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Abstract—In this paper, an algorithm based on penalty cost function
for synthesizing flat-top patterns is proposed. A descent algorithm
(DA) as its optimizing approach is proposed in this paper as well.
Apparently, whole algorithm efficiency totally depends on the DA.
Unlike traditional descent method, the DA defines step length by
solving a inequality, instead of Wolf or Armijo-type search rule,
stimulation results indicate that it can improve the computational
efficiency. Under mild conditions, we prove that the DA has strong
convergence properties. Several numerical examples are presented to
illustrate the effectiveness of the proposed algorithm. The results
indicate that the approach is effective in the pattern shape precisely
in both mainlobe and sidelobe region for arbitrary linear arrays.

1. INTRODUCTION

Antenna array pattern synthesis (AAPS), the fundamental problems
in array signal processing, is to find the complex excitation or physical
layout of the array that produces the radiation pattern as close as
possible to the desired one. It becomes a hot topic of research over the
last several decades; thereof, many algorithms have been developed in
the area [1–9]. Classic techniques, such as the Dolph-Chebyshev and
Taylor methods, have many practical difficulties in the array design
especially if there are some restricted conditions. Moreover, synthesis
of antenna arrays also imposes tough challenges that mainly come
from the nonlinear and non-convex dependency of the array factor to
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positions, excitation phases and amplitude of elements [3]. In recent
years, Evolutionary algorithms, as one important kind of algorithms,
such as differential evolution (DE) [1, 2], particle swarm optimization
(PSO) [3–5] and genetic algorithm (GA) [6–8], have been also used for
antenna array optimization, but these global optimization techniques
are in fact limited in their performances from the fact that their
computational time is huge.

In general, numerical approaches are more practical for AAPS
problem. Penalty function method is an important tool in solving
nonlinear optimization problems. Its strategy is to convert a
constrained mathematical problem into unconstrained optimizing form
via a penalty parameter that penalizes any violation of the constraints.
In this paper, we propose an algorithm to AAPS problem based on
numerical optimization. First, convert the AAPS problem into a
unconstrained cost function, then minimize the function to obtain
optimal array weight vector by the DA.

The rest of the paper is organized as follows. Section 2 presents
the cost function formulation. In Section 3, DA is first introduced
and then proven as a well-defined algorithm with its convergence
properties. Section 4 shows the experimental results and related
discussions. Conclusions are drawn in Section 5.

2. COST FUNCTION FORMULATION

Consider a narrow band linear array with N isotropic elements
(actually, our method can be extended to planar array situation as
well). Assume that a signal arrives at an angle of θ, so the array
far-field response can be represented as

p(W, θ) =
N∑

i=1

wie
jφi(θ) = W T S(θ), θ ∈ [−90◦, 90◦] (1)

where j =
√−1, S(θ) = [1, ejϕ2(θ) . . . ejϕ2(θ)]T is the steering

vector, φi(θ) = 2πdi sin θ/λ the phase delay due to propagation,
λ the wavelength of the transmitted signal, di the position of
the ith element of the antenna array (d1 = 0), and W =
[w1, w2, . . . wN ]T the complex-weight vector. (·)∗ is the conjugate
and (·)H the conjugate transpose. Considering the optimization
approach is only applicable to real variable problems, a complex-
to-real transform of the response p(W, θ) is necessary. Firstly,
introduce a power function (P (W, θ)) of the array respond, i.e.,
P (W, θ) = |p(W, θ)|2 = p(W, θ)p∗(W, θ), then denote W = W1 + jW2,
W1 = [w1

1 w1
2 . . . w1

N ]T , W2 = [w2
1 w2

2 . . . w2
N ]T , S(θ) =
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S1(θ) + jS2(θ), S1(θ) = [1 cos(ϕ2(θ)) . . . cos(ϕN (θ))]T , S2(θ) =
[0 sin(ϕ2(θ)) . . . sin(ϕN (θ))]T , W1, W2, S1(θ) and S2(θ) ∈ RN. Thus,

P (W, θ) =
[(

W T
1 S1

)2
+ 2

(
W T

1 S1

) (
W T

2 S2

)
+

(
W T

2 S2

)2
+

(
W T

1 S2

)2

−2
(
W T

1 S2

) (
W T

2 S1

)
+

(
W T

2 S1

)2
]
∈ R (2)

In the case where phase constraint is not considered, an optimal weight
vector, Wopt , is determined so that the pown (or amplitude) response
P (W, θ) (or |p(W, θ)|) best approximates the desired pattern. The
definition of flat-top synthesis is illustrated in Figure 1. In [9], a
nonlinear least square (NLS) method for synthesizing flat-top pattern
was proposed, and the normalized synthesis problem was formulated
by a cost function based on the least-square error criterion as

J(W ) =
∑

θ∈[−90, θ1]

η(|p| − α)2 +
∑

θ∈[θ2,θ3]

(|p| − 1)2 +
∑

θ∈[θ4,90]

η(|p| − α)2 (3)

where p = p(W, θ), 0 6 α ¿ 1, and η (η > 1) is a penalty of
factor for weighting sidelobe errors. Nevertheless, there exist two main
drawbacks in the formulation: (1) In the process of optimizing the cost
function, Equation (3) punishes all iterative solutions in the same way
regardless of desired or undesired one. For example, if there are two
solutions W1 and W1 such that:
(a) |p(W1, θ)| < α, |p(W2, θ)| > α and (α− |p(W1, θ)|) ≈ (|p(W2, θ)| −
α), ∀θ ∈ [−90, θ1] + [θ4, 90].
(b) |p(W1, θ)| ≈ |p(W2, θ)| ≈ 1, ∀θ ∈ [θ2, θ3] .
Thereof, J(W1) ≈ J(W2). But, in fact, vector W1 is a optimal solution
of the problem and W2 the undesired one, so that is unreasonably very
much. In other words, the peak sidelobe level (PSLL) of the antenna
array is not always below threshold α even if its the peak main lobe
level (PMLL) converges to 1, and its cost function converges to a very
small positive number, because the cost function has not any penalty
terms to discriminate solution’s forms.

