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Abstract—Based on the altitude-dependent model of the ITU-R
slant atmospheric turbulence structure constant model, we present
scintillation index calculations for a Gaussian Schell-model (GSM)
beam under all irradiance fluctuation conditions. The longitudinal
and radial components of the scintillation index are treated separately.
Our results correctly reduce to the result of the horizontal path
with atmospheric structure constant fixed, and simplify to a fully
coherent beam with source coherence parameter ζs representing unit.
The numerical conclusions indicate that within specific source and
parameter ranges, the GSM beam is capable of offering less scintillation
than the full coherent Gaussian beam. Before the maximum value of
the scintillation, the scintillation index of the GSM beam will decrease
with increased altitude. However, the off axis radial scintillation index
will vanish when the Rytov variance is infinity.

1. INTRODUCTION

On propagation through the turbulent atmosphere, an optical wave
will experience random irradiance fluctuations, called scintillation,
due to perturbations from refractive index fluctuations. Scintillation
can lead to power losses at the receiver, resulting in lower signal-to-
noise ratios and eventually to fading of the received signal below a
prescribed threshold [1]. So, optical scintillation is considered one of
the most crucial atmospheric effects and has attracted much attention
in practical applications, particularly in laser tracking and ranging
systems [2–4] and imaging systems [5–7].

The topic of optical scintillation has been extensively studied for
many years. In the early 1960s, Tatarskii and Cherenkov adopted
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Rytov approximation method [8–10] and obtained the scintillation
index of unbounded plane wave and spherical wave, but their
scintillation results were limited to weak fluctuations. The limitation of
the weak fluctuation theory was clearly demonstrated, and saturation
phenomenon of the scintillation was discovered by the experimental
data of Gracheva and Gurvich [11] in 1965. A number of theoretical
and experimental studies devoted to irradiance fluctuation under
strong turbulence regimes then followed. With a theory of saturation
developed by Gochelashvili and Shishov [12], several qualitative
models of scintillation were subsequently developed and modified by
others [13, 14]. In 1999, Hopen and Andrews [15] intensity studied
fluctuation variance of Gaussian beam propagation in moderate-to-
strong fluctuation. Andrews et al. [1, 16] made a comprehensive
summary of these studies about plane wave, spherical wave, and
Gaussian beam. Wu and Wei [17] discussed the scintillation index of a
Gaussian beam considering inner-scale and outer-scale on slant path.
A few papers reported the scintillation of a partially coherent beam.
Many researchers concerned with the spread and average intensity of
partially coherent beam [18, 19].

Studies above focused on the horizontal path; however structure
constant C2

n in many cases may vary along the propagation path as it
does in vertical and slant paths. Beran and Whitman [20] calculated
the scintillation index of a plane wave using the two-scale theory and
assuming a Kolmogorov structure function with an altitude-dependent
structure constant. Baker [21] developed a low-order turbulence (LOT)
solution to describe Gaussian beam weak scintillation on ground-to-
space propagation. Charnotskii [22] presented a more rigorous theory
of beam scintillation on ground-to-space paths using path integrals and
analytic techniques, where turbulence is concentrated in a relatively
thin layer near the transmitter.

Especially after the introduction of free-space optical atmospheric
communication links, the average BER can be significantly reduced
by the use of a partially coherent source beam. Many researchers
started to study the propagation characteristics of different types of
sources in turbulence [23, 24]. Baykal and Eyyubogl [25] developed
the scintillation index formula for a flat-topped Gaussian beam source
on axis in turbulence. They found that using a flat-topped Gaussian
beam in a FSO link will bring advantages in scintillations compared
with Gaussian-beam incidence. Then Eyyuboglu and Baykal [26, 27]
presented scintillation calculations in weak atmospheric turbulence for
partially coherent general beams based on the extended Huygens-
Fresnel principle and the scintillation index of cosh-Gaussian beams
in a turbulent atmosphere using Rytov method.
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In this paper, we use the techniques in [28], the altitude-dependent
model of the ITU-R turbulence structure constant model, to develop
a scintillation index model for a Gaussian Schell-model beam on the
slant path that is applicable under weak-to-strong fluctuations. The
result considers the focusing regime and also can be reduced to the
result of the horizontal path when atmospheric structure constant is a
fixed value. Finally, the numerical results are compared between the
fully coherent beam and the partially coherent beam.

