test runs independently. The initial parameter
ranges (IPR) are given in Table 1. In order to demonstrate the
superiority of MDE, the performance of MDE is compared with that of
standard DE (SDE) [13] and two improved DE algorithms DE-SQI [20]
and IDE [10]. Another two stochastic global optimization algorithms
PSO [7] and ABC [12] are also employed here for comparison. We
set the population size NP = 150, maximum number of function
evaluations max num eva = 60000 for all the algorithms. The
parameters of MDE, DE-SQI, IDE and SDE are all selected with the
same value F = 0.5, CR = 0.9, which ensures a fair comparison
in computation efficiency and solution quality. The parameter β in
MDE is set to be 0.05. For PSO, the inertia weight factor ω is set
as ωmax = 0.9 and ωmin = 0.4, acceleration constant c1 = 2.0 and
c2 = 2.0. We set limit = NP ·D/2 for ABC.

The average values of the optimal results by all the algorithms
are shown in Table 1. The average optimal values found by MDE

Table 1. The average optimal values of all the algorithms.

PSO ABC SDE DE-SQI

Sphere 2.03E + 02 5.72E − 05 5.80E + 00 7.98E − 02

Schwefel 2.22 4.23E + 01 1.02E − 02 7.59E + 00 2.19E − 01

Quartic 1.14E + 00 2.14E − 01 5.56E − 02 2.35E − 02

Ackley 1.02E + 01 3.80E − 01 1.94E + 00 1.16E − 01

Griewank 6.29E + 00 2.99E − 02 1.05E + 00 1.71E − 01

IDE MDE IPR -

Sphere 1.06E − 03 3.64E-07 [−100, 100] -

Schwefel 2.22 3.23E − 02 9.73E-04 [−10, 10] -

Quartic 2.75E − 02 8.35E-03 [−1.28, 1.28] -

Ackley 1.09E − 02 1.93E-04 [−32, 32] -

Griewank 1.06E − 02 1.53E-03 [−600, 600] -
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are smaller in all test cases, which indicates that the proposed MDE
exhibits more superior performance than other algorithms.

3. ARRAY PATTERN SYNTHESIS EMPLOYING MDE

The capability and versatility of the proposed MDE algorithm will be
assessed by two different array types: an equally spaced linear array
and a cylindrical conformal array. Since the evaluations of the cost
function tend to dominate the overall computation budget in pattern
synthesis problems, a key factor is the number of fitness function
evaluations. In this paper, the numbers of fitness function evaluations
for different algorithms are the same, which means their synthesis costs
are almost equivalent. Thus, the results of synthesized patterns can be
used to estimate the capability of different algorithms.

3.1. Synthesis of Linear Array

For a z-direction linear array consisting of K elements, the far field
radiation pattern of FF (θ) is:

FF (θ) = EP (θ) ·
K∑

n=1

In exp(jkzn cos(θ) + jψn) (9)

where EP (θ) is the element pattern, and EP (θ) =
√

sin(θ) is used
to represent the pattern of a directive array element approximately.
In, ψn and zn are the excitation amplitude, phase and position of
the nth element respectively. To suppress the interferences at certain
directions, a broadside pattern with two symmetric nulls located at
40 ∼ 45◦ and 135 ∼ 140◦ is expected. 32 directive elements are
half-wavelength spaced in the linear array. The desired sidelobe level
is set as DSLL = −25 dB and the desired null depth level DNULL
= −45 dB. Here we only synthesize the excitation amplitudes. Because
of the symmetrical distribution, only 16 amplitudes are needed to be
optimized.

Since the pattern synthesis processes a linear array with deep
notches to suppress the interferences, the objective function to be
minimized is defined as the least mean squares of the excess far field
magnitude above the specified level, which can be written as:

fitness1 =

(
1

Ms

Ms∑

m=1

[
U(ed(θ))× ed(θ)2

]
) 1

2

(10)

ed(θ) = Fo(θ)− Fd(θ) (11)
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where Fo(θ) and Fd(θ) are normalized patterns obtained by
optimization and the desired pattern, respectively. Ms is the total
sample points number, and U(t) is the unit step function.