(2) The formulation does not consider the transition region
situation, and the threshold α is a given value and constant in the whole
optimization. They are the hindrances to the cost function converging
to optimal solution. Based on above analysis, we propose a method for
synthesizing flat-top pattern of antenna array, which is formulated by
a discrete angle penalty function based on pown response of antenna
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Figure 1. Definition of flat-top synthesis.

array as following:

F (W,α)

=
i=N1,θ=θ1∑

i=0,θ=−90+i·∆θ

[
(α−P )2+

(
P

α

)m]
+

i=N2,θ=θ2∑

i=1,θ=θ1+i·∆θ

[
(f1−P )2+

(
P

f1

)m]

+
i=N3,θ=θ3∑

i=1,θ=θ2+i·∆θ

(β−P )2+
i=N4,θ=θ4∑

i=1,θ=θ3+i·∆θ

[
(f2−P )2+

(
P

f2

)m]

+
i=N5,θ=90∑

i=1,θ=θ4+i·∆θ

[
(α−P )2+

(
P

α

)m]
−λ · lg |α| (4)

where ∆θ is the angle resolution, P = P (W, θ) defined by Equation (2),
constant m > 0, and β = r·α (r > 100 is a given value), f1 = f1(θ, α) =
(k−1)α
(θ2−θ1)(θ − θ1) + α, f2 = f2(θ, α) = (k−1)α

(θ3−θ4)(θ − θ4) + α. For avoiding
threshold α converging to zero, a penalty term−λ·lg |α| is incorporated
into Equation (4), where λ is a very small positive number. If α
gradually converge to zero solutions, it leads to −λ · lg |α| → +∞,
because α is a normal value and because its penalty term is a very
small positive number. As the cost function is minimized, threshold α
never converges to zero solutions, and tends to gradually move toward
a optimal solution. Similarly, penalty term (P

α )m can prevent iterative
algorithm from converging these solutions which make P (W, θ) bigger
than α. In the transition region, array response does not exceed the
given pattern under the penalty terms ( P

f1
)m and ( P

f2
)m limiting. When
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F (W, θ) → ε (ε is a small number), we obtain

∀θ ∈ [−90, θ1] + [θ4, 90] ,
[
(α− P (W, θ))2 +

(
P (W, θ)

α

)m]
→ ε

∀ω ∈ [θ2, θ3] , (β − P (W,ω))2 → ε

i.e., P (W, θ) < α and P (W,ω) = β, thereof, |PSLL| =
|10 ∗ log(P (W,ω)

P (W,θ) )| > |10 ∗ log(β
α)| > 20 dB (∵ β > 100α).

We name the proposed approach as penalty function method
(PFM). Above analysis indicates that weight vector W converges to an
optimal solution when F → ε. In practice, the converging condition
is too strict for application, because F is a bundle of many sub
functions, and moreover, generally every sub function has convergence
errors. Thereof, it is more practical to use its average denoted as ACF
(average cost function, i.e., F

(180/∆θ)) to index algorithm convergency.
The optimal value of the cost function h is finally obtained by the
optimizing method. In this paper, an algorithm based on gradient
iterative method is propped in the next section; however, for applying
the approach, we must first compute its gradient and Hessian matrices
(see the details in Appendix A).

3. NEW DESCENT ALGORITHM

Consider an unconstrained optimization problem

min
x∈<n

f(x). (5)

In the problem, f : Rn → R is a continuously differentiable function.
In general, numerical methods solving the problem have the following
iterative formulation [10]:

xk+1 = xk + αkdk, (6)

where xk, αk, and dk are current iterative point, positive step length,
and search direction, respectively. In this paper, we regard dk =
−∇f(xk) as the search direction at every iteration, which is extensively
used in solving large-scale minimization problems [11]. Generally, step
length αk can be defined by the most popular line search techniques
such as Armijo’s rule, Goldstein’s rule, and Wolfe’s rule. These
line search procedures require much time to compute the objective
function’s gradients∇f(xk+αkdk). To improve computation efficiency,
we propose a new rule that merely computes inequality to define step
length. Most importantly, under the new rule, there is no need to
compute ∇f(xk + αkdk).
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Throughout the paper, {xk} denotes the sequence of points
generated by our algorithm. DA iteratively solves the optimization
problem. At each iteration, the search direction is dk = −gk

(gk = ∇f(xk)). For computing the step length αk, firstly, a ratio
is introduced as following

ρk =
f(xk)− f(xk + αkdk)
f(xk)− ϕ(xk + αkdk)