2. SCINTILLATION INDEX ON SLANT PATH

2.1. Weak Scintillation Index

The beam is off the optical axis, and the scintillation index is expressed
as a sum of radial and longitudinal components in the form at a point.

σ2
I (r, L) = σ2

I,r(r, L) + σ2
I (0, L), (1)

here the first component is radial, and the second is the longitudinal
component.

The radial component of the scintillation index in weak fluctuation
is given by [16]

σ2
I,r(r, L)

= 8π2k2L

∫ 1

0

∫ ∞

0
κΦn(κ) exp(−ΛLκ2ξ2/k)×[I0(2Λrκξ)−1]dκdξ. (2)

And the longitudinal scintillation index is defined under the Rytov
approximation by [6]

σ2
l (0, L) = 8π2k2L

∫ 1

0

∫ ∞

0
Φn(κ)κ exp

(
−ΛLξ2κ2

k

)

{
1− cos

[
Lκ2

k

(
1− Θ̄ξ

)
ξ

]}
dκdξ. (3)

here, I0(x) is a modified Bessel function, Φn(κ) the spatial power
spectrum of refractive index fluctuations, and the Gaussian Schell-
model source illumination beam in receiver plane without atmospheric
effects is characterized by Λ, Θ beam parameters defined by

Λ=
Λ0ςs

Θ2
0+Λ2

0ςs
=

2L

kW 2
, Θ=

Θ0

Θ2
0+Λ2

0ςs
, Θ̄ = 1−Θ. (4)

where W represents the beam radius at the receiver. In arriving at
Equation (4), here we have replaced the receiver beam parameters for a
fully coherent beam in free space with the equivalent free-space receiver
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parameters for a partially coherent beam [28], where ςs is the source
coherence parameter, which is the degree of the partial coherence of
the source laser beam at the transmitter. For ςs = 1, the effective
beam parameters in Equation (4) reduce to parameters of the fully
coherent Gaussian beam, i.e., Λ1 = Λ0

Θ2
0+Λ2

0
, Θ1= Θ0

Θ2
0+Λ2

0
. The parameter

Θ describes amplitude change in the wave caused by refraction, and Λ
describes amplitude change caused by diffraction.

2.2. Radial Component

In the presence of optical turbulence, additional diffraction and
refraction cause further broadening of the beam spot size and further
focusing and defocusing [29, 31]. We will follow the work of Ricklin et
al. [32] and replace the beam parameter Λ with the effective beam
parameter Λe in the radial component, based on Equation (2). It
has been shown that the use of effective beam parameters permits
us to formally extend weak fluctuation expressions for the spatial
coherence radius into the strong fluctuation regime [29, 30]. In the
case where the inner scale of turbulence is smaller than the spatial
coherence length of the optical wave, we base our calculations on
the conventional Kolmogorov spectrum Φn(κ) = 0.033C2

n(ξH)κ−11/3,
Equation (2) yields

σ2
I,r(r, L) = 0.264π2k2L

∫ 1

0
C2

n(ξH)dξ

×
∫ ∞

0
[I0(2Λerξκ)− 1] exp

(
−ΛeLξ2κ2

k

)
κ−8/3dκ, (5)

Let a = 2Λerξ, b = ΛeLξ2/k, the evaluation of Equation (5) leads
to

σ2
I,r(r, L) = 0.264π2k2L

∫ 1

0
C2

n(ξH)dξ

∫ ∞

0
I0(aκ) exp

(−bκ2
)
κ−8/3dκ

−0.264π2k2L

∫ 1

0
C2

n(ξH)dξ

∫ ∞

0
exp

(−bκ2
)
κ−8/3dκ, (6)