For design specifications, the population size and the number of
fitness function evaluations of all algorithms are set as NP = 50
and max num eva = 5000, respectively. The rest of parameters
in the optimization process are selected the same as them in the
previous benchmark functions test. After 50 independent experiments,
the average convergence curves are plotted in Fig. 2. Obviously, the
convergence speed of MDE is much faster than the other algorithms.
The normalized radiation patterns of the median run by all the
algorithms at the 50 experiments will be given. Because the PSO
and ABC are a little inefficient in this example, only the patterns

Figure 2. Fitness function value versus the number of fitness function
evaluations.

Figure 3. Radiation patterns for
the 32-element linear array.

Figure 4. Amplitudes optimized
by MDE for this linear array.
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by the best performed four algorithms are shown in Fig. 3. From
this figure, we can see only the results of SDE and MDE satisfy
the requirements. Though the maximum sidelobe levels (MSLL) of
them are both about −25.6 dB, the required number of fitness function
evaluations for MDE for the desired pattern is about one half of that
for SDE. The corresponding optimized amplitudes by MDE are shown
in Fig. 4. Therefore, we can conclude that the proposed MDE is much
more efficient in the optimization problems of linear array than other
algorithms.

3.2. Synthesis of Cylindrical Conformal Array

3.2.1. Array Element Design

With a center frequency of 3.0 GHz and a bandwidth exceeding 13%
(return loss ≤ −10 dB) when in isolation, a compact stacked microstrip
antenna is designed as the element of the cylindrical conformal array.
Its geometry is given in Fig. 5, which is fabricated on two layers with
relative permittivity of 2.65. This antenna, with an overall dimensions
of 45 × 45mm2, utilizes a one order quasi-Minkowski fractal patch
on the top substrate to reduce the patch size, which also reduces the
coupling between adjacent elements.

3.2.2. Conformal Array Configurations

As shown in Fig. 6, an array of M × N elements are located over a
cylindrical surface of radius R, where M and N are the number of
elements in z-direction and ϕ-direction, respectively.

The far-field radiation pattern produced by this M ×N elements
cylindrical array can be expressed as:

FF (θ, ϕ) =
N∑

n=1

M∑

m=1

ImnEPmn(θ, ϕ) exp[jk[R sin θ cos(ϕ− ϕmn)

+zmn cos θ] + jψmn] (12)

where Imn represents the element excitation current amplitude, ψmn

the excitation current phase, EPmn(θ, ϕ) the pattern of array element,
k the wave number in the free-space, and zmn, ϕmn are the individual
coordinates in z-direction and ϕ-direction, respectively. The excitation
current phase ψmn can be calculated by:

ψmn = −k[R sin θ0 cos(ϕ0 − ϕmn) + zmn cos θ0] (13)

where (θ0, ϕ0) is the desired steering angle. It should be noted that the
element pattern EPmn(θ, ϕ) is the active-element-pattern [24] exported
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(b)(a)

(d)(c)

Figure 5. Configurations of the stacked microstrip antenna. (a) Top
view of top layer. (b) Top view of bottom layer. (c) Side view.
(d) Simulated return loss of this antenna.

Figure 6. Configurations of the cylindrical conformal antenna array.
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from the full-wave simulation software Ansoft HFSSv12 instead of
the approximate element pattern used in the previous example. The
active-element-pattern, which takes the mutual coupling produced by
the conformal carrier and adjacent elements into consideration, can
greatly reduce the error between computation and realization. The
key parameters of the array dimensions are given as follows: M = 8,
N = 12 and R = 5.73λ0; all the elements are uniformly spaced by
λ0/2 in z-direction and ϕ-direction. Thus, the angular spacing between
consecutive elements in the same row is fixed to be 5◦ in the ϕ-direction.

3.2.3. Pattern Synthesis

Our goal is to employ the MDE to synthesize an array pattern with
minimum MSLL when the mainbeam scans to different directions. For
conformal arrays, it is common to select the excitation phase to focus
the beam in the desired direction. With the phase excitation calculated
by (13), the specified scan angle can be guaranteed. Thus we only
take the amplitude weights as optimization variables. Considering
that the optimization for excitation amplitude of each element on this
cylindrical array may be a formidable task in engineering practice, a
modified Bernstein polynomial for arc arrays is extended here to reduce
the number of optimization parameters. The modified Bernstein
polynomial [25] is defined as follows:

F (u)=

{
C0 + 1−C0

AN0A(1−A)N0(1−A) · uN0A(1−u)N0(1−A), 0≤u≤A

C1 + 1−C1

AN1A(1−A)N1(1−A) · uN1A(1−u)N1(1−A), A≤u≤1
(14)

where C0, C1, N0, N1, A are parameters in the polynomial, u = (i −
1)/(n − 1), i = 1, 2, . . . , n, and n is the number of sampling points.
By its definition, the modified Bernstein polynomial shows a smooth
distribution which is preferable in the array pattern synthesis. The
amplitude weights can be obtained by sampling from the modified
Bernstein polynomial illustrated in (14). Therefore, only five variables
need to be optimized for each row of this cylindrical conformal array.
The differences among the maximum amplitudes of each row are also
obtained by a modified Bernstein polynomial. That is to say, for the
proposed cylindrical conformal array with of 8 rows and 12 columns,
the total number of variables to be optimized is reduced from 8×12 to
5×(8+1), which significantly reduces the overhead of the optimization.

To achieve the lowest MSLL when the desired steering angle is
(θ0, ϕ0) in 3D case, the optimization problem is formulated as the
following problems:

fitness2 = max
(θ,ϕ)∈S

∣∣∣∣
FF (θ, ϕ)
FFmax

∣∣∣∣ (15)
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(a) (b)

(c)

Figure 7. Fitness value versus the number of fitness function
evaluations. (a) Mainbeam scan to (90◦, 0◦). (b) Mainbeam scan to
(90◦, 30◦). (c) Mainbeam scan to (105◦,−20◦).

where S denotes the sidelobe region; FFmax is the peak value of
mainbeam.

By virtue of using the modified Bernstein polynomial, only
45 variables are optimized for the pattern synthesis of the entire
cylindrical array. The desired MSLL is lower than −25 dB when the
mainbeam scans to (90◦, 0◦), (90◦, 30◦) and (105◦,−20◦). We make
the population size NP = 200 and the number of fitness function
evaluations max num eva = 20000. The other parameters are selected
the same as them in previous examples. All algorithms are conducted
50 times independently. Fig. 7 shows the average fitness curves.
Obviously, the proposed MDE possesses the dominant speed and needs
the fewest fitness function evaluations among the algorithms.

The normalized radiation pattern of the elevation and azimuth
planes of the median run in the 50 independent experiments by all
the algorithms are given in Fig. 8. The obtained average MSLL of
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(a)

(b)

(c)

Figure 8. Normalized patterns of the cylindrical array. (a) Mainbeam
scan to (90◦, 0◦). (b) Mainbeam scan to (90◦, 30◦). (c) Mainbeam scan
to (105◦, −20◦).
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Figure 9. Comparison of the optimized array pattern by MDE and
the pattern simulated via HFSSv12.

Table 2. Performance comparisons of different algorithms.

Scan angle
MSLL (dB)

PSO ABC SDE DE-SQI IDE MDE
(90, 0) −23.80 −23.50 −22.54 −23.12 −24.73 −26.15
(90, 30) −22.83 −22.71 −22.17 −22.66 −24.44 −26.06

(105, −20) −23.45 −22.76 −22.40 −22.77 −24.40 −25.71

the six algorithms are illustrated in Table 2. It is obvious that the
MDE can accurately produce the low sidelobe pattern while the other
five kinds of algorithms cannot satisfy the design specification, which
evidently shows the superior performance of MDE. Fig. 9 depicts the
comparison between the radiation pattern obtained by MDE and the
full-wave simulation results from Ansoft HFSSv12. Because of limited
space, only the result of mainbeam scanning to (105◦,−20◦) is shown
here. Good agreement between those kinds of results validates our
method of conformal array synthesis.

4. CONCLUSIONS

In this paper, MDE with novel strategies of best of random mutation
and randomized local search is proposed. By taking the advantages of
these two strategies, the search capability of the algorithm is greatly
improved as well as a relative balance between guidance and diversity
is achieved. The proposed algorithm is verified by both classical
benchmark functions and pattern synthesis problems of linear and
conformal arrays. These experimental results demonstrate that the
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proposed MDE is able to achieve the optimum design for specified
design criteria in an effective manner. The accuracy and the robustness
of the proposed MDE indicate that it is a competitive algorithm in
function optimization, pattern synthesis and other electromagnetic
fields.
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