(7)

where f(xk) − ϕ(xk + αkdk) = f(xk) − (f(xk) + gT
k (αkdk) +

1
2(αkdk)T Hk(αkdk)) and Hk = ∇2f(xk). It is clear that ρk indicates
the approximate degree of f(xk +αkdk) and ϕk(xk +αkdk). Moreover,
ρk → 1 whereas αk → 0. In iterative computations, ρk > c0(3.1) (c0 is
a given positive constant) means that ϕ(xk + αkdk) is approximate to
f(xk +αkdk), and trial step length αk is accepted. On the other hand,
when αk is not accepted (ρk < c0), some methods are used to resolve
the inequality by reducing trial step length until an acceptable length
is obtained. The procedures are as follows:
Algorithm 3.1. Given the points xk, gk, Hk and the constant 0 <

c0 < 1. Let dk = −gk.
Step 1. If gT

k Hkgk > 0, then solve the inequality by
f(xk) − ϕ(xk + αkdk) = αk ‖gk‖2 − 1

2α2
kg

T
k Hkgk > 0, thereby

obtaining 0 < αk < 2‖gk‖2
gT

k Hkg
. Initialize αk = 1.99‖gk‖2

gT
k Hkg

, then go
to step 2.
If gT

k Hkgk < 0, then initialize αk = C (C is a large positive
number), go to step 2.

Step 2. If the inequality (3.1) holds, the computation is stopped, and
output αk is obtained. Otherwise, let αk ← c1αk (0 < c < 1)and
loop with step 2.
For the comparison utilizing Wolfe’s rule, we first describe the
parameter.

Wolfe’s rule defines step length αk such that [10]

f(xk + αkdk) 6 f(xk) + σ1αkg
T
k dk

g(xk + αkdk)T dk > σ2g
T
k dk.

(8)

Apparently, the inequality in the group must be resolved, and
g(xk+αkdk) must be computed under this rule, which wastes more
time than our method. Likewise, step length αk is determined
directly by following inequality:

f(xk)−f(xk + αkdk) = f(xk)− (f(xk) + gT
k (αkdk)

+
1
2
(αkdk)T Hk(αkdk)+o

(
‖αkdk‖2)

)
> 0.
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The method is certainly feasible and simple. Unfortunately, its
step length αk (direction vector dk is given here) is a smaller value
because f(xk + αkdk) = f(xk) + gT

k (αkdk) + 1
2(αkdk)T Hk(αkdk) +

o(‖αkdk‖2) holds only in the condition that ‖αkdk‖ is a very
small value. Such a condition ultimately debases computational
efficiency. In our method, we obtain a bigger step length by
adjusting the positive constant c0. Based on Algorithm 3.1, we
calculate descent algorithm as follows:

Algorithm 3.2.
Step 0: Choose an initial point x0 ∈ Rn. Set d0 = −g0 = −∇f(x0)

and k = 0.
Step 1: If ‖gk‖ 6 ε (ε is a very small positive number), then the

calculation is stopped; otherwise, go to step 2.
Step 2: Set dk = −gk = −∇f(xk), then compute step length αk by

Algorithm 3.1 and let xk+1 = xk + αkdk.

Step 3: Let k ← k + 1, and go back to step 1.
The following assumptions, commonly used in the convergence
analysis of most optimization algorithms, are proposed to analyze
the convergence properties of Algorithm 3.2.

Assumption 1. The objective function f(x) is continuously differen-
tial and has a low bound on Rn.

Assumption 2. There exists a positive constant M such that∥∥∇2f(x)
∥∥ 6 M , ∀x ∈ Ω.

The following lemma shows that Algorithm 3.1 is well defined:
Lemma 0.0.1. If Assumption 1 holds, then the Algorithm 3.1 is well

defined.
Proof. By Assumption 1, we obtain

f(xk+αkdk) = f(xk)+gT
k (αkdk)+

1
2
(αkdk)T Hk(αkdk)+o(‖αkdk‖2)

= ϕk(xk+αkdk)+o(‖αkdk‖2).
So,

lim
αk→0

f(xk)− f(xk + αkdk)
f(xk)− ϕk(xk + αkdk)

= 1 > c0

Therefore, we can obtain trial step length αk after finite
computation, i.e., Algorithm 3.1 is well defined.

Lemma 0.0.2. Suppose that Assumption 1 and 2 hold, and is the
sequence generated by Algorithm 3.2, then lim

k→∞
‖gk‖ = 0.

Proof. {xk, k = 1, 2, . . .} is generated by Algorithm 3.2, therefore,
xk, dk and αk such that
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ρk = f(xk)−f(xk+αkdk)
f(xk)−φ(xk+αkdk) ≥ c0 > 0 and f(xk)− φ(xk + αkdk) > 0

So, f(xk) > f(xk+1)(xk+1 = xk + αkdk). It means that
f(x0) > f(x1) > f(x2) > . . . > f(xk) > f(xk + 1) . . . .