By use of the following formula
∫ ∞

0
I0(aκ) exp

(−bκ2
)
κ−8/3dκ=

1
2
Γ (−5/6) b5/6

1F1

(
−5/6; 1;

a2

4b

)
, (7)

where 1F1(a, b; c; x) is a hyper geometric function.
∫ ∞

0
exp

(−bκ2
)
κ−8/3dκ =

1
2
Γ(−5/6)b5/6. (8)
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In terms of Equation (7), Equation (8), the radial component
Equation (6) leads to

σ2
I,r(r,L) = 7.08σ2

0Λ
5/6
e

[
1− 1F1

(
−5/6; 1; 2r2/W 2

e

)]∫ 1

0

C2
n(ξH)
C2

n0

ξ5/3dξ

∼= 11.8σ2
0Λ

5/6
e

∫ 1

0

C2
n(ξH)
C2

n0

ξ5/3dξ
r2

W 2
e

, r < We. (9)

where σ2
0=1.23C2

n0k
7/6L11/6 is the Rytov variance.

The effective wave radius We(L) for the GSM beam through
atmospheric turbulence and the global coherence parameter ζ are
expressed by

We(L) = W0

(
Θ2

0 + ζΛ2
0

)1/2
, ζ = ζS +

2W 2
0

ρ2
T

, (10)

ρT =
[
1.46k2L

∫ 1

0
C2

n(ξL)(1− ξ)5/3dξ

]−3/5

. (11)

Λe =
2L

kW 2
e

. (12)

Physically speaking, the global coherence parameter is a measure
of the global degree of coherence of light across each transverse plane
along the propagation. It is used to define a related dimensionless
quantity, the source coherence parameter ζS as the degree of partial
coherence of the source beam at the transmitter. For ζS = 1,
Equation (10) represents fully coherent beam; ζS increasing, source
beam becomes less coherent. Here ρT is the coherence length of a
spherical wave propagating on the slant turbulent atmosphere, and
C2

n(ξL) is the model for the refractive-index structure constant in
the atmosphere. This effective wave radius for the partially coherent
GSM beam through atmospheric turbulences agrees with that by
Korotkova [33], where We = W1(1 + 4qcΛ1 + 1.63σ2

0Λ
5/6
1 )1/2. It is

noted that Ref. [33] introduces a thin random phase screen to model
the diffuser in front of the laser transmitter and characterize the phase
screen by a power spectrum function rather than by a correlation
function as in the Gaussian Schell-model. It should be noted that W1

is Gaussian beam spot radius in receiver plane not partially coherent
beam because the effects of partially coherent beam are accounted
by qc. We note that the scintillation index for the partially coherent
Gaussian beam presented in Equation (9) correctly reduces to the well-
known scintillation index for the Gaussian beam on horizontal path
when ςs is taken as unity, and atmospheric structure constant is a
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fixed value C2
n(ξH) = C2

n0 in Equation (9). Under weak fluctuations,
the result is simplified to

σ2
I,r(r, L) ∼= 4.42σ2

0Λ
5/6
1

r2

W 2
1

, r < W1. σ2
0 ¿ 1. (13)

where W1 is the free-space spot size radius for Gaussian beam at
receiver plane. Here Equation (13) agrees with that in [1].

2.3. Longitudinal Component of Scintillation Index

In weak fluctuation regimes where inner-scale effects are negligible, we
base our calculations on the Kolmogorov spectrum. By use of this
spectrum model and let a = ΛLξ2/k, b =Lξ(1− Θ̄ξ)/k, Equation (6)
along the optical axis (r = 0) becomes

σ2
l (0, L) = 0.264π2k2L

∫ 1

0
C2

n(ξH)
∫ ∞

0
κ−8/3 exp(−aκ2)

[
1− cos

(
bκ2

)]
dκdξ, (14)

There is a small error a = ΛLξ/k in Equation (3.55) in [33]. Using
Equations (7), (8), the evaluation of Equation (14) leads to

σ2
l (0, L) = 0.882π2k2L

∫ 1

0
C2

n(ξH)
{

(a2 + b2)5/12 cos
[
5
6

tan−1

(
b

a

)]
− a5/6

}
dξ, (15)