According to Assumption 1, f has bottom limits. Thus, lim
k→∞

xk =

x∗ and lim
k→∞

f(xk) = f(x∗). From Assumptions 1 and 2, two

positive numbers M1, M2 exist, as well as a neighborhood
N(x∗, δ)(δ > 0) of x∗, such that M1 6 ‖∇2f(x)‖ 6 M2 and
∀x ∈ N(x∗, δ). Then, using Mean-value theorem [11], we obtain

‖gk‖ =
∥∥∥
∫ 1
0 ∇2f(x∗ + θ(xk − x∗))(xk − x∗)dθ

∥∥∥ 6 M ‖xk − x∗‖

‖gk‖ =
∥∥∥∥
∫ 1

0
∇2f(x∗ + θ(xk − x∗))(xk − x∗)dθ

∥∥∥∥

=
‖xk − x∗‖

∥∥∥
∫ 1
0 ∇2f(x∗ + θ(xk − x∗))(xk − x∗)dθ

∥∥∥
‖xk − x∗‖

>
‖xk − x∗‖

∥∥∥(xk − x∗)
∫ 1
0 ∇2f(x∗ + θ(xk − x∗))(xk − x∗)dθ

∥∥∥
‖xk − x∗‖2

> M1 ‖xk − x∗‖ .

Given that lim
k→∞

xk = x∗, i.e., lim
k→∞

‖xk − x∗‖ = 0, then

lim
k→∞

‖gk‖ = 0.

Finally, the general algorithm is derived by minimizing the cost
function, obtaining optimal weight vector Wo, and outputting
amplitude pattern |p(Wo, θ)|. The algorithm is described as
follows.

Step 1. The cost function F (W,α) is constructed as Equation (4).
Step 2. Let

X =
(
W T

1 , W T
2 , α

) ∈ R2N+1

then, computing ∇W1F , ∇W2F and F ′
α by Equations (A3)–

(A5) respectively. Using Equations (A4), (A9) and (A10) (see
the details in Appendix A), we obtain ∇2

W1
F , ∇2

W2
F and F ′′

α ,
whereafter constructing ∇XF and ∇2

XF as following:

∇XF =
(
(∇W1F )T , (∇W2F )T , F ′

α

)

∇2
XF =




(∇2
W1

F
)
N×N

(0)N×N 0
(0)N×N

(∇2
W2

F
)
N×N

0
0 0 F ′′

α




(2N+1)×(2N+1)
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The two formulas are essential to Algorithm 3.1. Finally,
Algorithm 3.2 is used to minimize the cost function F (X).

Step 3. Based on the previous analysis, vector W converges a optimal
solution, if F

(180/∆θ) → 0, then array amplitude pattern is
outputted.

4. SIMULATION RESULTS

In this section, several simulations are performed to test the penalty
function method for synthesizing flat-top patterns. We assume that all
array elements are isotropic and no mutual coupling.

Simulation 1: Comparison with the line search (LS) [10]
Consider a synthesis problem using a 17-element half-wave-length

spacing linear array with the following configurations: θ1 = −4.5,
θ2 = −3.0, θ3 = 3.0, and θ4 = 4.5. The simulations based on the
DA and LS algorithms were executed 10 times independently, and the
results are listed in Table 1.

The two iterative algorithms optimize the same cost functions in
every stimulation, but the results show their distinct performance.
Under LS, average wasted time, minimum PSLL and average PSLL
are 40.54 second, −22.73 dB and −21.25 dB, and under DA, they are

Table 1. Comparison of the DA and LS algorithms.

NO. Algorithm r m ACF PSLL(dB) Time (s)

1 DA 110 0.4 0.2 0.330050 -27.18 24.20

LS 110 0.4 0.2 0.333661 -21.16 54.69
2 DA 120 0.4 0.2 0.475723 -26.21 32.18

LS 120 0.4 0.2 0.559412 -20.41 35.43
3 DA 120 0.4 0.2 0.512754 -24.27 22.32

LS 120 0.4 0.2 0.593485 -19.80 29.01
4 DA 110 0.8 0.2 0.718242 -24.63 21.72

LS 110 0.8 0.2 0.599144 -21.50 40.03
5 DA 110 0.4 0.2 0.272849 -29.69 25.72

LS 110 0.4 0.2 0.558577 -21.42 39.37
6 DA 120 0.4 0.2 0.309771 -24.03 26.79

LS 120 0.4 0.2 0.652165 -22.33 50.69
7 DA 130 0.6 0.6 0.269191 -23.83 23.91

LS 130 0.6 0.6 0.378267 -19.01 34.45
8 DA 108 0.5 0.6 0.265707 -24.67 26.71

LS 108 0.5 0.6 0.617897 -21.99 40.12
9 DA 110 0.5 0.6 0.277525 -23.68 24.54

LS 110 0.5 0.6 0.509221 -22.73 40.75
10 DA 120 0.4 0.2 0.276542 -23.63 26.75

LS 120 0.4 0.2 0.511626 -22.22 40.92

∆θ
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Figure 2. (a) Amplitude pattern and (b) cost function variety of
17-element line antenna array under DA algorithm.

Table 2. Optimal solution of 17-element line antenna array under DA
algorithm.

Elemen t W 1 W 2 Elemen t W 1 W 2 Elemen t W 1 W 2

1 −0.006852 −0.010127 2 −0.020647 −0.030564 3 −0.036663 −0.054285

4 −0.053729 −0.079793 5 −0.069787 −0.103909 6 −0.083744 −0.124851

7 −0.093917 −0.139986 8 −0.099285 −0.148060 9 −0.099111 −0.147892

10 −0.093792 −0.139897 11 −0.084071 −0.124943 12 −0.071362 −0.105343

13 −0.056918 −0.083282 14 −0.042212 −0.061230 15 −0.028050 −0.040264

16 −0.015600 −0.022166 17 −0.005144 −0.007227 0.027799α

25.48 second, −29.69 dB and −25.18 dB, respectively. Undoubtedly,
compared with LS, the DA algorithm exhibits stronger search ability
in these simulations. We show the optimal amplitude pattern,
ACF variety and optimal solution in Figures 2(a), (b) and Table 2,
respectively.

Simulation 2: Comparison with NLS proposed in [9]
Consider a synthesis problem using a 37-element half-wave-length

spacing linear array with the following configurations: θ1 = −4.0,
θ2 = −1.5, θ3 = 1.5, and θ4 = 4.0. Executing the two algorithms
10 times independently and listing results in Table 3 as following.

Under NLS, average iterative number, minimum PSLL and
average PSLL are 10000, −18.20 dB and −16.05 dB, and under PEM,
they are 2135, −30.11 dB and −26.43 dB, respectively. The reported
minimum PSLLs for synthesis of 37-element array are −20.56 dB in [8]
and −24.11 dB in [2], respectively. Obviously, our result is much better
than the best solutions of references [2] and [8]. The result indicates
that the PEM has stronger ability to suppress sidelobe level because of
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the penalty terms of cost function. These penalty terms (P
α , P

f1
and P

f2
)

converge to big values when iterative algorithm converges to undesired
solutions such that P > α, P > f1 and P > f2. Contrarily, the penalty

Table 3. Comparison of the PEM and NLS algorithms.

NO. Algorithm r m   ACF PSLL(dB) Iterative number

1 PEM 140.0 0.6 0.6 0. 081197 −30.11 8500

NLS 0.6 0.002175 −15.01 10000
2 PEM 140.0 0.6 0.4 0. 108233 −28.46 8000

NLS 0.6 0.008687 −15.30 10000
3 PEM 120.0 0.8 0.4 0. 069333 −25.05 2000

NLS 0.6 0.019542 −16.73 10000
4 PEM 130.0 1.5 0.2 0. 008909 −24.65 1200

NLS 0.6 0.034728 −17.28 10000
5 PEM 130.0 1.5 0.6 0. 010744 −25.16 1100

NLS 0.6 0.078126 −16.09 10000
6 PEM 130.0 1.4 0.6 0. 002911 −25.10 1400

NLS 0.4 0.001393 −15.18 10000
7 PEM 150.0 0.8 0.6 0. 074565 −25.83 1800

NLS 0.4 0.000788 −17.00 10000
8 PEM 150.0 1.3 0.4 0. 003712 −25.96 2000

NLS 0.4 0.001394 −18.20 10000
9 PEM 130.0 0.8 0.4 0. 075532 −26.83 2000

NLS 0.4 0.001068 −16.20 10000
10 PEM 130.0 0.8 0.2 0. 104004 −27.18 550

NLS 0.4 0.006767 −13.56 10000

∆θ

Table 4. Optimal solution of 37-element line antenna array under
PEM.

Element W 1 W 2 Element W 1 W 2 Element W 1 W 2

1 −0.001164 0.002451 2 −0.002811 0.006139 3 −0.004483 0.010120

4 −0.006476 0.014968 5 −0.008660 0.020351 6 −0.011135 0.026409

7 −0.013746 0.032831 8 −0.016510 0.039629 9 −0.019322 0.046570

10 −0.022175 0.053588 11 −0.024981 0.060422 12 −0.027696 0.066948

13 −0.030237 0.072919 14 −0.032646 0.078295 15 −0.034821 0.082875

16 −0.036713 0.086613 17 −0.038244 0.089324 18 −0.039417 0.091011

19 −0.040168 0.091601 20 −0.040461 0.091115 21 −0.040244 0.089542

22 −0.039506 0.086963 23 −0.038238 0.083377 24 −0.036543 0.078984

25 −0.034399 0.073815 26 −0.031858 0.068058 27 −0.028973 0.061749

28 −0.025868 0.055116 29 −0.022605 0.048246 30 −0.019346 0.041417

31 −0.016128 0.034664 32 −0.013046 0.028231 33 −0.010101 0.022079

34 −0.007446 0.016544 35 −0.005028 0.011431 36 −0.003034 0.007139

37 −0.001204 0.002947 0.025167α
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Figure 3. (a) Amplitude pattern and (b) cost function variety of
37-element line antenna array under PEM.

terms converge to small values when iterative algorithm converges to
desired solutions such that P < α, P < f1 and P < f2. Thereof, in the
process of minimizing the cost function, the iterative algorithm tends to
gradually move toward a optimal solution that makes the sidelobe level
below to threshold. Finally, we show the optimal amplitude pattern,
ACF variety and optimal solution in Figures 3(a), (b) and Table 4,
respectively.

5. CONCLUSION

In this paper, we present a penalty function method for antenna
array pattern synthesis (AAPS) problem, and an iterative optimization
algorithm named DA to minimize the function. Based on flat-top
model, the AAPS is transformed into a penalty function optimizing
problem. The additional penalty terms to the cost function can
identify desired or undesired solution by their values variety. Thereof,
our method can converge to optimal solution more precisely than
tradition flat-top method. The DA algorithm, unlike the traditional
descent method, defines step length by solving inequality instead of
merely using the Wolfe- or Armijo-type search rule, and can improve
computational efficiency as indicated by the theoretical analysis and
stimulation results. Upon application of the general algorithm to the
AAPS problem, computer simulations illustrate its good performance.