Substituting a, b into Equation (15), we have

σ2
l (0, L) = 1.77σ2

0

∫ 1

0

C2
n(ξH)
C2

n0

×
{[

Λ2ξ4 + (1− Θ̄ξ)2ξ2
]5/12

cos
[
5
6

tan−1

(
1− Θ̄ξ

Λξ

)]
− Λ5/6ξ5/3

}
dξ, (16)

Equation (16) is restricted to weak fluctuations. Under strong
fluctuation conditions, we use the fluctuation theory developed by
Andrews et al. [16], which yields

σ2
I,strong(0, L)=exp


 0.49σ2

l(
1+0.56σ

12/5
l

)7/6
+

0.51σ2
l(

1+0.69σ
12/5
l

)5/6


−1. (17)
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where σ2
l is defined by Equation (16). We combine the

radial component Equation (9) with the longitudinal component
Equation (17) to obtain

σ2
I (r, L) = 11.8σ2

0Λ
5/6
e

∫ 1

0

C2
n(ξH)
C2

n0

ξ5/3dξ
r2

W 2
e

+exp


 0.49σ2

l(
1+0.56σ

12/5
l

)7/6
+

0.51σ2
l(

1+0.69σ
12/5
l

)5/6


−1 (18)

Equation (18) represents our approximation to the scintillation
index at any transverse position in the beam at the receiver plane
of a general lowest-order Gaussian Schell-model beam wave under all
irradiance fluctuation conditions.

3. ATMOSPHERIC TURBULENCE STRUCTURE
CONSTANT MODEL

From above derivation, we can see that scintillation index depends
largely on height distribution of turbulence atmospheric structure
constant. There, we employ ITU-R atmospheric turbulence structure
constant model [34] expressed by

C2
n(h) = 8.148× 10−56v2

RMSh10e−h/1000 + 2.7× 10−16e−h/1500

+C2
n0e

−h/100, h = ξH. (19)

where vRMS = 21 (m/s) is the rms wind speed in meters per second
(m/s). h is in meters (m), C2

n0 the structure parameter at the ground
in m−2/3, (its typical value is 1.7× 10−14m−2/3).

We plot the logarithm of the ITU-R model Equation (19) in
Figure 1 as a function of altitude for three values of the parameter
C2

n0 and three values of high-altitude wind speed. C2
n0 affects the

profile model only up to roughly 1 km, and high-altitude wind is the
element most around altitudes of 10 km. It shows that the value of
atmospheric structure constant C2

n is the biggest near ground. From
1 km to 4 km, the atmospheric structure constant does not depend on
sub aerial atmospheric structure constant and wind velocity due to
atmospheric absorption. The ITU-R atmospheric structure constant
mode is closer to the actual turbulence model than negative exponent
index model.



160 Xiang and Wu

101 102 103 104
1E-19

1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

v=21m/s

v=10 m/s

v=30 m/s

C 2
n0=10 -13m-2/3

C 2
n0 =10-15m-2/3

C 2
n0 =10-14m-2/3

C
n2

(h
)

(m
-2

/3
)

h (m)

Figure 1. An altitude-dependent
model of the ITU-R turbulence
structure constant vs. altitude h.
vRMS = 21m/s, 30 m/s, 10 m/s.
C2

n0 = 10−13 m−2/3, 10−14 m−2/3,
10−15 m−2/3.
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Figure 2. Radial component of
the scintillation index versus the
square root of the Rytov variance
σ0, λ = 1.55 µm, H = 400 m,
W0 = 5 cm, ζs = 1, 10, 100,
r = 0.05m.

4. NUMERICAL ANALYSIS CONCLUSION

In this section, we have analyzed the characteristics of the scintillation
index with the variations of propagation length and root of the Rytov
variance. Our results are shown in Figures 2–6. We have chosen the
wavelength of operation to be λ = 1.55µm, since this wavelength
is the most widely used in the current FSO links. In computation,
since the atmospheric structure constant is variable with height on
slant propagation path, the computing formulas have to reserve C2

n(h)
path integral calculus form; H is the height between transmitter and
receiver. Then we deal with a Gaussian Schell-model collimated beam
scintillation index.