APPENDIX A. THE DERIVATION OF GRADIENT AND
HESSIAN MATRIX OF COST FUNCTION

Let tr{·}, d{·} and vec(·) denote the matrix trace, differential and the
vector operator, respectively. The derivation of cost function’s gradient
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and Hessian matrix is based on the following properties [12]:

P1 : d(XY ) = (dX)Y + X(dY ) P2 : d(tr(X)) = tr(dX)
P3 : tr(X + Y ) = tr(X) + tr(Y )

P4 : Let F be a differentiable real-valued function of an m× n matrix
X. The following relationship then holds:

dF (X) = AdX ⇔ ∇XF = ∂F (X)
∂X = AT .

P5 : Let F be a twice-differentiable, real-valued function of an
m× n matrix X. The following two relationships between the second
differential and the Hessian matrix of F at X then hold:

d2F (X)=tr(B(dX)T CdX) ⇔ H(F (X))=
1
2
(BT ⊗ C+B ⊗ CT )

d2F (X)=tr(B(dX)CdX) ⇔ H(F (X))=
1
2
Kmn(BT ⊗ C+CT ⊗B)

where Kmn is the switch matrix such that Kmnvec(X) = vec(XT ).
The gradient matrix of the cost function (Equation (3)) is then

calculated. Using P1 and P2, we obtain function P ’s differential (versus
vector W1),

dP = d
(
(W T

1 S1)2 + 2(W T
1 S1)(W T

2 S2) + (W T
2 S2)2 + (W T

1 S2)2

−2(W T
1 S2)(W T

2 S1) + (W T
2 S1)2

) {P2}
= 2(ST

1 W1)ST
1 dW1 + 2(W T

2 S2)ST
1 dW1 + 2(ST

2 W1)ST
2 dW1

−2(W T
2 S1)ST

2 dW1{P1}
= 2[

(
(ST

1 W1)ST
1 + (W T

2 S2)ST
1 + (ST

2 W1)ST
2 − (W T

2 S1)ST
2

)
dW1]

= 2[
(
(t1 + t2)ST

1 + (t3 + t4)ST
2

)
dW1]

(t1 =ST
1 W1, t2 =W T

2 S2, t3 =ST
2 W1 and t4 =W T

2 S1 ∈ R) (A1)

Therefore, using Equation (A1) and P4, we obtain

∇W1P = 2 ((t1 + t2)S1 + (t3 + t4)S2) (A2)

For convenience, let

F1 = (α− P )2 +
(

P

α

)m

, F2 = (f1 − P )2 +
(

P

f1

)m

F3 = (β − P )2 and F4 = (f2 − P )2 +
(

P

f2

)m
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Thereof, ∇W1F1 = ∇W1

(
(α−P )2+

(
P
α

)m
)

= 2 (P − α)∇W1P +
m
α

(
P
α

)m−1∇W1P . Similarly,

∇W1F2 =

(
2 (P − f1) +

m

f1

(
P

f1

)m−1
)
∇W1P,

∇W1F3 = 2 (P − β)∇W1P,

∇W1F4 =

(
2 (P − f2) +

m

f2

(
P

f2

)m−1
)
∇W1P

(∵ ∇W1α = ∇W1f1 = ∇W1f2 = 0)
Finally, we obtain,

∇W1F (W,α) =
∑

1

∇W1F1 +
∑

2

∇W1F2 +
∑

3

∇W1F3

+
∑

4

∇W1F4 +
∑

5

∇W1F1

i.e.,

∇W1F =
∑

1

(
2 (P−α)+

m

α

(
P

α

)m−1
)
∇W1P

+
∑

2

(
2 (P−f1)+

m

f1

(
P

f1

)m−1
)
∇W1P2

+
∑

3

2 (P−β)∇W1P +
∑

4

(
2 (P−f2)+

m

f2

(
P

f2

)m−1
)
∇W1P

+
∑

5

(
2 (P−α)+

m

α

(
P

α

)m−1
)
∇W1P (A3)

Similarly,
∇W2P = 2 ((t4−t3)S1+(t1+t2)S2) ,

∇W2F1 =

(
2 (P−α)+

m

α

(
P

α

)m−1
)
∇W2P,

∇W2F2 =

(
2 (P−f1)+

m

f1

(
P

f1

)m−1
)
∇W2P, ∇W2F3 = 2 (P−β)∇W2P,

∇W2F4 =

(
2 (P−f2)+

m

f2

(
P

f2

)m−1
)
∇W2P

(∵ ∇W2α = ∇W2f1 = ∇W2f2 = 0)
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∇W2F (W,α) =
∑

1

∇W2F1 +
∑

2

∇W2F2 +
∑

3

∇W2F3

+
∑

4

∇W2F4 +
∑

5

∇W2F1

i.e.,

∇W2F =
∑

1

(
2 (P−α)+

m

α

(
P

α

)m−1
)
∇W2P

+
∑

2

(
2 (P−f1)+

m

f1

(
P

f1

)m−1
)
∇W2P

+
∑

3

2 (P−β)∇W2P +
∑

4

(
2 (P−f2)+

m

f2

(
P

f2

)m−1
)
∇W2P

+
∑

5

(
2 (P−α)+

m

α

(
P

α

)m−1
)
∇W2P (A4)

(F1)
′
α = 2 (α− P )−mPmα−m−1,

(F2)
′
α = 2 (f1 − P ) (f1)′α −mPmf−m−1

1 (f1)′α
(F3)

′
α = 2r (β − P ) (β = rα, r > 100),

(F4)
′
α = 2 (f2 − P ) (f2)′α −mPmf−m−1

2 (f2)′α

(lg |α|)′α =
1
α

, (f1)′α =
(k−1)

(θ2−θ1)
(θ−θ1)+1, (f2)′α =

(k−1)
(θ3−θ4)

(θ−θ4)+1

F ′
α(W,α)=

∑

1

(F1)
′
α+

∑

2

(F2)
′
α+

∑

3

(F3)
′
α+

∑

4

(F4)
′
α+

∑

5

(F1)
′
α−λα−1

i.e.,

F ′
α =

∑

1

(
2 (α−P )−mPmα−m−1

)
+

∑

2

(
2 (f1−P ) (f1)′α

−mPmf−m−1
1 (f1)′α

)
+

∑

3

(2r (β−P ))+
∑

4

(
2 (f2−P ) (f2)′α

−mPmf−m−1
2 (f2)′α

)
+

∑

5

(
2 (α−P )−mPmα−m−1

)−λα−1 (A5)

Next, we calculate the Hessian matrices of the cost function. First,
the function P ’s twice differential (versus vector W1) is written as
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(vector dW1 is considered constant)
d2(P ) = d(d(P ))

= d(2[
(
(ST

1 W1)ST
1 + (W T

2 S2)ST
1 + (ST

2 W1)ST
2 − (W T

2 S1)ST
2

)
dW1])

= 2(ST
1 dW1S

T
1 dW1 + ST

2 dW1S
T
2 dW1).

Since F1 ∈ R, thereof, F1 = tr(F1),

dF1 = tr

(
d

(
(α− P )2 +

(
P

α

)m))

= tr

(
2(P − α)dP +

m

α

(
P

α

)m−1

dP

)

d2F1 = tr

(
d

(
2(P − α)dP +

m

α

(
P

α

)m−1

dP

))

= tr
(
2dP · dP + 2(P − α)d2P + m(m− 1)P (m−2)α−mdP · dP

+mP (m−1)α−md2P
)

= tr
((

2 + m(m− 1)P (m−2)α−m
)

dP · dP
)

+tr
((

2(P − α) + mP (m−1)α−m
)

d2P
)
{P3}

Let
d2F11 = tr

((
2 + m(m− 1)P (m−2)α−m

)
dP · dP

)
,

d2F12 = tr
((

2(P − α) + mP (m−1)α−m
)

d2P
)

,

so,
∇2F1 = ∇2F11 +∇2F12. (A6)

On the other hand,

d2F11 = tr
((

2 + m(m− 1)P (m−2)α−m
)

dP · dP
)

= tr
(
4

(
2 + m(m− 1)P (m−2)α−m

)

(
(t1 + t2)ST

1 + (t3 + t4)ST
2

)
dW · ((t1 + t2)ST

1 + (t3 + t4)ST
2

)
dW

)

∴ ∇2F11 = 2KN

(
BT

11 ⊗ C11 + B11 ⊗ CT
11

) { P5} (A7)
where
B11 =

(
2 + m(m− 1)P (m−2)α−m

) (
(t1 + t2)ST

1 + (t3 + t4)ST
2

)

C11 =
(
(t1 + t2)ST

1 + (t3 + t4)ST
2

)

KN = IN

(
∵ INvec (W1) = vec

(
W T

1

))
(A8)
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Similarly,

∇2F12 =KN

(
BT

121 ⊗ C121 + B121 ⊗ CT
121

)

+ KN

(
BT

122 ⊗ C122 + B122 ⊗ CT
122

)

B121 =
(
2(P − α) + mP (m−1)α−m

)
ST

1 , C121 = ST
1

B122 =
(
2(P − α) + mP (m−1)α−m

)
ST

2 , C122 = ST
2

(A9)

From Equations (A6)–(A9), we obtain,

∇2
W1

F1 = 2
(
2 + m(m− 1)P (m−2)α−m

)

(
((t1 + t2)S1 + (t3 + t4)S2)⊗

(
(t1 + t2)ST

1 + (t3 + t4)ST
2

)
+(

(t1 + t2)ST
1 + (t3 + t4)ST

2

)⊗((t1 + t2)S1 + (t3 + t4)S2)

)

+
(
2(P−α)+mP (m−1)α−m

)(
S1⊗ST

1 +ST
1 ⊗S1+S2⊗ST

2 +ST
2 ⊗S2

)
(A10)

By comparing the functions F1, F2, F3 and F4 above, it is found that
functions α, β, f1 and f2 are equal entirely in computing ∇2

W1
F (W, θ)

because they are all independent of vector W1. Thereof, substituting
f1, β and f2 for α in above equations correspondingly, we obtain the
formulation of ∇2

W1
F2, ∇2

W1
F3 (additionally let m = 0) and ∇2

W1
F4,

∇2
W1

F2 = 2
(
2 + m(m− 1)P (m−2)f−m

1

)

(
((t1 + t2)S1 + (t3 + t4)S2)⊗

(
(t1 + t2)ST

1 + (t3 + t4)ST
2

)
+(

(t1 + t2)ST
1 + (t3 + t4)ST

2

)⊗((t1 + t2)S1 + (t3 + t4)S2)