Figure 2 shows the radial scintillation index as a function of the
square root of the Rytov variance σ0 for different values of the source
coherence parameter ζs representing beams from the coherent to the
partially coherent. The illustrated GSM beam is assumed collimated
beam (Θ0 = 1), and the propagation distance is allowed to vary. At
first, in weak fluctuation the radial scintillation index increases quickly
with propagation distance, then it eliminates quickly once the beam has
passed the focusing regime. In all irradiance fluctuation conditions, as
the source beam becomes less coherent, the radial scintillation index
decreases as expected. When σ0 is very large, radial component of
the scintillation index will vanish, independent of source coherence
parameter.

In Figure 3, we compare behavior of the coherent beam with that
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Figure 3. Radial component of
the scintillation index versus radial
distance r. H = 400 m, λ =
1.55µm, W0 = 5 cm, ζs = 1, 20,
60, 1000.
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Figure 4. Longitudinal compo-
nent of the scintillation index ver-
sus propagation distance L. λ =
1.55 µm, H = 100 m, W0 = 5 cm,
ζs = 1, 10, 100.

of the partially coherent beam and plot the radial component of the
scintillation index Equation (9) versus r for different values of the
source coherence parameter ςs. With increasing off-axis parameter
r, the radial component of the scintillation index will increase, but
the radial scintillation index for the incoherent source (ςs = 1000)
is zero independent of the off-axis parameter r. The Gaussian beam
scintillation index is bigger than the partially coherent beam. This
agrees with the result that the partially coherent beam is less sensitive
to the effects of turbulence than fully coherence one.

In Figure 4, we show Equation (17) as a function of the
propagation distance. As the source beam becomes less coherent, the
scintillation index decreases at a given distance. With the increase
of distance, longitudinal scintillations index increases and tends to
saturation. For short ranges (up to 6–8 km), the partially coherent
and incoherent beams assume lower levels of scintillation index than a
fully coherent beam; therefore the advantage of the partially coherent
beam can be expected in weak or focusing atmospheric regimes.

The effect of receiver altitude H on the longitudinal scintillation
index is illustrated in Figure 5. Before focusing atmospheric regimes
(location of peak scintillation), the higher the receiver is, the smaller
the scintillation index of the partially coherent GSM beam is. In
Figure 6, we show the total scintillation Equation (15) as a function of
σ0 with several values of height. We set C2

n0 = 10−13 m−2/3 and allow
the propagation distance to vary. The result, as in Figure 5, shows that
the total scintillation index is largely dependent on the longitudinal
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Figure 5. Longitudinal com-
ponent of the scintillation index
GSM beam versus σ0 and var-
ious H. W0 = 2.5 cm, H =
50m, 200 m, 800 m, ζs = 10, λ =
1.55µm.
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Figure 6. Scintillation index
of GSM wave in the atmosphere
versus σ0 and various H. λ =
1.55µm, H = 100 m, 400 m,
800m, ζs = 10, W0 = 2.5 cm.

scintillation index. When the atmospheric structure constant is a fixed
value, our result is consistent with the result of horizontal path [30].

5. SUMMARY

With the motivation of understanding whether employing a GSM
beam may bring some advantages in reducing the scintillation in
long atmospheric optics telecommunications links, we evaluate the
scintillation index of a GSM incidence on the slant path for all
atmospheric turbulence conditions. With the change of altitude and
source coherence parameters, the longitudinal and radial components
of scintillation index are discussed, respectively. In general, the larger
the source coherence parameter ςs and the higher receiver H are, the
smaller the scintillation index is. The scintillation index of the GSM
is smaller on the slant path than in the horizontal path in optical
turbulence. However, at relatively large σ0, the scintillation advantage
of the slant path tends to disappear. For incoherent beam, off axis
radial scintillation index is zero. Combining the results in current
work with previous result, we can assert that the GSM beam on
slant path reduces scintillation index more than the fully coherent
Gaussian beam on horizontal path. This scintillation index model of
the GSM beam on slant path for laser beam propagation in atmosphere
turbulence is significant for the visible and infrared imaging, laser
tracking, controlling and guiding, and LIDAR systems.
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