)

+
(
2(P−f1)+mP (m−1)f−m

1

)(
S1⊗ST

1 +ST
1 ⊗S1+S2⊗ST

2 +ST
2 ⊗S2

)
(A11)

∇2
W1

F3 = 4
(

((t1+t2)S1+(t3+t4)S2)⊗
(
(t1+t2)ST

1 +(t3+t4)ST
2

)
+(

(t1+t2)ST
1 +(t3+t4)ST

2

)⊗((t1+t2)S1+(t3+t4)S2)

)

+2(P−β)
(
S1⊗ST

1 +ST
1 ⊗S1+S2⊗ST

2 +ST
2 ⊗S2

)
(A12)

∇2
W1

F4 = 2
(
2+m(m− 1)P (m−2)f−m

2

)

(
((t1 + t2)S1 + (t3 + t4)S2)⊗

(
(t1 + t2)ST

1 + (t3 + t4)ST
2

)
+(

(t1 + t2)ST
1 + (t3 + t4)ST

2

)⊗((t1 + t2)S1 + (t3 + t4)S2)

)

+
(
2(P−f2)+mP (m−1)f−m

2

)(
S1⊗ST

1 +ST
1 ⊗S1+S2⊗ST

2 +ST
2 ⊗S2

)
(A13)
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Finally, using Equations (A10)–(A13), we obtain the Hessian matrix
∇2

W1
F (W, θ) as following.

∇2
W1

F =
∑

1

∇2
W1

F1 +
∑

2

∇2
W1

F2 +
∑

3

∇2
W1

F3

+
∑

4

∇2
W1

F4 +
∑

5

∇2
W1

F1 (A14)

Similarly, it is not difficult to compute the Hessian matrix
∇2

W2
F (W,α).

∇2
W2

F1 = 2
(
2 + m(m− 1)P (m−2)α−m

)

(
((t4 − t3)S1 + (t1 + t2)S2)⊗

(
(t4 − t3)ST

1 + (t1 + t2)ST
2

)
+(

(t4 − t3)ST
1 + (t1 + t2)ST

2

)⊗((t4 − t3)S1 + (t1 + t2)S2)

)

+
(
2(P−α)+mP (m−1)α−m

)(
S1⊗ST

1 +ST
1 ⊗S1+S2⊗ST

2 +ST
2 ⊗S2

)
(A15)

∇2
W2

F2 = 2
(
2 + m(m− 1)P (m−2)f−m

1

)

(
((t4 − t3)S1 + (t1 + t2)S2)⊗

(
(t4 − t3)ST

1 + (t1 + t2)ST
2

)
+(

(t4 − t3)ST
1 + (t1 + t2)ST

2

)⊗((t4 − t3)S1 + (t1 + t2)S2)

)

+
(
2(P−f1)+mP (m−1)f−m

1

)(
S1⊗ST

1 +ST
1 ⊗S1+S2⊗ST

2 +ST
2 ⊗S2

)
(A16)

∇2
W2

F3=4
(

((t4−t3)S1+(t1+t2)S2)⊗
(
(t4−t3)ST

1 +(t1+t2)ST
2

)
+(

(t4−t3)ST
1 +(t1+t2)ST

2

)⊗ ((t4−t3)S1+(t1+t2)S2)

)

+2(P−f1)
(
S1 ⊗ ST

1 +ST
1 ⊗ S1+S2 ⊗ ST

2 +ST
2 ⊗ S2

)
(A17)

∇2
W2

F4 = 2
(
2 + m(m− 1)P (m−2)f−m

2

)

(
((t4 − t3)S1 + (t1 + t2)S2)⊗

(
(t4 − t3)ST

1 + (t1 + t2)ST
2

)
+(

(t4 − t3)ST
1 + (t1 + t2)ST

2

)⊗((t4 − t3)S1 + (t1 + t2)S2)

)

+
(
2(P−f2)+mP (m−1)f−m

2

)(
S1⊗ST

1 +ST
1 ⊗S1+S2⊗ST

2 +ST
2 ⊗S2

)
(A18)

using Equations (A15)–(A18), we obtain the Hessian matrix
∇2

W2
F (W,α) as following.

∇2
W2

F=
∑

1

∇2
W2

F1+
∑

2

∇2
W2

F2+
∑

3

∇2
W2

F3+
∑

4

∇2
W2

F4+
∑

5

∇2
W2

F1 (A19)
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At last, computing the second derivation of the cost function F (W,α)
(versus variety α) below.

F ′′
1 = 2 + m(m + 1)Pmα−m−2,

F ′′
2 = 2

(
f ′1

)2 + m(m + 1)Pmf−m−2
1

(
f ′1

)2

F ′′
3 = 2r2, F ′′

4 = 2
(
f ′2

)2 + m(m + 1)Pmf−m−2
2

(
f ′2

)2

(lg |α|)′′ = −α−2, f ′1 =
(k − 1)

(θ2 − θ1)
(θ − θ1) + 1,

f ′2 =
(k − 1)

(θ3 − θ4)
(θ − θ4) + 1

F ′′(W, θ)=
∑

1

F ′′
1 +

∑

2

F ′′
2 +

∑

3

F ′′
3 +

∑

4

F ′′
4 +

∑

5

F ′′
1 +λα−2

(A20)
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